Distrib. Comput. (2001) 14: 127-146 @H@WE@D@EE@
COMPRUNING

(© Springer-Verlag 2001

The BG distributed simulation algorithm *

E. Borowsky!, E. Gafni?, N. Lynch®**, S. Rajsbaunt-***

Computer Science Department, Boston College, Chesnut Hill, MA 02467, USA (e-mail: borowsky@bc.edu)
Computer Science Department, University of California, Los Angeles, CA 90024, USA (e-mail: eli@cs.ucla.edu)

s oW o R

Instituto de Materaficas, UNAM, Ciudad Universitaria, D.F. 04510gkco (e-mail: rajsbaum@math.unam.mx)
Received: February 2001 / Accepted: February 2001
Summary. We present a shared memory algorithm that al-1 Introduction

lows a set off + 1 processes to wait-free “simulate” a larger _ _
system of processes, that may also exhibit upftstopping ~ One of the fundamental goals of theoretical computer sci-

failures. ence is to determine the boundary between problems that
Applying this simulation algorithm to the-set-agreement ~ are, and are not, computable. In distributed computing, the
problem enables conversion of an arbitrasfault-tolerant:- large number of system parameters compounds this problem.

process solution for thi-set-agreement problem into a wait- Computability results depend heavily on the communication
freek+ 1-process solution for the same problem. Sincéithe ~ medium, the number of processes in the system, and the num-
1-processk-set-agreement problem has been shown to havé&er and type of possible faults. Itis difficult in practice to ex-
no wait-free solution [5,18,26], this transformation implies tend a result obtained in one system to apply in another, even
that there is nd:-fault-tolerant solution to the:-processk- if only one of the many system parameters differs between
set-agreement problem, for any the two systems. In this paper, we take the first steps toward
More generally, the algorithm satisfies the requirements formal theory for reduction among problems in different
of afault-tolerant distributed simulatiorThe distributed sim- ~ models of distributed computing. We consider asynchronous
ulation implements a notion déult-tolerant reducibilitybe- ~ read/write shared memory systems where processes may ex-
tween decision problems. This paper defines these notions artibit stopping failures. There is a paramefeassociated to
gives examples of their application to fundamental distributed? system, which specifies the maximum number of processes
computing problems. that can fail.
The algorithm is presented and verified in terms of /O au- ~ We describe an algorithm, tH&G-simulation algorithm
tomata. The presentation has a great deal of interesting moddhat allows a set of + 1 processes with at mogtfailures, to
larity, expressed by 1/0 automaton composition and both for-‘simulate” a larger numben of processes, also with at most
ward and backward simulation relations. Composition is used failures. The BG-simulation algorithm is a powerful tool for
to include asafe agreemennodule as a subroutine. Forward proving solvability and unsolvability results for fault-prone
and backward simulation relations are used to view the algoasynchronous systems.
rithm as implementing enulti-try snapshostrategy. To illustrate the power of the BG-simulation algorithm,
The main algorithm works in snapshot shared memoryconsider the:-process:-set agreement problem [8], in which
systems; a simple modification of the algorithm that works inall n processes propose values and decide on at inofsthe
read/write shared memory systems is also presented. proposed values. We use the BG-simulation algorithm to con-
vert an arbitraryc-fault-tolerantn-process solution for thee-

Key words: Distributed computing — Fault-tolerance — Sim- Set-agreement problem into a wait-free- 1-process solution

ulation — Set-agreement — Consensus for the same problem. (A wait-free algorithm is one in which
any non-failing process terminates, regardless of the failure of
any number of the other processes.) Sincé:thd -process-
set-agreement problem has been shown to have no wait-free
solution [5,18,26], this transformation implies that there is

* Preliminary versions of this paper appeared in [5,22]. no k-fault-tolerant solution to the-processk-set-agreement

** Supported by Air Force Contracts AFOSR F49620-92-J-0125Problem, forany. . _
and F49620-97-1-0337, and NSF contract 9225124CCR and CCR- As another application, we show how the BG-simulation
9520298, and DARPA contracts N00014-92-J-4033 and F19628-95algorithm can be used to obtain results of [12,16] about the
C-0118. computability of some decision problems. Other applications
*** Part of this work was done at the Laboratory for Computer Sci- Of the algorithm (including variants, related algorithms dis-
ence of MIT and at the Cambridge Research Laboratory of Compagcussed below, and extensions of it) have appeared in [6,7,9,
Supported by DGAPA and CONACYT Projects. 10,21,25,17].

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA (e-mail: lynch@theory.lcs.mit.edu)

128 E. Borowsky et al.

Asthese examples suggest, the BG-simulation algorithm islucibility between decision problems, and a proof of correct-
an important tool when studying reducibility among problemsness appeared in Lynch and Rajsbaum [22]. The present paper
in different models of distributed computing. Thus, it is im- combines the results of [5] and [22], and adds the abstract
portant to understand precisely what the algorithm guaranteesiotion of fault-tolerant simulation, extensions for read/write
In this paper, we present a complete and careful descriptiosystems, computability results, and other details that were not
of the BG-simulation algorithm, plus a careful description of included in [5,22] for lack of space.

what it accomplishes, plus a proof of its correctness. Borowsky and Gafni extended the BG-simulation algo-
In order to specify the contribution of the BG-simula- rithmto systemsincluding set agreement variables [6]; Chaud-
tion algorithm, we define a notion édult-tolerant reducibil- huri and Reiners later formalized this extension in [10,25],

ity between decision problems, and a notioriaflt-tolerant ~ following the techniques of [22].

simulationbetween shared memory systems. We show that, Inthe context of consensus, variants of the BG-simulation
in a precise sense, any algorithm that implements the faultare used by Chandra et al. in [9] and by Lo and Hadzila-
tolerant simulation between two systems also implements theos in [21] to simulate systems with access to general shared
reducibility between decision problems solved by the systemsobjects. The BG-simulation requires processes to agree on
Then we describe a specific version of the BG-simulation algothe outcome of each step by solving (a restricted form of)
rithm that implements the simulation. These notions are quiteConsensus using only (read/write) registers. Instead of having
natural (although specially tailored to the BG-simulation al- processes agree on the outcome of the step as in the BG-
gorithm) and we believe they can serve as a basis for morgimulation, these papers use (in the case of [21] a similarly
general notions of reducibility between decision problems andestricted form of) test&set registers to ensure that only one
simulation between systems. process simulates each step. The simulation of Chandra et al.

To highlight the limits of the current reducibility, we give appliesto a contextinwhich test&setregisters are available di-
examples of pairs of decision problems that do and do notectly and need not be implemented, while Lo and Hadzilacos
satisfy our notion of fault-tolerant reducibility. For example, present a test&set implementation.
the n-processk-set-agreement problem fsreducible to the Afek and Stupp [3] use simulation to prove a lower bound
n/-processk’-set-agreement problem i > k' and f < on the time-space tradeoff of leader election algorithms that
min {n,n’}. On the other hand, these problems are not re-use compare&swap registers. Their simulation reduces a lea-
ducible ifk < f < k’. The moral is that one must be careful der election algorithm for a system with compare&swap reg-
in applying the simulation — there are scenarios for which it isisters with limited time and space resources to a set agreement
appropriate and scenarios for which it is not. One must verifyalgorithm with only read/write variables. Each simulating pro-
that the conditions for reducibility hold. cess simulates a group of statically pre-assigned processes in

We present and verify the BG-simulation algorithm in the simulated algorithm. The coordination is loose, so differ-
terms of I/O automata [23]. The presentation has a great deant executions may end-up being simulated by processes in
of modularity, expressed by I/0O automaton composition anddifferent groups.
both forward and backward simulation relations (see [24], for ~ This paper is organized as follows. We start with the model
example, for definitions). Composition includesafe agree- in Sect.2. In Sect.3 we define decision problems, what it
mentmodule, a simplification of one in [5], as a subroutine. means to solve a decision problem, reducibility between de-
Forward and backward simulation relations are used to viewcision problems, and simulation between shared memory sys-
the algorithm as implementingraulti-try snapshostrategy. tems that solve decision problems. In Sect.4 we describe a
The most interesting part of the proof is the safety argumentsafe agreement module that is used in the BG-simulation al-
which is handled by the forward and backward simulationgorithm. In Sect. 5 we present the BG-simulation algorithm. In
relations; once that is done, the liveness argument is straighect. 6 we present the formal proof of correctness for the BG-
forward. simulation algorithm. This implies Theorem 5, our main result,

We present our main version of the BG-simulation algo- which asserts the existence of a distributed algorithm that im-
rithm for a snapshot shared memory system. This makes thplements the reducibility and simulation notions of Sect. 3. In
correctness proof more modular, and the whole presentatioBect. 7 we show how to modify the BG-simulation algorithm
clearer, and is no loss of generality, since a system using snajfor snapshot shared memory), to work in a read/write memory
shot shared memory can be implemented in a wait-free mannesystem. In Sect. 8 several applications of the BG-simulation
in terms of single-writer multi-reader read/write shared vari- algorithm are described. A final discussion appears in Sect. 9.
ables [1]. For completeness, we briefly present a version that
works in read/ write shared memory systems. Essentially, the
version for read/write systems is obtained by replacing eac
snapshot operation by a sequence of reads in arbitrary order.
The correctness of the resulting read/write systems is proved
by arguments analogous to those used for snapshot systeni®&e underlying model is the 1/O automaton model of Lynch
combined with a special argument showing that the result of aand Tuttle [23], as described, for example, in Chapter 8 of [19].
sequence of reads is the same as the result of a snapshot tak®riefly, an I/O automaton is a state machine whose transitions
somewhere in the interval of the reads. are labelled with actions. Actions are classifiedrgmit, out-

The original idea of the BG-simulation algorithm and its put, or internal. The automaton need not be finite-state, and
application to set agreement are due to Borowsky and Gafninay have multiple start states. For expressing liveness, each
[5]. The first precise description of the simulation, including automaton is equipped withtaskstructure (formally, a par-

a decomposition into modules, the notiorfadlt-tolerantre- tition of its non-input actions), and the execution is assumed

The model

The BG distributed simulation algorithm 129

to give fair turns to each task. Theceof an execution isthe terpart that relates systems. The following diagram represents
sequence of external actions occurring in that execution. these relations, wher® and D’ are decision problems, and
Most of the systems in this paper asynchronous shared P andP’ are systems.
memorysystems, as defined, for example, in Chapter 9 of
[19]. Briefly, ann-process asynchronous shared memory sys-)
. A . . reducible ’
tem consists of. processes interacting via instantaneously- D — D
accessible shared variables. We allow finitely many or in-
finitely many shared variables. (Allowing infinitely many 1 solves 1 solves
shared variables is a slight generalization over what appears
in [19], but it does not affect any of the prpperties werequire.) p simulgtes
Formally, we model the system as a single I/O automaton,
whose state consists of all the process local state information We use the following notation. felation fromX to Y is
plus the values of the shared variables, and whose task strug-subset ofX x Y. A relation R from X to Y is total if for
ture respects the division into processes. When we discussveryz € X, there is somg € Y such that(x,y) € R. We
fault-tolerance properties, we model process stopping explicwrite R(z) as shorthand fofy : (z,y) € R}. For arelation?
itly by means ofstop input actions, one for each process from X toY, and a relatiort fromY to Z, R - S denotes the
The effect of the actiostop is to disable all future non-input relational composition of2 and.S, which is a relation from
actions involving processWhen we discuss safety properties X to 7.
only, we omit consideration of thetopactions.
In most of this paper, we focus on shared memory systems
with snapshot shared variable$ snapshot variable for an 3.1 Decision problems
n-process system takes on values that are lengtibctors of
elements of some basic data tyRelt is accessible bypdate Let V' be an arbitrary set of values; we use the sdmas
andsnapoperations. Arupdatéi, r) operation has the effect the input and output domain for all the decision problems in
of changing the'th component of the vector tg we assume this paper, and’™ denotes the set of all lengthvectors with
that it can be invoked only by process\ snapoperation can entries from the sét’.
be invoked by any process; it returns the entire vector. An n-port decision problenD = (Z, O, A) consists of
We often assume that th&h component of a snapshot a setZ of input vectors,Z C V™, a setO of output vectors,
variable is itself divided into components. For example, we use® C V™, and A, a total relation fronZ to O.
a snapshot variablmem and denote théth component by
menti); this component includes a componsit-men(;), Example 1.In then-procesdc-_set-agreement problem over a
denotedment).sim-mentj), for each; in some range. We ~ Sét ofvalued’,|V| > k+1, whichwe abbreviate as tlie, k)-
sometimes allow procesgo change only one of its compo- set-agreement problethjs the set of all length vectors over
nents, say componententi).sim-menj,), with anupdate V,andO is the set of all length vectors over containing
operation; this is permissible since procesan remember all &t mostk different values. For any € 7, A(w) is the set of
the other components and overwrite them. all vectors inO whose values are included among thosein
As we have defined it, a snapshot system may have more
than one snapshot shared variable. However, any system with . -
more than one snapshot variable (even with infinitely many3-2 Solving decision problems
shapshot variables) can easily be “implemented” by a sys-

tem with only a single snapshot variable, with no change inL?]t lt)'t: (Z. O’fA> be I?(r)m—ptort dei(c;slpn pr(i_blelm; we ﬁeflnde
any externally-observable behavior (including behavior in theVhat it meéans foran automa (in particular, a snare
emory system) to solv®. A is required to have inputs

presence of failures) of the system. Likewise, a system using .) .
snapshot shared memory can be “implemented” in terms o it(v); and outputslecidev);, wherev € V andl < i < n.
ach such is associated to a process ofiaand is used to

single-writer multi-reader read/write shared variables, agai X ; ; s
communicate with other modules via the corresponding in-

with no change in externally-observable behavior; see, e.g. . L .
[1] for a constgruction y g put and output actions. We say thatiait(v); or decidgv);
. curs inport ;.

In Sect. 7 we also consider shared memory systems wit?® . .
Y Sy We considerd composed with any user automat@rthat

single-writer multi-reader read/write shared variables (as de- . -
fingd for example, in [19]) (submits at most onmit; on each port. We say that a set of

init(v;); actions, one for each 1 < i < n, formsthe vector
(v1,...,vp). A set ofdeciddv;); actions for different values
of ¢ can becompletedo a vector in a given set ef-vectors, if
there is one vector in the set, such thatv(:) = v, for every

i action. We require the following conditions:

3 Decision problems, reducibility and simulation

In Sect. 3.1 we define decision problems and in Sect. 3.2 WgemdQvi)

say what it means for a system to solve a decision problemWell-formedness:A only produces decidg if there is a pre-

In Sect. 3.3 we define the fault-tolerant reducibility between cedinginit;, and A never responds more than once on the

decision problems. In Sect. 3.4 we present the notion of sim- same port.

ulation. Correct answers: linit events occur on all ports, forming a
While the notion of reducibility relates decision problems, vectorw € Z, then the outputs that appeadecidesvents

we show that the notion of simulation is the equivalent coun- can be completed to a vector if(w).

130

We say thatA solvesD provided that for any sucly, the

E. Borowsky et al.

and f are the key parameters whose existence is asserted in

compositionA x U guarantees well-formedness and correctthe following definition of reducibility.

answers. In addition, we consider a liveness condition express-

ing fault-tolerance:

f-failure termination: In any fair execution of x U, if init
events occur on all ports amstbpevents occur on at most
f ports, then aecideoccurs on every non-failing port.

A is said toguaranteef-failure terminationprovided that it
satisfies thef-failure termination condition for any/, and
A is said to guarantewait-free terminatiorprovided that it
guarantees-failure termination (or, equivalently,—1-failure
termination).

3.3 Fault-tolerant reducibility

We define the notion of-reducibility from ann-port decision
problemD = (Z, O, A) to ann’-port decision problend’ =
(T, 0, A", for anintegerf, 0 < f <n'.

1. G:G(gl,gg,...

. H = H(f hy,ha,...

e
— 7

1

o &L Fro) L o

, gn), atotal relation fronT to Z’; here,
eachg; is a function fromZ (i) to Z'.

For anyw € Z, let W C 7’ denote the set of all vectors
of the formg; (w(i)), 1 < i < n, and define?(w) = W.
We assume that for eaeh € Z, G(w) C 7'.

. F = F(f), atotal relation from0’ to (views (O’))".

For anyw € O, F(w) = (views (w))™.

, hy), a total (single-valued) rela-
tion from (viewss (O))™ to V™; here, eaclh; is a function
from views (O’) to O(7).

For anyz € (views (0’))", H(x) contains exactly the
lengthn vectorw such thatw(i) = h;(z(7)) for everysi.

The reducibility is motivated by the way the BG-simu-
lation algorithm operates. In that algorithm, a shared memDefinition 1 (f-Reducibility). Suppos® = (Z, 0, A)isan
ory systemP simulates anf-fault-tolerant systenP’ that n-portdecision problem)’ = (Z’, ©0’, A’) is ann’-port deci-
solves D’. The simulating systen® is supposed to solve sionproblem,and < f < n’.ThenDis f-reducibleto D’ via
D, and so it obtains from its environment an input vector relationsG = G(g1, 92, ... ,g,) andH = H(f, hy, ha, ... ,
w € T, one component per process. Each proéelsased on), written asD S?‘,H D', provided thatG- A"-F-H C A.
its own input valuew(i), determines a “proposed” input vec-
torg;(w(i)) € Z'. The actual input for each simulated process
j of P’ is chosen arbitrarily from among th&* components lems that do and do not satisfy the reducibility. Because the
of the proposed input vectors. Thus, for eacke Z, there is reducibility expresses the power of the BG-simulation algo-
a setG(w) C 7, of possible input vectors of the simulated rithm, the examples indicate situations where the algorithm
systemp’. can and cannot be used.

When the “subroutine” that solveB’ produces a result . . L
(a vector in®"), different processes d? can obtain different ~Example 2.(n, k)-setagreement if-reducible ta(n’, £')-set
partial information about this result. However, with at most 2greement fok > £/, f < min{n,n'}.

f stopping failures, the only difference is that each process
can miss at mosf components; the possible variations are
captured by thé' relation below. Then each procesd P uses

its partial informationz(4) to decide on a final valué, (x(7)).
The values produced in this way, combined according to th
H relation, must form a vector i. The formal definitions
follow.

For a setiW of lengthn vectors and an indexin {1,
..., n}, W(i) denotes{w(i) : w € W}, andIW denotes the If this reducibility held, then the main theorem of this paper,
Cartesian productV (1) x W (2) x ... x W(n). Thus,W Theorem 5, together with the fact th@at', k¥')-set agreement
consists of all the vectors that can be assembled from vectoris solvable wherf < £’ [8], would imply the existence of an
in W by choosing each component to be the corresponding'-fault-tolerant algorithm to solvén, k)-set-agreement. But
component of some vector ii. this contradicts the results of [5,11,18,26].

For a lengthn vectorw of values inV, and0 < f < n,
viewsy (w) denotes the set of lengthvectors ove” U { L}
that are obtained by changing at mgsbf the components
of wto L. If W is a set of lengtln vectors, therviews; (W)
denotes,,cw {views (w)}. We present a specification, in the 1/O automata formalism,

Our reducibility is defined in terms of three auxiliary pa- of a fault-tolerant distributed simulation. In Theorem 2 we
rameterized relation&, F' and H, depicted in the following show how this specification corresponds to the reducibility
diagram. The relatiott7 is defined by relationg, ... , g,- of Sect.3.3. The reducibility relates two decision problems,
The relationH is defined by relations, ... ,h,, and f. while the simulation relates two shared memory systems.
And the relationF" is defined byf. Thus we use the nota- We start, in Sect. 3.4.1, by describing the simulated system,
tionG = G(g91,92,--- ,9n), H = H(f,h1,ha,... ,hy),and P’.Each ofthe processes in the syst@hthat is going to sim-

F = F(f) to emphasize thati, g2, ... , gn, h1, b2y ..., hn, ulate’?’ gets its own input. These processes have somehow to

The following examples give some pairs of decision prob-

This is verified as follows. For € V, defineg;(v) to be

the vecton™ . Also, forw € views:(V"'), defineh, (w) to be
the first entry ofw different from L. It is easy to check that
QPefinition 1 is satisfied.

Example 3.(n, k)-set agreement is ngf-reducible to(n/,
k')-set agreement it < f < k'

3.4 Fault-tolerant simulation

The BG distributed simulation algorithm 131

produce, out of their inputs, inputs for the simulated processesiefinition of what we mean by a simulation is based on a safety
Also, out of the outputs produced by the simulated processesspecification expressed by ti&émpleSpe%H (P') automa-
they have somehow to produce outputs for themselves. Thesgn, or simplySimpleSpe@ system ofi processes?, which
two (distributed) procedures, of input translation and of outputis supposed to simulaf’, should implemenSimpleSpedn
translation, are what is unique to the fault-tolerant simulation.g sense described in Sect. 3.4.3.
Together with the natural, step-by-step simulatiogfthey The SimpleSpeautomaton directly simulates syste,
are modeled by an I/0O automata calinpleSpeavhich is in a centralized manner. Repeatedly, a progesisP’ is cho-
described in Sect.3.4.2. Finally, in Sect.3.4.3, we present 8en nondeterministically and its next step simulated. The only
formal definition of simulation, and show that it implements unusual feature is the way of choosing the inputs forfe
our reducibility notion. processes and the outputs for tReprocesses, using and

H relations. In order to determine an inpufor a procesg

of P’, a process is chosen nondeterministically from among
3.4.1 The simulated algorithf’ those that have received their inputs, anis set to thej-th

component of the vectgr; (input(<)). At any time after at least
We assume that the algorithm to be simulated is given in th%/ _ f of the processes @’ have produced decision Va|ue3,
form of ann/-process snapshot shared memory sysfemit outputs can be produced, using the functibps

has only a single snapshot shared variable, catiedi. We We give a formal description of tf&imple Speautomaton.
assume that each componentwéni takes on values in a set

R, with a distinguished initial value,. Thus, the snapshot
shared variablenen has a unique initial value, consisting
of ry in every component. Furthermore, we assume ®lat SimpleSpec
solves a decision proble’. In this subsection and the next, Signature:

we consider only safety properties, and so we omitstog Input:
actions. o o] init(v)i, i € {1,... ,n}

We make some simplifying “determinism” assumptions output:
about?’, without loss of generality: We assume that each decidgv);,i € {1,... ,n}
process has only one initial state. Also, each process has, in Internal:
any state, at most one non-input action enabled. Moreover, for sim-init;, j € {1,... ,n'}
any action performed from any state, we assume that there sim-snap, j € {1,... ,n'}
is a uniquely-defined next state. Also, the initial state of each sim-update, j € {1,... ,n'}
processis “quiescent”—no non-input actions are enabled (until sim-local, j € {1,...,n'}
an input arrives). For each other state, exactly one non-input sim-decide, j € {1,... ,n’}

action is enabled. In any state after a process has executeds@ates.
“decide”, only local actions are enabled. -) .
The following is some useful terminology about system sim-mema memory ofP’ (an element ofz"), initially the

P’. For any state of a procesg of P’, definenextoygs) to be initial memory (o)™

an element of “init” , “snap”, “local” } U {(“update”,r) : foreachi € {1,... ,n}:

r € R} U{(“decide”,v) : v € V'}. Specifically, for a quies- input(z) € VU {L}, initially L
cent state, nextods) = “init” ; for a states in which the next reported.i), a BOOllean, initiallyfalse
action is asnap nextoffs) = “snap”; for a states in which the foreachj € {1,... ,n'}:

next action is amipdatéi,), nextoyis) = (“update”, r); for S?m'ztatfej:)* a state Oﬁ'Titi"?‘”Y.tme Tma' state
a states in which the next action is locatextogys) = “local” ; sim-decisiofy) € VU {1}, initially
and for a state in which the next action is to decide on value Transitions:

v, nextof{s) = (“decide”, v). Our determinism assumptions init(v),
imply that for each state, nextofs) is uniquely defined. Effect:
For any state of a procesg such thanextogs) = “init” input() := v

and anyv € V, definetrans-init(s,v) to be the state that

results from applyingnit(v); to s. For any state of 3/. procgss S'm;:]:éon dition:

J such thatextogs) = “snap” and anyw € R™, define nextoisim-staté;)) = “init”
trans-snajps, w) to be the state that results from performing for somei

the snapshot operation from statewith the return value for input(i) #.L

the snapshot being. Finally, for any states of a procesg v = g;(input(i))(5)

such thanextops) is an“update”, “local” , or“decide” pair, Effect:

definetrang(s) to be the state gfthat results from performing sim-statéj) := trans-init(sim-stat€;), v)

the operation from state sim-snap

Precondition:
nextofgsim-staté;)) = “snap”

3.4.2 TheSimpleSpeautomaton Effect:
]))) sim-staté;) :=
Consider algorithr®’, which solves problem®’ guaranteeing trans-snagsim-stat¢;), sim-men

f-failure termination, together with relatiori$ and H. The

132

sim-update
Precondition:
nextofgsim-staté;)) = (“update”, r)
Effect:
sim-statéj) := trans(sim-staté;))
sim-meny) :=r

sim-local;
Precondition:
nextogsim-staté;)) = “local”
Effect:
sim-statéj) := trans(sim-staté;))

sim-decide
Precondition:
nextofgsim-staté;)) = (“decide”, v)
Effect:
sim-staté;) := trans(sim-staté;))
sim-decisiofyj) := v

decid€v);

Precondition:
input(é) #.L
reportedi) = false
w is a “subvector” ofsim-decision
lw|>n" — f
v = h;(w)

Effect:
reportedi) := true

Tasks:

Arbitrary. They are not used in the proof.

E. Borowsky et al.

simulates a centralized execution Bf with these inputs,
and hence the vectar” of output values that is stored in
sim-decisioncan be completed to a vector ift'(w’). Then

the code fordecideguarantees that the outputs that appear
in decideevents can be completed to a vectoHIiF'(w)).

It follows that the outputs appearing @tecideevents can be
completed to a vector iff (F'(A’'(G(w)))), and hence (since
D <" D')to a vector inA(w). Thus,SimpleSpég ™ (P')
produces correct answers.

3.4.3 Definition of simulation

We now define a notion of fault-tolerant simulation; our defi-
nition includes both safety and liveness conditions. We had to
make two choices for this definition. First, on the way the sim-
ulating processes produce inputs for the simulated processes
from their own inputs, and on the way they produce outputs
from the outputs of the simulated processes. Our choice was
defined by the way the the BG-simulation algorithm operates.
The second choice is about how detailed the simulation should
be. One possibility that comes to mind is to require a step-by-
step simulation, executing each instruction of each simulated
program. Our choice was to use the weakest notion of sim-
ulation that would still be sufficient for the applications we
present. Our simulation specification deals only with exter-
nal behaviors, and does not require that the program given by
P’ be simulated step-by-step. The key property guaranteed by
such a simulation is formally stated in Theorem 2.

We need a preliminary definition and lemma. Suppose that
A and B are two I/0 automata with the same inpirti (v);
and outputdeciddv);, v € V, 1 < i < n. We considerd
and B composed with any user automatbnthat submits at
most onenit; on each port. We say thatd solvesB provided

A sim-init; action is used to simulate anit step of process that for any sucli/, every trace of the compositioft x U is

j. To simulate any other step gf the functionnextopis @ISO atrace of the compositid# x U.

used to determine what the next operatiorfiigt” , “snap”,

(“update”, r), “local” , or (“decide”, v). Then the state tran-

sition specified byP’ is performed, using the appropriate func- . -

tion: trans-init, trans-snapor trans Once the simulation of at ZDgthn h;lA S?IV(ZEB and 5 solves am-port decision problem

leastn’ — f processes has been completed a decision valug ens solvest.

for i can be produced, usirg. In the code this is expressed proof, By assumption, every trace of x U is also a trace

by a “subvector” ofsim-decisionwhere “subvector’ means of p x 1. SinceB solvesD, every trace of3 x U satisfies

replacing zero or more entries of the vecsam-decisiorby \e|l-formedness and correct answers. Therefore, every trace

L, andjw| is the number of entries different from. of A x U satisfies well-formedness and correct answers} so
solvesD.

Lemma 1. Suppose thatl and B are two /O automata with
the same inputs inft); and outputs decide);, v € V, 1 <

Theorem 1. Assume’ solvesD’ and D <" D',
ThenSimpIeSpe?’H(P’) solvesD. Definition 2 (fault-tolerant simulation). SupposeP is an
n-process shared memory systéMjs ann’-process shared
memory system, arid< f < n’. ThenP f-simulatesP’ via
composed with any user automatbhthat submits at most relatlon.sG = G(gl_’QQ’ e 791?) and H = H(f, h, ha, ...,
oneinit; on each pori. hy), written asP S|mulate$’ P’, provided that both of the

To prove well-formedness, we note that it follows directly following hold:
from the code thatSimpleSpet™!(7') only produces a (1) P solves SimpleSpgd” (7).

decide if there is a precedinmit;, and it never responds more (2) If P’ guarantees-failure termination therP guarantees
than once on the same port. f-failure termination.

To prove correct answers, assuini events occur on all
ports, forming avectaw € 7. Then the code fasim-initguar- Note that condition (1) involves safety only, and so we
antees thatthe inputs f@ thatare produced can be completed follow the convention (of Sect.?2) of not including tiseop
to a vectorw’ € G(w). Then the code dﬁimpIeSpe%H(P’) actionsinP andP’. However, condition (2) is a fault-tolerance

Proof. Following Sect. 3.2, consideBimpleSpeg™ (7'

The BG distributed simulation algorithm 133

condition, and so we assume there thatdtepactions are Well-formedness: For any, the interactions between the

included, according to the convention. module and its users on parare well-formed for.
The relationship between our simulation and reducibility Agreement: All agreement values are identical.
notions is as follows: Validity: Any agreement value must be proposed.
Theorem 2. AssumeP’ solvesD’ and guarantees-failure In addition, we require two liveness conditions, which are

termination. Assume thap S?H D’ and P simulate?’H stated in terms of fair executions. The first condition says that

P'. ThenP solvesD and guaranteeg-failure termination. &1y Proposeevent on a non-failing port eventually receives a
safeannouncement. This guarantee is required in spite of any

Proof. We first show thaP solvesD. Theorem 1 implies that ~failures on other ports.

SimpleSpég" (P) solvesD. By property (1) of the definition \wait-free progress: In any fair execution, for anyif a
of f-simulation, we have tha® soIvesSmpIeSpe? (P). propose event occurs and nstop event occurs, then a
Therefore, Lemma 1 implies th& solvesD, as needed. safe event occurs.

Wi 'I\I(OW V‘f[f] st;c/)w thaUDtguar?r]lteeg‘t-fallgre t.termlsn'atlgm The second liveness condition says that if the execution does
e know thatP” guaranteey-failure termination. Sinc not remain unsafe for any port, then aopposeevent on a

. JH o !
,S'm‘!'ate? P, property (2) of the definition of-simulation non-failing port eventually receives agreeannouncement.
implies thatP guaranteeg-failure termination, as needed. o] o L

Safe termination: In any fair execution, if there is fpsuch

Later we use Theorem 2 to show thaPifsolvesD’ with f- th_atproposg occurs andafe does not occur, then for any
failure termination and <‘" D', then there exists asnap- i, ifaproposgeventoccurs and refop event occurs, then
shot shared memory systemthat solvesD with f-failure agreg occurs.

termination. The proof consists of describing a SPGC'f'C Shapan 1/0 automaton with the appropriate interface is said to be

shot shared memory systefhsuch thatP 3|mulate§ P'. asafe agreement modufovided that it guarantees all the

This result is stated in Theorem 5; the corresponding versiopreceding conditions (for all users).

for read/write shared memory systems is stated in Theorem 7. We now describe a simple design (using snapshot shared

Notice that this simulation specification deals only with memory) for a safe agreement module. It is a slight simplifi-

external behaviors, and does not require that the program givegation of the one in [5].

by P’ be simulated step-by-step. This requirementis sufficient The snapshot shared memory containsahcomponent

for the applications we present. and alevelcomponent for each procesdNhen processre-
ceives groposév),, itrecords the valuein its valcomponent
and raises it¢evelto 1. Theni uses a snapshot to determine

4 A safe agreement module thelevels of the other processes.ilfees that any process has
attainedlevel = 2, then it backs off and resets ivelto 0,

The simulation algorithm uses a component that we call aand otherwise, it raises itsvelto 2.

safe agreemennodule. This module solves a variant of the Next, process enters a wait loop, repeatedly taking snap-

ordinary agreement problem and guarantees failure-free teshots until it sees a situation where no processdnss = 1.

mination. In addition, it guarantees a nice resiliency property:\When this happens, the set of processes that it seekewith=

its susceptibility to failure on each port is limited to a desig- 2 is nonempty. Let be theval value of the process with the

nated “unsafe” portion of an execution. If no failure occurs smallest index witHevel = 2. Then process performs an

during these unsafe intervals, then decisions are guaranteegyregv); output.

on all non-failing ports on which invocations occur. . In the following code, we do not explicitly represent the
~ Formally, we assume that the module communicates withstop actions. We assume that tb®p action just puts process
its “users” on a set of portsnumbered., ... ,n. Each port ;in a special “stopped” state, from which no further non-input

i supports input actions of the forproposév);, v € V, by stepsare enabled, and after which any input causes no changes.
which a user at port proposes specific values for agreement,

and output actions of the forsafg andagredv);, v € V.
Thesafe action is an announcement to the user at ptnat SafeAgreement
the unsafe portion of the execution corresponding to port gpared variables:
has been completed, and togredv); is an announcement on

port: that the decision value is In addition, we assume that x, alengthn snapshot value; for ea¢hr (i) has components:
porti supports an input actiostop, representing a stopping levele {0, 1,2}, initially 0
failure. val € V U {1}, initially L
We say that a sequence mopose, safg andagreeg ac- Actions of -
tions iswell-formedfor i provided that it is a prefix of a se- :
quence of the forrproposév);, safe, agree. We assume that Input; Internal:
the users preserve well-formedness on every port, i.e., there is proposév);, v € V. updatel
at most ongpropose event for any particulai. Then we re- Output: snapl
quire the following properties of any execution of the module safe update?

together with its users: agredv); wait;

134

States ofi:

input, outpute V' U {_L}, initially L
x-local, a snapshot value; for eaghx-local(j) has compo-
nents:
levele {0, 1, 2}, initially 0
val € V U {L}, initially L
statuse {idle, updatelsnapl update2safe wait, report},
initially idle
Transitions of i:

proposév);
Effect:
input:= v
status:= updatel

updatel
Precondition:
status= updatel
Effect:
z(i).level:= 1
z(4).val := input
status:= snapl

snapl
Precondition:
status= snapl
Effect:
x-local:= z
status:= update2

update?
Precondition:
status= update2
Effect:
if 35 : x-local(j).level= 2
thenz(¢).level:= 0
elsex(i).level:= 2
status:= safe
safe
Precondition:
status= safe
Effect:
status:= wait
Waiti
Precondition:
status= wait
Effect:
if Aj:z(j).level=1
and3j : z(j).level= 2 then
k:=min{j : z(j).level=2}
output:= z(k).val
status:= report
agredv);
Precondition:
status= report

v = output
Effect:
status:= idle

Tasks ofi:
All actions comprise a single task.

E. Borowsky et al.

Theorem 3. SafeAgreement is a safe agreement module.

Proof. Well-formedness and validity are easy to see. We ar-
gue agreement, using an operational argument. Suppose that
process is the first to perform a successfuhit step, that is,

one that causes it to decide, and suppose that it decides on the
val of processk. Let be the successfwiait; step; then at
stepr, process sees that:(j).level £ 1 for all j, andk is the
smallest index such that k).level = 2.

We claim that no procesg subsequently sets(j).level
:= 2. Suppose for the sake of contradiction that procgss
does subsequently setj).level:= 2 in anupdate2 step,¢.
Sincez(j).level # 1 whenr occurs, it must be that procegs
must perform ampdate}, and asnap]; afterm and beforep.

But then procesg must seex(k).level= 2 when it performs
its snapl;, which causes it to back off, settingj).level :=
0. This is a contradiction, which implies that no process
subsequently sets(j).level := 2. But this implies that any
process that does a successtait step will also seé as the
smallest index such that(k).level = 2, and will therefore
also decide ori’s val.

The wait-free progress property isimmediate, because pro-
cess: proceeds without any delay until it performs gafg
output action.

To see the safe termination property, assume that there
is no j such thatproposeg occurs andsafg; does not occur.
Then there is ngi such thatz(j).level remains equal td
forever, so eventually all thievel values are if{0,2}. Then
any non-failing processwill succeed in any subsequemait;
statement, and so eventually performsigreg output action.

5 The BG simulation algorithm

In this section, we present the basic snapshot shared memory
simulation algorithm, which we will show satisfies Defini-
tion 2.

We present the algorithm as arprocess snapshot shared
memory systen® with a single snapshot shared variable. This
algorithm is assumed to interact not only with the usual en-
vironment, viainit and decideactions, but also with a two-
dimensional array of safe agreement modules, j € {1,
..,n'}, £ e N, N = {0,1,2,...}. In the final version
of the simulation algorithm, systeff, these safe agreement
modules are replaced by implementations and the whole thing
implemented by a snapshot shared memory system with a sin-
gle shared variable. The systa&his assumed to interact with
eachA; , via outputsproposéw); . ; and inputssafe, , ; and
agreqw); ¢ ;. Here, we subscript the safe agreement actions
by the particular instance of the protocol. For 0, we have
w e V.Forl € N*, we havew € R".

SystemQ simulates the' processes of’ (P’ is described
in Sect. 3.4.1), using a safe agreement protdge|to allow all
processes o) to agree on the input of each procgsand also
a safe agreement protocd} ¢, £ € N to allow all processes
to agree on the value returned by t#ih simulated snapshot
statement of each procegs©Other steps are simulated directly,
with no agreement protocol. Each proceéss Q simulates
the steps of each procegf P’ in order, waiting for each
to complete before going on to the next one. Pro¢esarks
concurrently on simulating steps of different processe®’of

The BG distributed simulation algorithm

135

However, it is only permitted to be in the “unsafe” portion of States ofi:

its execution for one procegof P’ at a time.

To simulate procesg, process keeps locally the current
value of the state of, in sim-state(j) the number of steps that
it has simulated foy, in sim-steps(j)and the number of snap-
shots that it has simulated fgr in sim-snaps(j) The shared
memory ofQ is a single snapshot variabheem containing
a portionmend:) for each processof Q. In its component,
process keeps track of the latest values of all the components
of the snapshot variable @', according toi’s local simu-
lation of P’. Process keeps the value of's component in
ment{:).sim-men(j). Along with this value, it keeps a counter

inpute V U {L}, initially L
reported a Boolean, initiallyfalse

for eachy:

sim-statéy), a state ofj, initially the initial state
sim-step§j) € N, initially 0

sim-snap§j) € N, initially 0

statugj) € {idle, proposeunsafesafe;, initially idle
sim-mem-locd}j) € R" | initially arbitrary
sim-decisiofj) € V U {_L}, initially L

in ment{:).sim-step§;j), which counts the number of steps that Transitions of i:

it has simulated forj, up to and including the latest step at
which procesg of P’ updated its component.

A function latestis used in thesnapaction to combine
the information in the various componentswénto produce
a single lengthn’ vector of R values, representing the lat-
est values written by all the processes®t This function
operates “pointwise” for eaclj, selecting thesim-men(y)
value associated with the highesim-step§j). l.e., assume
k = max,;{menti).sim-step&j)}. Then, leti; be an index
such thatmentz).sim-step&j) = k. The functionlatest se-

lects the valuenent:).sim-men;), for ;. As we shall see (in
Lemma 3), this value must be unique.

When procesg simulates a decision step ¢f it stores
the decision value in the local variatsden-decisiofyj). Once
process has simulated decision steps of at ledst- f pro-
cesses, that is, whesim-decisioph > n’ — f, it computes
a decision value for itself, using the functiorh;, that is,

v := h;(sim-decisio.

In the following code, we do not represent gtepactions,
since the difficult part of the correctness proof is the safety ar-
gument. After the safety argument we give the fault-tolerance
argument, and introduce tlstopactions.

Simulation SystemQ:
Shared variables:

mem a lengthn snapshot value; for eaé¢hment:) has com-
ponents:
sim-mema vector inR™ , initially everywhererq
sim-stepsa vector inN™ initially everywhere)

Actions of i:

Input:
init(v);, v eV
safg ,,, L€ N
agre€v); i, { =0andv € V,
or{c NT andv ¢ R"
Output:
deciddv);,v € V
proposév); i, £ = 0andv € V,
orl e N* andv € R"
Internal:
sim-update,
snap
sim-local; ;
sim-decide;;

init(v)i
Effect:
input:= v

proposgv);,o,:
Precondition:
statugj) = idle
Ak : statugk) = unsafe
nextofgsim-staté;)) = “init”

input #£_L
v = gi(input) (5)
Effect:
statug;j) := unsafe
safg , ;
Effect:

statugj) := safe

agregv);,o,
Effect:
sim-staté;) :=
trans-init(sim-statéj), v)
sim-step§j) := 1
statugj) := idle

shap
Precondition:
nextofgsim-staté;)) = “snap”
statugj) = idle
Effect:
sim-mem-locdlj) := lates{men)
statug;j) := propose

proposéw); e, £ € NT
Precondition:
statugj) = propose
Ak : statugk) = unsafe
sim-snap§j) = ¢ — 1
w = sim-mem-locdlj)
Effect:
statugj) := unsafe

agredw); o, L € Nt
Effect:
sim-staté;) :=
trans-snasim-staté;), w)
sim-step§j) := sim-step§j) + 1
sim-snap§;j) := sim-snap§j) + 1
statugj) := idle

136

sim-update

Precondition:
nextofgsim-staté;)) = (“update”, r)

Effect:
sim-statéj) := trans(sim-staté;))
sim-step§j) := sim-step§j) + 1
men{:).sim-menfj) :=r
men{i).sim-step§j) := sim-step§;)

sim-local; ;
Precondition:
nextogsim-staté;)) = “local”
Effect:
sim-statéj) := trans(sim-staté;))
sim-step§j) := sim-step§j) + 1

sim-decideg;
Precondition:
nextofgsim-staté;)) = (“decide”, v)
Effect:
sim-statéj) := trans(sim-stat€;))
sim-step§j) := sim-step§j) + 1
sim-decisiofyj) := v

decid€v);

Precondition:
input#£.L
reported= false
|sim-decisioh> n/ — f
v = h;(sim-decision

Effect:
reported:= true

Tasks ofi:

{decid€v); : v € V}
for eachy:
all non-input actions involving

E. Borowsky et al.

agredv);
Effect:
agreed-val= v
agreed-procs= agreed-procsJ {i}

For the safety part of the proof, we use three levels of abstrac-
tion, related by forward and backward simulation relations.
Forward and backward simulation relations are notions used
to show that one I/O automaton implements another [24], or
in our case, that one I/O automaton solves another; they have
nothing to do with “simulations” in the sense of the BG sim-
ulation algorithm. The first level of abstraction is the specifi-
cation itself; that is, th&impleSpeautomaton. The second
level of abstraction is thBelayedSpeautomaton described
next in Sect.6.1. The third level of abstraction is the simula-
tion algorithm’ itself (obtained by composing@ with safe
agreement implementations). We will prove in Sect. 6.1 that
DelayedSpesolvesSimpleSpeand in Sect. 6.2 th&® solves
DelayedSpecThis implies thatP solvesSimpleSpeowhich

is what is needed for the safety part of Definition 2.

6.1 TheDelayedSpeautomaton

Our second level of abstraction is thelayedSpeautomaton.
This is a slight modification oSimpleSpecwhich replaces
each snapshot step of a procgssf P’ (sim-snap) with a
series ofnap-try. steps during which snapshots are taken and
their values recorded, followed by oseap-succeedstep in
which one of the recorded snapshot values is chosen for actual
use.

The DelayedSpeautomaton is the same &mpleSpec
except for the snapshot attempts. There is an extra state com-
ponentsnap-sefj), which keeps track of the set of snapshot
vectors that result from doirgnap-try; actions. Theim-snap
actions are omitted.

DelayedSpec

6 Correctness proof Signature:

) o .)) Input:
The liveness proof, which is quite simple, is postponed to the As in SimpleSpec
end of this section. We start with the proofs of safety prop- output:
erties for the main simulation algorithm. For these, we use As in SimpleSpec
invariants involving the states of the safe agreement modules. Internal:
Since we do not want these invariants to depend on any partic- As in SimpleSpebut instead of

ular implementation of safe agreement, we add abstract state sim-snap, j € {1,... ,n'}:

information, in the form of history variables that are definable
for all correct safe agreement implementations:

proposed-valsC V, initially ()
agreed-vale V U { L}, initially L
proposed-procs {1,...,n}, initially ()
agreed-procsC {1, ... ,n}, initially 0

snap-try;
snap-succeed

States:

As in SimpleSpebut in addition:
snap-sefj), a set of vectors itR™ , initially empty

These history variables are maintained by adding the followingrransitions: As in SimpleSpebut instead ofim-snap:

new effects to actions:

proposgv);
Effect:
proposed-vals= proposed-vals) {v}
proposed-procs= proposed-procs’ {i}

snap-try;
Precondition:
nextogsim-staté;)) = “snap”
Effect:
snap-sefj) := snap-setj) U {sim-mem

The BG distributed simulation algorithm

snap-succeed
Precondition:
nextofgsim-staté;)) = “snap”
w € snap-sety)
Effect:
sim-statéy) := trans-snafsim-staté;), w)
snap-sefj) := 0

Tasks:

As in SimpleSpec

It should not be hard to believe th&@telayedSpecsolves
SimpleSpee- the result of a sequence sifiap-trysteps plus
onesnap-succeestep is the same as if a singlen-snapoc-

curred at the point of the selected snapshot. Formally, we use
a backward simulation to prove the implementation relation-

ship. The reason for the backward simulation is that the deci-
sion of which snapshot is selected is made after the point of

the simulated snapshot step.

The backward simulation relation we use (for any fixed

U) is the relatiorh from states oDelayedSpe« U to states
of SimpleSpe« U that is defined as follows. K is a state of
DelayedSpex U andu is a state ofSimpleSpex U, then
(s,u) € b provided that the following all hold:

1. The state oi/ is the same in, ands.
2. w.Ssim-mem= s.sim-mem
3. For each,
(a) w.input(i) = s.input(i).
(b) u.reportedi) = s.reporteds).
4. For eacly,
(@) u.sim-statéj) € {s.sim-stat¢;) }U
{trans-snafs.sim-staté¢;), w) : w € s.snap-sej)}.
(b) w.sim-decisiofyj) = s.sim-decisiofy).

That is, all state components are the samea &ind s, with
the sole exception that.sim-stat¢j) € {s.sim-stat¢;)} U
{trans-snags.sim-stat¢j), w) : w € s.snap-sefj)}, that is,
u.sim-staté¢j) is eithers.sim-statéj), or else the result of
applying one of the snapshot resultsstsim-staté;). Each
sim-step step ofSimpleSpe¢s “implemented” by a chosen
snap-try; step ofDelayed Spec

Lemma 2. Relationis a backward simulation from Delayed-

SpexU to SimpleSpecU.
Proof (sketch)Let (s, 7, s’) be a step oDelayedSpe« U,

fragment ofSimpleSpex U, from u to «/, with (s, u) € b.

137

that, either (i)u’.sim-staté;j) = s'.sim-staté;), or (ii)
u’.sim-stat¢j) € {trans-snags’.sim-stat¢j),w) : w €
s'.snap-setj), w # z}. Sinceu = v/, we need to prove
that «'.sim-stat¢j) is in the set{s.sim-staté;)} U
{trans-snafs.sim-stat¢j),w) : w € s.snap-setj)}. If
case (i) holds the claim follows easily from the fact that
s.sim-statéj) = s’.sim-staté;). Hence, assume case (ii)
holds. We knowthat.snap-setj) 2 s’.snap-setj) —{z},
and hence/.sim-staté; =trans-snafs’ sim-staté¢j), w),
where w € s.snap-setj). The proof follows since
s.sim-statéj) = s’.sim-staté;).
2. m = snap-succeed
The corresponding execution fragment consists of only
the single state/’. We must show thafs, v’) € b. Fix
x € s.snap-sej) to be the snapshot value selected in the
step we are considering.
Everything carries over immediately, except for the equa-
tion involving theu'.sim-staté¢;j) component. For this, we
know thatw’.sim-stat¢j) € {s'.sim-statéj)}U {trans
snafs’.sim-statéj), w) : w € s’.snap-sefj)}. But by
the code fosnap-succeedthe set’.snap-sefj) is empty.
Thusu'.sim-stat€j) = s’.sim-staté;).
Now, s’.sim-staté;j) = trans-snaps.sim-staté¢;), x), by
the code. Which implies that’.sim-stat¢j) = trans
snafs.sim-staté;), x). Therefore, uv’'.sim-stat¢j) €
{s.sim-statéj)} U {trans-snags.sim-statew) : w €
s.shap-s€lj) }, as needed.

This lemma implies that every trace DElayedSpex U
is a trace oSimpleSpe& U [24], that is (recall the definition
of “solves” in Sect. 3.4.3):

Corollary 1. DelayedSpec solves SimpleSpec.

6.2 The syster@ with safe agreement modules

Our third and final level is the syste@®, composed with arbi-
trary safe agreement modules, and withgheposeandagree

actions reclassified as internal. We show that this system, com-

posed with a usel/ that submits at most oriait; action on
each port, implemenBelayedSpe U in the sense of trace
inclusion; that is, this system solvBglayedSpe& U (in the

sense of Sect. 3.4.3). The idea is that individual processes of

Q that are simulating a snapshot step of a progeg$’ “try”

to perform the simulated snapshot at the point where they take
their actual snapshots. At the point where the appropriate safe

and let(s’, ') € b. We produce a corresponding execution @greement module chooses the winning actual snapshot, the

simulated shapshot “succeeds”. As in helayedSpecthis

The construction is in cases based on the type of action. Thehoice is made after the snapshot attempts.

interesting cases asmap-tryandsnap-succeed

1. m = snap-try.
Let = denotes.sim-memlf «'.sim-stat¢j) =
trans-snaps’.simstatéj), =), then let the corresponding
execution fragment béu, sim-snap, '), whereu is the
same as/, except that.sim-stat¢j) = s.sim-statéj).
This is an execution fragment becaussim-stat¢;j) =
s'.sim-statéj).

Formally, we use a weak forward simulation [24]. The
word “weak” simply indicates that the proof uses invariants.
We need the invariants for the definition as well as for the proof
of the forward simulation: strictly speaking, the definition of
the forward simulation we use is ambiguous without them.

Lemma 3 gives “coherence” invariants, asserting consis-
tency among three things: information kept by the processes

of Q, information in the safe agreement modules, and a “run”
(as defined just below) of an individual procgssf P’. Note

Otherwise, let the corresponding execution fragment behat Lemma 3 does not talk about global executior®’obut

just the single state’. That is,u = u’. Then we know

only about runs of an individual process®f.

138

Define arun of processj of P’ to be a sequence of the

form p = sg,c1, 51,2, 89, .., sk, Where eacls; is a state

of processj, and eachy; is a “change”, that is, one of the

following: (“init” ,v), (“snap”,w), (“update”,r), “local” ,

(“decide”, v); the first state is the unique start state, and eac
change yields a transition from the preceding to the succeedin

State.

A consequence of the next lemma is that every proces
1 that simulates steps of a processimulates the same run

of j. As we shall see, the run is determined by tlprocess
that is furthest ahead in the simulation fthus, only such

an i process can affect the outcome of the next step.of
Moreover, it can affect only the outcome of snapshot steps

Once the outcome of a snapshot step is determihedn
proceed with the simulation gflocally (without reading the
shared variable), up to the next snapshot step.

Invariant 1 relates the information in the processe®of

and the safe agreement modules. Invariants 2 and 3 relate t

processes of and a given rurp of processj. Invariants 4

and 5 relatep and the safe agreement modules. Invariant 6th
relates all three types of information: it relates information in

certain processes @, the runp (those that are “current” in

their simulation ofj, according to) and the safe agreement

modules.

Lemma 3. For every reachable state @ composed with ab-
stract safe agreement modules and a uSerand for each
processj, there is a runp = sg, ¢y, s1, ... , S Of processj
such that:

1. For anyi:

(a) sim-stepsgj); > 1ifand only ifi € agreed-procs,.

(b) Forany¢ > 1, sim-snap§j); > ¢ if and only ifi €
agreed-procs,.

(c) @ € proposed-procs, — agreed-procs, if and only
if nextodsim-staté;j);) = ‘“init” and statugj); €
{unsafesaf¢.

(d) Forany/ > 1,i € proposed-procs —agreed-procs,
if and only if nextosim-staté¢j),) = “snap”, sim-
snap$j); = ¢ — 1, andstatus;j); € {unsafesafée.

2. k = max{sim-steps§j);}.
3. For anysi, if sim-step§j); = ¢ then:

(a) sim-staté¢j); = s.

(b) sim-snap§j), is the number ofsnap”s amongc;,
.oy Cy.

(c) mem(i).sim-mendy) is the value written in the last
“update”amongey, . .. , ¢, if any, elserg.

(d) mem(i).sim-step§j) is the number of the last
“update”amongcy, . . . , ¢, if any, else).

4. (a) (“init” ,v) appearsirpifand only ifagreed-val, = v.

(b) (“snap”,w) is the £'th snapshot inp if and only if
agreed-val, = w.

5. If proposed-vals, # () andagreed-val, =L for some/
then

(@) If £ = 0 then p consists of only one state and
nextofs) = “init” .
(b) If ¢ > 1, thennextofs,) = “snap”, and the number
of snapsinpis?¢ — 1.
6. For any? > 1, if nextogs;) = “snap” and the num-
ber of “snaps”in p is £ — 1, then proposed-vals, =

§’, after a stefis, 7, s’). Letp = so, c1, 81, - . -

E. Borowsky et al.

{sim-mem-localj); : sim-step§j); = k andstatug;);

€ {unsafesafée }.

Proof. Let s be any reachable state &f composed with ab-

pptract safe agreement modules and a Usétor s equal to the

itial state it is simple to check that the lemma holds. Assume
holds for some state and we prove that it holds for any state

, s, bearun of
procesgj, corresponding t@, whose existence is guaranteed
by the lemma. We prove there is a rghcorresponding t@’,

that satisfies the requirements of the lemma. Thepfumill

be either equal tp, or else obtained frorp by appending a
change, 1 and a statey_ ;. We skip the proof of invariant 1,
which is simple and does not talk abgut

For states, k = max{s.sim-step§j), }. Letk’ be the cor-
responding value ir’; i.e. k¥’ = max{s’.sim-step§j); }.

Firstassumeé’ = k + 1. Then, for some, = must be one

- agredw); o,i, agregw); ; for £ € N, sim-update,,
sim-local; ;, or sim-decide;, since these are the only cases
at increment aim-stepscomponent. Moreover, we have
s.sim-step§); = k, and hence, by part 3(a) of the lemma,
s = s.sim-stat&j);. For each one of these possibilitigs,
is obtained fromp by appending the corresponding change:
(“init” ,w) for an agre€w); o,; (“snap”, w) for an agree
(w)jei, £ € NT; (“update”, r) for asim-update,;; “local”
for asim-local; ;; (“decide”, v) for asim-decide;, and after
the change, appending to the run the statg , resulting from
the corresponding transition functiotrgns-init, trans-snap
ortrang) applied tos,. Thatis,s;+1 = s’.sim-stat€;j);. Thus,
in s’, process is the first one to finish the simulation of the
k’-th step ofj ands’.sim-step§j); = k’; while for every other
process’, s’.sim-step§j),s < k.

First notice that part 2 of the lemma clearly holds for
Consider the case of = agreqw),,,; for ¢ € N* (we
omit the proofs of the other cases, which are analogous). For
part 3 of the lemma, we need to consider only the case of
¢ = k + 1, since the cases df < k + 1 hold by the in-
duction hypothesis. Thus, we need to consider only pracess
Part (a) holds by the definition of, ;. Part (b) holds because
s.sim-snap§j); is the number obnapgs amongc;, ... , ¢,
ands’.sim-snap§j); = s.sim-snapéj); + 1, while ¢, 1 =
(“snap”, w). Part (c), (d), and part 4(a) of the lemma hold by
induction hypothesis. For part 4(b) of the lemma, notice that
there ard — 1 snagsin p. Thus, inp’ there are snaps, and in-
deedagreed-val , = w. Part5 holds trivially because process
1isthe firstone to finish the simulation of the¢h snapof j, and
henceproposed-vals,, # @andagreed—va;yl, # 1 ford <,
while proposed-vals, = @andagreed-vah, =1for? > ¢.
Finally, consider part 6. Since isf there are no processés
with sim-stepéj); = k + 1 andstatus;j), € {unsafesafg,
then we have to proveroposed-vals,, ; = (). Observe that
s.sim-snap§j);, = £ — 1 for any:’ with s.sim-step§j),, = k.
Then,s.sim-snap§j);, < ¢ for all ¢/, and hence nd has yet
executed @roposgw); ¢41.

Now assumeé:’ = k. In this casep’ = p. Clearly part 2
of the lemma holds. The cases ofequal toagregw); o,
agredw); i, { € N*, sim-update,, simlocal;;, or
sim-decidg;, are similar to each other. Let us consider the
most interestingr = agregw), ;. We have thats.sim
snaps$j); = ¢ — 1 ands’.sim-snap§j); = ¢. Assumes.sim
stepsj); = ki1, k1 < k. To prove part 3 také = k; + 1.

The BG distributed simulation algorithm 139

Part (a) follows because.sim-stat¢j); = si,, andw € u to a stateu’, such thats’, ') € f. The proof is by cases,
agreed-vaJ ,, so that the effect of whentrans-snapis ap- according tar. These are the most interesting cases:

plied givess, +1 = s’.sim-statéj),. Part (b) follows because 1. — snap,.

s.sim-snap§j); is the number o$nags amongey, . .. ,cp—1, ;

and ¢, is asnap and therefores’.sim-snap§j); = s.sim

snaps$j); + 1 is the number ofnapgs amongcy, ... ,¢.. The

other parts of the lemma follow easily by induction.
Another case is when is proposév); o, or whenr is

proposéw); ¢, ¢ € N*. Consider the second possibility. To

check part 5 of the lemma assurseproposed-vals, # ()
ands’.agreed-va , =, while s.proposed-vals, = () and
s.agreed-va) , = L. Then,r isthe firsiproposefor j and¢, and
hencek = s.sim-step§j),. Also, we have that’.nextogsim
statdj);) = “shap” becauses.statugj) = propose Thus

nextofds;) = “snap”. To complete the proof of the claim

notice that the number ahapsn pis ¢ — 1, by the induction

hypothesis for part 3 (a) and (b). Finally, part 6 of the lemma

is easy to check because= s.sim-mem-locdlj); is added
to the seproposed-vals,.

The forward simulation relation we use is the relatipn
from states o2 composed with safe agreement modules and

U to states oDelayedSpeg U that is defined as follows. K
is a state of th& system and. is a state oDelayedSpeg U,
then(s,u) € f provided that the following all hold:

1. The state ot is the same in: ands.
2. u.sim-mem= lates{s.men).
3. For everyi,
(@) w.input(i) = s.input;.
(b) u.reportedi) = s.reported.
4. For everyy,
(a) u.sim-stat¢j) = s.sim-statéj);, wherei is the index
of the maximum value of.sim-step§;).
(b) If there existsi with s.sim-decisiofyj); #L then
u.sim-decisiofyj) = s.sim-decisiofy); forsome such
i, elseu.sim-decisiofy;) =_L.
(c) If nextogu.sim-stat¢j)) = “snap” then u.snap
se(j) = {s.sim-mem-locdlj); : s.sim-step§j); =
maxy{s.sim-step§j), } ands.statugj); # idle} else

If sim-step§j), is the maximum value adim-step§;) (in
boths ands’), then this simulatesnap-try,, else it simu-
lates no steps.

Assume the first case: thsitm-step§;); is the maximum
value ofsim-stepé;j). The corresponding execution frag-
mentis(u, snap-try;, u’), whereu' is the same ag except
thatu’.snap-setj) = u.snap-setj)JU{u.sim-menj. Since
(s,m,s') is a step ofQ, the precondition forr holds ins
andnextofis.sim-statéj);) = “snap”. Since(s,u) € f,
nextogu.sim-statéj)) = “snap”, by 4(a) of the defini-
tion of f. Therefore, the precondition fenap-try, holds
in u, and(u, snap-try;, u') is an execution fragment.

To prove that(s’,u’) € f, the only nontrivial part of
the definition off to check is 4(c); sincaextogu’.sim
statgj)) = “snap”, we do have to verify that’ satisfies
part 4(c) of the definition of . We know that:.snap-se(;)
is equal to the sefs.sim-mem-locdly); : s.sim-step§j);
= maxy{s.sim-step§j);} and such that.statugj); #
idle}, becausés, u) € f. Now, v’ .snapse(j) = u.snap
se(j)U{u.sim-men. Also,u.sim-mem= lates{s.men),
by part 3 of the definition off. After the snap ;,, we
getlates{s.mem) = s’.sim-merrocal(j);. It follows that
u’.snap-sefj) is equal tou.snapse(;j) U {s’.sim-mem
local(j);}, and hencey’.snap-seftj) is equal to{s’.sim
mem-localj); : s’.sim-step§j); = max{s’.sim-steps
(j)x } ands’.statugj); # idle}, as desired.

The case whersim-step§j); is not the maximum value
of sim-step§;) is trivial.

. =agredw), ¢, L € NT.

If this increases the maximum value ©m-step§j) then

it simulatessnap-succeedwith a decision value ab, else
simulates no steps.

Consider the case whefeincreases the maximum value
of sim-step§j). Let & = max;{s.sim-step§j);}. Then,
s.sim-step§j); = k, ands’.sim-step§j); = k + 1. By
Lemma 3, for state, there is a run foy, p = sg, c1, s1,

u-snap-sej) = 0. ., Sk, With s, = s.sim-staté;);. Now, part 1(d) of

Thus, the simulated memotysim-menmis determined by the Lemma 3 impliesnextofs.sim-staté;j);) = “snap”,
latest information that any of the processe€Xdias about the s.sim-snap§j); = ¢ — 1, and s.statugj); € {unsafe
memory, and likewise for the simulated process states and sim- safée}. Since(s,u) € f, u.sim-staté;j) = s.simstatg;),,
ulated decisions. Also, the snapshot sethap-se(j) are de- and hencejextogu.sim-staté¢;j);) = “snap” . We want to
termined by the snapshot values saved in local process states, prove that(u, snap-succeedu’) with a decision value of
in Q. w is an execution fragment. Since we already proved that
Eachsnap-trystep ofDelayedSpers “implemented” by a nextofu.sim-staté;);) = “snap”, to prove that the pre-
currentsnapof Q. Eachsnap-succeestep is implemented by condition of thesnap-succeedholds it remains to show
the firstagreestep of the appropriate safe agreement module, thatw € u.snap-seyj).
and likewise for eaclsim-init step. Eactsim-updatestep is To prove thatw € w.snap-sdfj), recall thats.sim
implemented by the first step at which some process simu- snapgj); = ¢ — 1, and hence/ — 1 is the number of
lates that update, and likewise for the other types of simulated “snap”’sin p, by part 3(b) of Lemma 3. Thus, the hypoth-
process steps. esis of part 6 of Lemma 3 holds, asgbroposeevals; , =
{s.sim-mem-locd}j); s.sim-step§j); = kand
s.statugj); € {unsafesafée }. We know thato mustbe in
the sets.proposed-vals,, becausgs, agregw); ¢,i, s') is
an execution fragment. Thug, = s.sim-mem-locd}j),

Lemma 4. The relationf is a weak forward simulation from
Q composed with safe agreement modules@nd Delayed-
SpexU.

Proof (sketch)Let (s,r,s’) be a step of th& system, and
let u be any state obelayedSpe« U such that(s,u) € f.
We produce an execution fragment@élayedSpeg U, from

for somei’ with s.sim-step§j),; = k ands.statugj);, €
{unsafesafe. To complete the proof of the claim, notice
that part 4(c) of the definition of f implies that

140 E. Borowsky et al.

u.snap-setj) = {s.sim-merrocal(j); : s.sim-step§j); block the simulation of. However, sincé’ is allowed to par-
= maxg{s.sim-step§j),} and s.statugj); #* idle}. ticipate in this safe agreement only if it is not currently in the
Thereforew must be inu.snap-setj). “unsafe” portion of any other safe agreement execution, then

Finally, it is easy to verify thats’,«’) € f: we need only i’ can block at most one simulated process. In any execution in
to check conditions 4(a) and 4(c) of the definitionfof which at mostf simulator processes fail, at mg&simulated
Clearly 4(a) holds. For 4(c) observe thatsnap-setj) = processes are blocked, and each non-failing simulatan

(. If nextogw’.sim-staté;j)) # “snap” then 4(c) holds. complete the simulation of atleast— f processes. Therefore,
But if nextogu’.sim-staté;j)) = “snap” 4(c) also holds, sinceP’ satisfiesf-failure termination, a non-failing simulator
since i is the only one achieving the maximum of will eventually execute itdecidestep. Thus the whole system
maxy{s’.sim-step§j); }, ands’.statug;j); = idle. satisfiesf-failure termination.

The case where does not increase the maximum value]

of sim-stepéj) is simple. Here no steps are simulatedand ~Lemmas 5 and 6 yield:

u = u'. To see thats’,u’) € f, we need to check only ; o ; I\ ;

that parts 4(a) and 4(c) of the definition pfhold. This Theorem 4. P is an f-simulation of P’ via relationsG and
follows easily from the fact thats,) € f, and that the

maximum value okim-step§j) does not change. Now, from Theorem 4 and Theorem 2 we get the result

) that leads to the applications in Sect. 8:
We conclude that every trace @f composed with safe

agreement modules and a uses a trace oDelayedSpee U: Theorem 5. Suppose thatthere exists a snapshot shared mem-
ory system that solve®’ and guaranteeg-failure termina-

ColroIIaB/ I2 stcomposed with safe agreement modulestion’ and suppose thad g?,H D'. Then there exists a snap-
solves Lelayedspec. shot shared memory system that solizeand guaranteeg-
Combining Corollaries 2 and 1, we obtain: failure termination.

Corollary 3. @ composed with safe agreement modules
solves SimpleSpec.

Corollary 3 is almost, but not quite, what we need. It 7 Simulation in read/write systems
remains to compose th@ automaton with snapshot shared
memory systems that implement all the safe agreement modh system using snapshot shared memory can be implemented
ules, thento merge all the processes of all these various comp@ a wait-free manner in terms of single-writer multi-reader
nents systems in order to form a single shared memory systemead/write shared variables [1]. It follows that Theorem 5 ex-
The resulting system has infinitely many snapshot shared vartends to read/write systems. However, in this section we pro-
ables; we combine all these to yield a systBrwith a single vide a direct construction, showing how to produce a read/
snapshot shared variable. We conclude that for everyliiser write shared memory systef that f-simulates a read/write
that submits at most oneit; action on each port, every trace shared memory systef®’. The read/write simulation algo-

of P x U is a trace ofSimpleSpex U. That is, rithm is essentially the same as the snapshot simulation al-
) gorithm, except that a snapshot operation is replaced by a
Lemma 5. P solves SimpleSpec. sequence of reads in arbitrary order.

Lemma 5 yields the safety requirements of a fault-tolerant | TTE re?sct)ns V\{[frl]y tV.Vte_ pr(_aserllted thstin?ﬂ?hm S|ml:Iat|0n
simulation, as expressed by part (1) of Definition 2. Now we? go? fmh Irs a(;? lat it 1s SI"m.p er,lan th at be co(rjrec nﬁss
prove the fault-tolerance requirements, as expressed by part (Oﬁ ofthe Lea ;Nr|t<_ah5|mu ation algorithm is based on that
of Definition 2. The argument is reasonably straightforward, the snapshot algorithm.

based on the fact that each proces®atan, at any time, be We assumethat.the systemwe want to simufeg,,, is an
in the unsafe region of code for at most one procesg’of n/-process read/write shared memory system. We describe an

As before, since we are reasoning about fault-tolerance, wg&:Process read/write simulating syst@y . As before, this
consider explicistopactions. algorithm is assumed to interact with the usual environment,

viainit anddecideactions, and also with a two-dimensional ar-

Lemma 6. If P’ guaranteesf-failure termination thenP ray of safe agreement modulds,, j € {1,... ,n'}, £ € N,
guarantees -failure termination. N = {0,1,2,...}. In the complete version of the simula-

) o tion algorithm, denote®zy, these safe agreement modules
Proof. Assume tha’ guaranteeg-failure termination. are replaced by read/write memory implementations and the

Each processof P simulates the steps of each procgss whole thing implemented by a read/write shared memory sys-
of P’ in order, waiting for each step to complete before goingtem.
on to the next one. Processorks concurrently on simulating The simulated syster®,,;, has a sequenaaem of n’
steps of different processesef. However, itis only permitted read/write shared variables. Each variabeni(;) is a single-
to be in the “unsafe” portion of its execution for one processyyriter multi-reader variable, written by procegf Pryy,
j of P atatime. o . taking on values iR, and with initial valuery. Furthermore,
Recall that the specification of safe-agreement stipulategye assume tha’ solves a decision problef, guaranteeing
that if a non-failing process executes gropose ,; action f_fajlure termination.
it will get an agreeg , ; action, unless some other process We use terminology about systeRf,,;, which is simi-
simulating stef of j, fails when “unsafe.” Inthis casécould lar to that of systen?’, as described in Sect. 3.4.1. Namely,

The BG distributed simulation algorithm 141

for any states of a procesg of P, definenextofs) to sim-mema vector inR™ , initially everywhererg
be an element of‘“init” “local” } U {(“read” ,j’) : 1 < sim-stepsa vector inN™ | initially everywhered
j < n'}u{(“update”,r) : r € R} U {("decide”,v) : v € . _
V'}. As before, our determinism assumptions imply that eactctions of :
states has a well defined and unique valuersxtofis). For

IR Input: Internal:
any states of a procesg such thamnextogs) = “init” and pAs ino Asin Q butinstead obnap ,:
anyv € V, definetrans-init(s, v) to be the state that results Output: reading,, .
from applyinginit(v); to s. For any states of a process Asin Q read-doﬁgi

such thatnextods) = (“read”, ;') and anyw € R, define

trans-reads, w) to be the state that results from performing
the read operation of thgth variable from state, with the ~ States ofi:
return value for the read being. Finally, for any states of

- As in Q except for:
a procesg such thatnextogs) is an“update”, “local” , or < P

“decide” pair, definetrang(s) to be the state of that results fﬁggﬁhﬁ,gim_snam
from performing the operation from state sim-reads;) € N, initially 0

The systenQ ry is assumed to interact with eadh , via instead oksim-mem-local
outputsproposéw); ¢, and inputssafe; , ; andagregw); ¢, ;. sim-mem-local-RW R, initially arbitrary
In fact, Qg is very similar toQ. The difference is that each and in addition:
snapshot operation used iy (the only place snapshots are read-sef;j) a set of integers, initially empty
used is in the computation tHtes) is replaced by a sequence m(j) € N U{-1},initially —1

of read operations i@z, as described next.

The shared memory o@ry consists of a sequence
mem-RWof n read/write shared variables. Each variable asin 0 but instead otnap ,,
mem-RW) is a single-writer multi-reader variable, written by ’
process of Qrw . INmem-RW), process keeps track of the

Transitions of <:

latest values in all the variables Bf,,;,, according ta’s local reading;

simulation of P}, . Along with each such valusim-meny), Precondition: ' 3
it keeps a tagim-stepé;), which counts the number of steps nextotsim-state;j)) = (‘read”, j)
that it has simulated fof, up to and including the latest step statugj) = idle

i’ € {1,...,n}-read-setj)
Effect:
read-set;j) := read-setj) U {i'}
if mem-RW').sim-step§j’) > m(j) then
sim-mem-local-R\Y) :=
mem-RW’).sim-menf;’)
m(j) := mem-RW;').sim-step§;’)

at which procesg of Py, updated its register.

The code ofQ gy has the same transitions as thos&of
except that thesnapis replaced byreading and read-done
and the necessary syntactic modifications are made to the
proposeandagreetransitions. The formal description appears
below. Procesg simulates a “read” of variablg’ by pro-
cessj, by reading all the variables imem-RWand com-
bining the information in these variables to produce a single read-done;

value in R: the value produced is the latest value written by Precondition:

any of the processes @ g in its copy of the shared vari- nextor{sim-staté;)) = (“read” , j')
able of j’. More precisely, processexecutes a series of statugj) = idle

reading; ; actions in arbitrary order, one for eachselecting read-sefj) = {1,... ,n}
themem-RW:').sim-meng;’) value associated with the high- Effect:

est mem-RWi’).sim-step§;j’) (this value must be unique). read-setj) := 0

In the code belowm(j) keeps track of the higheshem m(j) = —1
RW(i’).sim-stepé;j’) encountered so fam(;) is initialized to statug;) := propose

—1, becausenem-RWi').sim-step§;j’) takes values greater
or equal thar0. There is alsoead-setj) which keeps track
of the indexes of processes that have been considered. Thus,

proposéw);.e.q, £ € Nt
Precondition:
statugj) = propose

read-setj) is initially empty. Once then components of Ak : statugk) — unsafe

mem-RWhave been readead-setj) = {1,...,n} and sim-read¢j) = ¢ — 1

read-dong; can be executed. This in turn allows comple- w = sim-mem-local-R\Y)

tion of the simulation of the “read” with the execution of the Effect:

propos€w); ¢; andagregw); ¢ ; actions. statugj) := unsafe

agredw); e, £ € Nt

Simulation SystemQ gy Effect:

Same asQ but with the following changes sim-staté;) :=

Shared variables: trans-readsim-staté;), w)
As in Q but instead ofnem sim-stepgj) := sim-stepgj) + 1
mem-RWa sequence of read/write variables; for each sim-read¢j) := sim-read¢;) + 1

mem-RWi) has components: statug;) := idle

142 E. Borowsky et al.

Tasks ofi: holds for some particulgt’; fix j'. Also,sim-read$j) = ¢—1
for some value of. Thus, for the rest of the argument, we have
fixed values of, 1, 7, 5.

Replace all of theseead-dong ; andreading, ;'s by a sin-
gleread; ;, which occurs somewhere between the feating; ;

To prove the correctness of the read/write simulation algo-2ndthelasteading; ;, ata pointwhen the highesim-stepg;j’)
rithm, we define an intermediate systeBmapSimThe only fakes the value recorded by tead-dong,. That is, thaead
difference betweer®ry, and SnapSinis that to simulate a IS placed at a point wheteax, {memRW:').sim-stepgj’) }
read action of the’th componentSnapSinperforms a snap- 1S equaltothe value ofz(y)_at the point of theead-doneSuch
shot of mem-RWand applies a functiotatest,,, to the re- @ point exists because tb&n-stepwarlables increase by one
sult, instead of performing a series of reads. The functiortNitatatime, and because the final valuef) satisfies the
latest,,, for j/ is defined as follows. It returns a single value following: itis at least the value ahax; {memRW').sim-
of R, representing the latest value written by all the pro-Step$;’)} atthe moment of the firseading; ;, and at most the
cesses in thenem-RWariable ofj’. That is, letk = max;, value ofmax; {mem-RWi’).simstepg;’)} at the moment of
{mem-RWi’).sim-step§j’)}, and choose any”’ such that the lastreading ;.

mem-RW;").sim-stepgj’) = k. Thereforelatest,,,(mem Note that the value addim-mem-local-R\{Y) at the point
RW ;) = mem-RW:"”).simmeni;’). (We claim this is of theread-dongwhich is the value returned by the sequence
uniguely defined.) In the code &napSinthe readingand of readingsteps inQgw) is the same as the value wiem

Asin Q.

read-doneransitions are replaced byr@adtransition:

Simulation SystemSnapSim:
Shared variables:

As in Orw
Actions of i:

Input:
Asin Orw
Output:
Asin QRW
Internal:
As in Qrw, except thateadin%’i andread-done ;
are replaced byead, ;

States ofi:
Asin Qrw
Transitions of 4:

As in Qrw, except thateading; ; andread-dong;
are replaced byead, ;:

read; ;
Precondition:
nextofgsim-stat¢j)) = (“read” , j')
statugj) = idle
Effect:
sim-mem-local-R\Y) := latest,,,,(mem-RWj")
statugj) := propose

Tasks ofi:

Asin Orw.

RW(i").sim-menjj’) at the point where theead is placed,
for any " with mem-RW;").simstepgj’) = max, {mem
RW").sim-step§;’) }.

It follows that every trace oD gy with safe-agreement
modules and/ is also a trace dbnapSimwith safe-agreement
modules and/. Now, the same proof technique that we used to
proof that every trace of with safe-agreement modules and
U is atrace oDelayedSpeg U can also be used to prove that
every trace oBnapSinwith safe-agreement modules alrids
atrace oDelayedSpeg;;, x U, whereDelayedSpeg;, is the
read/write memory version ddelayedSpecAlso, the proof
technique used for Corollary 1 can be used to prove that ev-
ery trace oDelayedSpeg;;; x U is a trace oSimpleSpeg;;,

x U, the read/write memory version 8impleSpeacCombin-
ing all these facts, we see that every trac&®gfiy with safe-
agreement modules aidis also a trace odimpleSpeg,, x
U. Therefore:

Lemma 7. Qrw composed with safe agreement modules
solves SimpleSpgag; .

As before, we compos8 gy with read/write shared mem-
ory systems that implement all the safe agreement modules,
and then merge all the processes of all these various compo-
nents systems in order to form a single shared memory system,
Prw . We see that, for every usérthat submits at most one
init; action on each port, every trace®fy x U is a trace of
SimpleSpeg;;; x U. That is:

Lemma 8. Prw solves SimpleSpgg; .

The fault-tolerance argument is analogous to the one for
shapshot shared memory systems:

Lemma 9. If Py, guaranteesf-failure termination then
Prw guarantees -failure termination.

Now Lemmas 8 and 9 yield (restating Definition 2, the
definition of f-simulation, in terms oSimpleSpeg;;):

Theorem 6. Prw is an f-simulation of Py, via relations

It is not hard to verify that an execution @zw corre- (7 and H.
sponds to an execution &napSimConsider aead-done; ;
and the correspondinmgading; ,;'s, for some fixed values i. And we getthe analogue of Theorem 5 (using the analogue
Thus the preconditiomextofsim-stat¢j)) = (“read” , ;') of Theorem 2 for read/write systems):

The BG distributed simulation algorithm

Theorem 7. Suppose that there exists a read/write shared
memory system that solvé® and guaranteed-failure ter-
mination, and suppose tha@ <{* D’. Then there exists a
read/write shared memory system that soliZzeand guaran-
teesf-failure termination.

8 Applications

In Sect. 8.1, we describe the notion af@vergence tagk 6],
which is used to specify a family of decision problems, one

for each number of processes. For example, binary consensus]
is a convergence task — it yields a decision problem for any<x is defined as followsw,,
number of processes. In Theorem 8, we show that one decisig?nly if v1,..

143

Informally, if S is an input simplex of a convergence task,
each process can receive as input value any vertéx sfich
that the input values are a subset®ftwo processes may
receive the same vertex). The convergence task specifies a set
of legal output simplexes fof, denoted? (S). Each process
has to choose an output a vertex (two processes may choose
the same vertex), such that the vertices form an output simplex
of ¥(S). Let n-vectors(S) be the set of.-vectors of values
from S. Thus, ifS is an input simplex, then-vectors(S) are
input vectors, and if is an output simplex them-vectors(L)
are output vectors.
Let I be a complex. The correspondingport vector set
, Up,) isavectorinC,, if and
., v, (not necessarily distinct) form a simplex

problem in the family of problems specified by a convergencein K; that is,K,, = Useck n-vectors(S). For a vectonw, let

task is solvable if and only if any other problem in the family
is solvable. The proof is based on Theorem 5.

In Sect. 8.2 we use this theorem to obtain various possibil-

set(w) be the simplex of values af. Thus, ifw € K,, then
set(w) € K.
Formally, aconvergence tadlC, K, ¥] consists of two ar-

ity and impossibility results for read/write and snapshot shareditrary complexesf andk., called theinput complexand the

memory systems.

8.1 Convergence tasks

In Sect. 3.1 we defined am-port decision problem in terms
of two sets ofn-vectors,Z andO, and a total relation from

7T to O. Thus, a decision problem is specified for a certain
number of processes, For the applications in the next sub-
section, we would like to talk about a “problem” in general,

output complexrespectively, and a relatioh carrying each
simplex of£ to a non-empty subcomplex &f, such that ifZ
is aface ofLq, then¥(Ly) C ¥(Ly).

For eachn, the n-port decision problem ofZ, K, ¥] is
(L, Kp,¥), where? is as follows:¥ (w) contains every:-
vectorw’ such thatw’ € n-vectors(S), for S € ¥(set(w)).

In the next subsection, we consider the following conver-
gence tasks.

1. The N-consensus convergence task [SV—!, skef

without specifying the number of processes. For example, in
the binary consensus problem, any number of processes start
with binary inputs, and have to agree on some process’ input
value. Strictly speaking, this is not a decision problem, but a
family of decision problems, one for eagh

In principle, one could define a family of decision prob-
lems, in a way that for two different values af the corre-
sponding decision problems are completely unrelated. But this
is not what one would mean by a “family.” We now describe a
way of defining a family of decision problems called conver-
gence tasks [16]. We prove that it is a “family” in the sense, 2.
roughly, that one decision problem in the family is solvable if
and only if any other is.

For defining convergence tasks, it will be convenient to talk
about sets instead of vectors, since the position of an elemens.
in the vector will be immaterial. That is, in the kind of decision
problems we will be considering, any permutation of an input
(output) vector will also be an input (output) vector. We call a
set asimplex,to follow the notation of topology. An element
of a simplex is avertex.A complexis a family of simplexes
closed under containmeht.

For a complexk, skef(K) denotes the subcomplex
formed by all simplexes of of size at mosk + 1. For exam-
ple, skel (K) consists of all the vertices df, andskel (K)
consists of all the vertices and all the sim
Thusskel ()
of size2 as edges and simplexes of sizaes vertices.

! Thusthe complexes we consider here are “colorless,

(SN-1), skef], whereSN —! consists of a simplex of size
N, N > 1,andits subsimplexes. Thus, for eaglit yields

a consensus decision problem [11] foprocesses, where
the processes start witN' possible input values, which
are the vertices a§V ~1. If the processes start with values
that form an input simplex € SV¥—1, they have to de-
cide values that form a simplexgkel (S). Since the only
simplexes ofkel (S) are the vertices of, the processes
have to decide on the same vertex, that is, they all have to
agree on one of the input vertices.f

The(N, k)-set agreement convergence tagk; k < N,

is [SN-1, skef~!(SN-1), skef~!]. Thus, for each, it
yields ann-processk-set-agreement problem over a set
SN—1 of N values (see Example 1).

Theloop agreement convergence td46] is [S?, K, 4],
where S? is the 2-simplex(sg, s1,s2) and its subsim-
plexes,K is an arbitrary finite complex with three distin-
guished vertices, v1, v2, A(s;) = v;, A(s;, s;) issome
path (simplexes of sizeand2) A;; with end-point; and
v;, andA(S?) = K.

Other examples of convergence tasks appear in [16], like

uncolored simplex agreement, barycentric agreement¢-and
agreement.

plexes of size Woheorem 8. For a convergence tasiC, K, ¥, let D = (Z,

can be thought of as a graph, with simplexes (' A pe the corresponding-port decision problemp’ =
(T, 0, A’y then'-port decision problem, anfl < min{n, n’}.

" as Opposelé there exists a snapshot shared memory system that sblves

to the colored complexes considered usually in the topology approacAnd guaranteeg-failure termination then there exists a snap-
to distributed computing (e.g. [7,18,15]), where each element of aShOt shared memory system that sol¥#sand guarantees

simplex has associated a process id.

f-failure termination.

144 E. Borowsky et al.

Proof. By Theorem 5, it suffices to show that g?’H D, Corollary 6. Let2 < f < n. The problem of telling if an
for someG = G(gi1,9s,...,92) and H = H(f hy,hy, n-portloop agreement decision problem has a solution with
..., hy,). Defineg; (v) to be then/-vector with all entries equal ~ f-failure termination is not computable.
to v, andh;(w) to be any of the elements of different from
1.

Now we prove the requiremeidt - A’ - F - H C A of
Definition 1. Take any input vectar € Z. Thusset(w) € L.
For anyw; € G(w),

Also, whenf = 1, it was proved in [4] that the problem
of telling if an arbitrary decision problem has solution wjth
failure termination is computable. In particular, the problem
is computable for ang-port decision problem obtained from
a convergence task. It is possible to use only this particular
set(wr) C set(w), 1) result, and Theorem 8, to prove the following:

Corollary 7. The problem of telling if am-port decision

and henceset(w:) € £, sinceL is closed under containment. problem corresponding to a convergence tashas a solution

Thatis,w, € Z'. e L9
Now, take anyws € A'(w,). Thereforeset(ws) € ¥ with 1-failure termination is computable.

(set(w1)). By definition of and F, anyws € H(F(ws)) Notice thatthe results in [4] apply to general decision prob-

satisfiesset(ws) C set(wz). Thus,set(ws) € ¥(set(w1)), lems, while this corollary is about decision problems produced

sinceset(ws) € ¥(set(wy)) and¥(set(w)) is (a complex) by convergence tasks. Also, we stress that Corollary 7 follows

closed under containment. from the results of [4]. The point here is that Corollary 7 can

_ Finally, we need to prove thakt(ws) € ¥(set(w)),since be proved by showing only the computability famport, de-
this implies thatv; € A(w). This holds becausg(set(w1)) cision problems; a problem conceivably easier than to prove
C U(set(w)), by Eq. 1. it directly for arbitraryn.

Applying Theorem 7 (instead of Theorem 5), we get the
same result for read/write systems. 9 Discussion

We have presented the beginnings of a method to translate re-
8.2 Possibility and impossibility results sults in one distributed system model to another. We have in-
troduced a general way of simulating a distributed algorithm of
Theorem 8 can be used to extend results that are known fat processes angifault-tolerance, by a distributed system with
a small number of processes to larger numbers, for fiked a different number of processes and the same fault-tolerance.
In this section we present several applications of this kind\We have presented a precise description of this fault-tolerant
All the applications we present hold for read/write memory simulation algorithm, a careful description of what it accom-
systems and for snapshot memory systems, since one can uskshes, as well as a proof of correctness.
the read/write memory or the snapshot memory version of Specifically, we have defined a notionfafilt-tolerant re-
Theorem 8. ducibility between decision problems, and showed that the
algorithm implements this reducibility. The reducibility is tai-
lored to the simulation algorithm; it should not be used as a
general notion of reducibility between decision problems. An
important moral of this work is that one must be careful in ap-
plying the simulation algorithm— it does not work for all pairs
of problems, but only for those that satisfy the reducibility.
Coronary 4. The consensus prob|em is not solvable for Nevertheless, we have shown that the simulation algorithm

Consensuslt is known [11,20] that the consensus decision
problem is not solvable witlfi-failure termination, wherf >

1. In particular, wait-free2-process consensus is unsolvable
[13]. It is possible to use only this particular result, and The-
orem 8 to prove the following:

f>1. is a powerful tool for obtaining possibility and impossibility

N results.
Set Agreement.It is known from [5,26,18] that thén, k)- Similarly, we have presented a specification of what it
set agreement problem is not wait-free solvable. This resulineans for one shared memory system to simulate another, in
together with Theorem 8 implies: a fault-tolerant manner. Again, this specification is intended

to capture the type of simulation that is studied in this paper.

We have given a full and detailed description of a version of

the simulation algorithm for snapshot memory systems. We
Computability. It is known [12] that the problem of telling have proved that this algorithm satisfies the requirements of a
if a decision problem for processesp > 3, has a wait- fault-tolerant simulation. _ _

free solution is not computable (i.e., is undecidable). Thiswas e have also shown how to extend this basic snapshot
proved in [16] by showing that the following problem is not Mmemory simulation algorlthm to read/write shqred memory,

computable: Given a loop agreement convergence task, tefind hence, have shown that it is useful for proving properties

if the n-port corresponding decision problem has a wait-freeOf these systems as well. We have first presented the snapshot
solution. This result, together with Theorem 8, implies the algorithm and then the read/write variant due to the fact thatin

following: the snapshot model, the proof is more modular, and the whole
presentation clearer.

Corollary 5. There is no algorithm that solves tite, k)-set
agreement problem witlfi-failure termination if f > k.

2 |n fact, in [16], the result of Corollary 6 is proved directly, and
in more general models of shared memory.

The BG distributed simulation algorithm

We have presented several applications of the simulation6.
algorithmto a class of problems that satisfy the reducibility, in-
cluding consensus and set agreement, defined by convergence
tasks [16]. The applications extend results about a system with/-
some number of processes gfifdilures, to a system with any
number of processes and the same number of failures. Further
applications are described in [7]. 8

Some possible variations on the simulation algorithm of
this paper are: (a) Allow each processf O to simulate only
a (statically determined) subset of the processeB’ahther
than all the processes #f. (b) Allow more complicated rules
for determining the simulated inputs Bf and the actual out-
puts of Q; these rules can includéfault-tolerant distributed
protocols among the processesaf

We hope that one of the greatest contributions of this paper
will be in laying the foundation for the development of an inter-
esting variety of extensions to the simulation algorithm. One

extension is proposed in [6, 7], and later formalized (following 11.

our techniques) in [10,25], where the processeg simulate

a systen?’ that has access to set agreement variables. Other
variants of the simulation, for consensus problems in system
with access to general shared objects appear in[9] and in [21].

Reducibilities between problems have proved to be useful
elsewhere in computer science (e.g., in recursive function the:
ory and complexity theory of sequential algorithms), for clas-
sifying problems according to their solvability and computa- 14
tional complexity. One would expect that reducibilities would
also be usefulin distributed computing theory, for example, for
classifying decision problems according to their solvability in
fault-prone asynchronous systems. Our reducibility appearss.
somewhat too specially tailored to the simulation algorithm
presented to serve as a useful general notion. Further research
is needed to determine the limitations of this reducibility and
to define a more general-purpose notion.

Stronger notions of reducibility (or fault-tolerant simu-
lation) might include a closer, “step-by-step” correspondence
between the execution of the simulating sysfeind the sim-
ulated systen®’. Such a stronger notion seems to be needed17
to obtain results [7] relating the topological structure of the
executions ofP? andP’. These results seem to indicate that
the simulation plays an interesting role in the newly emerging;
topology approach to distributed computing (e.g. [7,18,15]).

16.

19.

References

20.
1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, N. Shauvit:
Atomic snapshots of shared memory, Journal of the ACM, 40(4),
873-890 (1993)
2. H.Attiya, A. Bar-Noy, D. Dolev, D. Peleg, R. Reischuk: Renam-
ing in an asynchronous environment, Journal of the ACM 37(3),21.
524-548 (1990)

. Y. Afek, G. Stupp: Synchronization power depends on the regis-
ter size, (Preliminary Version), Proc. of the IEEE Symposium on
Foundations of Computer Science (FOCS), 1993, pp. 196-20522.

. O. Biran, S. Moran, S. Zaks: A combinatorial characterization
of the distributedl-solvable tasks, J Algorithms, 11, 420-440
(1990)

. E. Borowsky, E. Gafni: Generalized FLP impossibility result for
t-resilient asynchronous computations. In: Proceedings of the
1993 ACM Symposium on Theory of Computing, May 1993,
pp.91-100

23.

10.

145

E. Borowsky, E. Gafni: The implication of the Borowsky-Gafni
simulation on the set consensus hierarchy, Technical Report
930021, UCLA Computer Science Dept., 1993

E. Borowsky: Capturing the power of resiliency and set consen-
sus in distributed systems, Ph.D. Thesis, University of Califor-
nia, Los Angeles, October 15, 1995

. S. Chaudhuri: Morehoicesallow morefaults: set consensus

problems intotally asynchronous systems, Inform. Comput. 105,
132-158 (1993)

9. T. Chandra, V. Hadzilacos, P. Jayanti, S. Toueg: Wait-freedom

vs. t-resiliency and the robustness of wait-free hierarchies. In:
Proceedings of the 13th Annual ACM Symposium on Principles
of Distributed Computing, August 1994, pp. 334—-343

S. Chaudhuri, P. Reiners: Understanding the set consensus partial
order using the Borowsky-Gafni simulation, 10th International
Workshop on Distributed Algorithms, Oct. 9-11, 1996. Lecture
Notes in Computer Science 1151, pp.362-379. Berlin Heidel-
berg New York: Springer 1996

M.J. Fischer, N.A. Lynch, M.S. Paterson: Impossibility of dis-
tributed consensus with one faulty process, Journal of the ACM,
32(2), 374-382 (1985)

42. E. Gafni, E. Koutsoupias: 3-processor tasks are undecidable,

brief announcement in Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing, August
1995, p.271. Full version submitted for publication

13. M.P. Herlihy: Wait-free synchronization, ACM Trans. Programm

Lang. Syst., 13(1): 123-149 (1991)

. M.P. Herlihy, S. Rajsbaum: Set consensus using arbitrary ob-

jects, 13th ACM Symposium on Principles of Distributed Com-

puting (PODC '94), Aug. 14-17, Los Angeles, 1994, pp.324—
333

M.P. Herlihy, S. Rajsbaum: A Primer on Algebraic Topology and
Distributed Computing. In: Jan van Leeuwen (Ed.), Computer
Science Today, LNCSVol. 1000, pp. 203-217. Berlin Heidelberg
New York: Springer 1995

M.P. Herlihy, S. Rajsbaum: On the decidability of distributed
decision tasks, 29th ACM Symp. on the Theory of Computa-
tion (STOC), May 1997, pp.589-598. Brief Announcement in
15th ACM Symposium on Principles of Distributed Computing

(PODC), 1996, p.279

. M.P. Herlihy, E. Ruppert: On the existence of booster types. In:

Proceedings of the 41st IEEE Symposium on Foundations of
Computer Science (FOCS), 2000

8. M.P. Herlihy, N. Shavit: The asynchronous computability the-

orem for t-resilient tasks. In: Proceedings of the 1993 ACM
Symposium on Theory of Computing, pp.111-120 (1993)

N.A. Lynch, Distributed Algorithms, San Fancisco, CA: Morgan
Kaufmann 1996

M.C. Loui, H.H. Abu-Amara: Memory requirements for
agreement among unreliable asynchronous processes. In: F.P.
Preparata (ed.) Parallel and Distributed Computing, Vol.4 of
Advances in Computing Research, 163-183. Greenwich, Conn.:
JAI Press 1987

W. Lo, V. Hadzilacos: On the power of shared object types to
implement one-resilient consensus. In: Proceedings of the 16th
Annual ACM Symposium on Principles of Distributed Comput-
ing, pp.101-110, August 1997

N.A. Lynch, S. Rajsbaum: On the Borowsky-Gafni Simulation
Algorithm. In: Proceedings of the Fourth Israel Symposium on
Theory of Computing and Systems, June 1996, pp.4-15

N.A. Lynch, M.R. Tuttle: An Introduction to input/output au-
tomata, CWI-Quarterly, Vol. 2, No. 3, September 1989, pp.219—
246. Centrum voor Wiskunde en Informatica, Amsterdam. Also
TM-373, MIT Laboratory for Computer Science, November
1988

146 E. Borowsky et al.

24. N. Lynch, F. Vaandrager: Forward and Backward Simulations26. M. Saks, F. Zaharoglou: Wait-fréeset agreementisimpossible:
The topology of public knowledge. In: Proceedings of the 1993

— Part I: Untimed Systems, Inform Comput 121(2), 214-233
ACM Symposium on Theory of Computing, May 1993, pp. 101-

(1995)
25. P. Reiners: Understanding the Set Consensus Partial Order us- 110

ing the Borowsky-Gafni Simulation, M.S. Thesis, lowa State
University, 1996

