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Summary. We present a shared memory algorithm that al-
lows a set off + 1 processes to wait-free “simulate” a larger
system ofn processes, that may also exhibit up tof stopping
failures.

Applying this simulation algorithm to thek-set-agreement
problem enables conversion of an arbitraryk-fault-tolerantn-
process solution for thek-set-agreement problem into a wait-
freek+1-process solution for the same problem. Since thek+
1-processk-set-agreement problem has been shown to have
no wait-free solution [5,18,26], this transformation implies
that there is nok-fault-tolerant solution to then-processk-
set-agreement problem, for anyn.

More generally, the algorithm satisfies the requirements
of a fault-tolerant distributed simulation.The distributed sim-
ulation implements a notion offault-tolerant reducibilitybe-
tween decision problems. This paper defines these notions and
gives examples of their application to fundamental distributed
computing problems.

The algorithm is presented and verified in terms of I/O au-
tomata. The presentation has a great deal of interesting modu-
larity, expressed by I/O automaton composition and both for-
ward and backward simulation relations. Composition is used
to include asafe agreementmodule as a subroutine. Forward
and backward simulation relations are used to view the algo-
rithm as implementing amulti-try snapshotstrategy.

The main algorithm works in snapshot shared memory
systems; a simple modification of the algorithm that works in
read/write shared memory systems is also presented.
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1 Introduction

One of the fundamental goals of theoretical computer sci-
ence is to determine the boundary between problems that
are, and are not, computable. In distributed computing, the
large number of system parameters compounds this problem.
Computability results depend heavily on the communication
medium, the number of processes in the system, and the num-
ber and type of possible faults. It is difficult in practice to ex-
tend a result obtained in one system to apply in another, even
if only one of the many system parameters differs between
the two systems. In this paper, we take the first steps toward
a formal theory for reduction among problems in different
models of distributed computing. We consider asynchronous
read/write shared memory systems where processes may ex-
hibit stopping failures. There is a parameterf associated to
a system, which specifies the maximum number of processes
that can fail.

We describe an algorithm, theBG-simulation algorithm,
that allows a set off + 1 processes with at mostf failures, to
“simulate” a larger numbern of processes, also with at most
f failures. The BG-simulation algorithm is a powerful tool for
proving solvability and unsolvability results for fault-prone
asynchronous systems.

To illustrate the power of the BG-simulation algorithm,
consider then-processk-set agreement problem [8], in which
all n processes propose values and decide on at mostk of the
proposed values. We use the BG-simulation algorithm to con-
vert an arbitraryk-fault-tolerantn-process solution for thek-
set-agreement problem into a wait-freek+1-process solution
for the same problem. (A wait-free algorithm is one in which
any non-failing process terminates, regardless of the failure of
any number of the other processes.) Since thek+1-processk-
set-agreement problem has been shown to have no wait-free
solution [5,18,26], this transformation implies that there is
no k-fault-tolerant solution to then-processk-set-agreement
problem, for anyn.

As another application, we show how the BG-simulation
algorithm can be used to obtain results of [12,16] about the
computability of some decision problems. Other applications
of the algorithm (including variants, related algorithms dis-
cussed below, and extensions of it) have appeared in [6,7,9,
10,21,25,17].
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As these examples suggest, the BG-simulation algorithm is
an important tool when studying reducibility among problems
in different models of distributed computing. Thus, it is im-
portant to understand precisely what the algorithm guarantees.
In this paper, we present a complete and careful description
of the BG-simulation algorithm, plus a careful description of
what it accomplishes, plus a proof of its correctness.

In order to specify the contribution of the BG-simula-
tion algorithm, we define a notion offault-tolerant reducibil-
ity between decision problems, and a notion offault-tolerant
simulationbetween shared memory systems. We show that,
in a precise sense, any algorithm that implements the fault-
tolerant simulation between two systems also implements the
reducibility between decision problems solved by the systems.
Then we describe a specific version of the BG-simulation algo-
rithm that implements the simulation. These notions are quite
natural (although specially tailored to the BG-simulation al-
gorithm) and we believe they can serve as a basis for more
general notions of reducibility between decision problems and
simulation between systems.

To highlight the limits of the current reducibility, we give
examples of pairs of decision problems that do and do not
satisfy our notion of fault-tolerant reducibility. For example,
then-processk-set-agreement problem isf -reducible to the
n′-processk′-set-agreement problem ifk ≥ k′ and f ≤
min {n, n′}. On the other hand, these problems are not re-
ducible ifk ≤ f < k′. The moral is that one must be careful
in applying the simulation – there are scenarios for which it is
appropriate and scenarios for which it is not. One must verify
that the conditions for reducibility hold.

We present and verify the BG-simulation algorithm in
terms of I/O automata [23]. The presentation has a great deal
of modularity, expressed by I/O automaton composition and
both forward and backward simulation relations (see [24], for
example, for definitions). Composition includes asafe agree-
mentmodule, a simplification of one in [5], as a subroutine.
Forward and backward simulation relations are used to view
the algorithm as implementing amulti-try snapshotstrategy.
The most interesting part of the proof is the safety argument,
which is handled by the forward and backward simulation
relations; once that is done, the liveness argument is straight-
forward.

We present our main version of the BG-simulation algo-
rithm for a snapshot shared memory system. This makes the
correctness proof more modular, and the whole presentation
clearer, and is no loss of generality, since a system using snap-
shot shared memory can be implemented in a wait-free manner
in terms of single-writer multi-reader read/write shared vari-
ables [1]. For completeness, we briefly present a version that
works in read/ write shared memory systems. Essentially, the
version for read/write systems is obtained by replacing each
snapshot operation by a sequence of reads in arbitrary order.
The correctness of the resulting read/write systems is proved
by arguments analogous to those used for snapshot systems,
combined with a special argument showing that the result of a
sequence of reads is the same as the result of a snapshot taken
somewhere in the interval of the reads.

The original idea of the BG-simulation algorithm and its
application to set agreement are due to Borowsky and Gafni
[5]. The first precise description of the simulation, including
a decomposition into modules, the notion offault-tolerant re-

ducibility between decision problems, and a proof of correct-
ness appeared in Lynch and Rajsbaum [22]. The present paper
combines the results of [5] and [22], and adds the abstract
notion of fault-tolerant simulation, extensions for read/write
systems, computability results, and other details that were not
included in [5,22] for lack of space.

Borowsky and Gafni extended the BG-simulation algo-
rithm to systems including set agreement variables [6]; Chaud-
huri and Reiners later formalized this extension in [10,25],
following the techniques of [22].

In the context of consensus, variants of the BG-simulation
are used by Chandra et al. in [9] and by Lo and Hadzila-
cos in [21] to simulate systems with access to general shared
objects. The BG-simulation requires processes to agree on
the outcome of each step by solving (a restricted form of)
Consensus using only (read/write) registers. Instead of having
processes agree on the outcome of the step as in the BG-
simulation, these papers use (in the case of [21] a similarly
restricted form of) test&set registers to ensure that only one
process simulates each step. The simulation of Chandra et al.
applies to a context in which test&set registers are available di-
rectly and need not be implemented, while Lo and Hadzilacos
present a test&set implementation.

Afek and Stupp [3] use simulation to prove a lower bound
on the time-space tradeoff of leader election algorithms that
use compare&swap registers. Their simulation reduces a lea-
der election algorithm for a system with compare&swap reg-
isters with limited time and space resources to a set agreement
algorithm with only read/write variables. Each simulating pro-
cess simulates a group of statically pre-assigned processes in
the simulated algorithm. The coordination is loose, so differ-
ent executions may end-up being simulated by processes in
different groups.

This paper is organized as follows. We start with the model
in Sect.2. In Sect.3 we define decision problems, what it
means to solve a decision problem, reducibility between de-
cision problems, and simulation between shared memory sys-
tems that solve decision problems. In Sect.4 we describe a
safe agreement module that is used in the BG-simulation al-
gorithm. In Sect.5 we present the BG-simulation algorithm. In
Sect.6 we present the formal proof of correctness for the BG-
simulation algorithm.This impliesTheorem 5, our main result,
which asserts the existence of a distributed algorithm that im-
plements the reducibility and simulation notions of Sect.3. In
Sect.7 we show how to modify the BG-simulation algorithm
(for snapshot shared memory), to work in a read/write memory
system. In Sect.8 several applications of the BG-simulation
algorithm are described. A final discussion appears in Sect.9.

2 The model

The underlying model is the I/O automaton model of Lynch
and Tuttle [23], as described, for example, in Chapter 8 of [19].
Briefly, an I/O automaton is a state machine whose transitions
are labelled with actions. Actions are classified asinput, out-
put, or internal. The automaton need not be finite-state, and
may have multiple start states. For expressing liveness, each
automaton is equipped with ataskstructure (formally, a par-
tition of its non-input actions), and the execution is assumed
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to give fair turns to each task. Thetraceof an execution is the
sequence of external actions occurring in that execution.

Most of the systems in this paper areasynchronous shared
memorysystems, as defined, for example, in Chapter 9 of
[19]. Briefly, ann-process asynchronous shared memory sys-
tem consists ofn processes interacting via instantaneously-
accessible shared variables. We allow finitely many or in-
finitely many shared variables. (Allowing infinitely many
shared variables is a slight generalization over what appears
in [19], but it does not affect any of the properties we require.)
Formally, we model the system as a single I/O automaton,
whose state consists of all the process local state information
plus the values of the shared variables, and whose task struc-
ture respects the division into processes. When we discuss
fault-tolerance properties, we model process stopping explic-
itly by means ofstopi input actions, one for each processi.
The effect of the actionstopi is to disable all future non-input
actions involving processi. When we discuss safety properties
only, we omit consideration of thestopactions.

In most of this paper, we focus on shared memory systems
with snapshot shared variables. A snapshot variable for an
n-process system takes on values that are lengthn vectors of
elements of some basic data typeR. It is accessible byupdate
andsnapoperations. Anupdate(i, r) operation has the effect
of changing thei’th component of the vector tor; we assume
that it can be invoked only by processi. A snapoperation can
be invoked by any process; it returns the entire vector.

We often assume that thei’th component of a snapshot
variable is itself divided into components. For example, we use
a snapshot variablemem, and denote thei’th component by
mem(i); this component includes a componentsim-mem(j),
denotedmem(i).sim-mem(j), for eachj in some range. We
sometimes allow processi to change only one of its compo-
nents, say componentmem(i).sim-mem(j0), with anupdate
operation; this is permissible since processi can remember all
the other components and overwrite them.

As we have defined it, a snapshot system may have more
than one snapshot shared variable. However, any system with
more than one snapshot variable (even with infinitely many
snapshot variables) can easily be “implemented” by a sys-
tem with only a single snapshot variable, with no change in
any externally-observable behavior (including behavior in the
presence of failures) of the system. Likewise, a system using
snapshot shared memory can be “implemented” in terms of
single-writer multi-reader read/write shared variables, again
with no change in externally-observable behavior; see, e.g.,
[1] for a construction.

In Sect.7 we also consider shared memory systems with
single-writer multi-reader read/write shared variables (as de-
fined, for example, in [19]).

3 Decision problems, reducibility and simulation

In Sect.3.1 we define decision problems and in Sect.3.2 we
say what it means for a system to solve a decision problem.
In Sect.3.3 we define the fault-tolerant reducibility between
decision problems. In Sect.3.4 we present the notion of sim-
ulation.

While the notion of reducibility relates decision problems,
we show that the notion of simulation is the equivalent coun-

terpart that relates systems. The following diagram represents
these relations, whereD andD′ are decision problems, and
P andP ′ are systems.

D
reducible−→ D′

↑ solves ↑ solves

P simulates−→ P ′

We use the following notation. Arelation fromX to Y is
a subset ofX × Y . A relationR fromX to Y is total if for
everyx ∈ X, there is somey ∈ Y such that(x, y) ∈ R. We
writeR(x) as shorthand for{y : (x, y) ∈ R}. For a relationR
fromX toY , and a relationS fromY toZ,R ·S denotes the
relational composition ofR andS, which is a relation from
X toZ.

3.1 Decision problems

Let V be an arbitrary set of values; we use the sameV as
the input and output domain for all the decision problems in
this paper, andV n denotes the set of all lengthn vectors with
entries from the setV .

An n-port decision problemD = 〈I,O, ∆〉 consists of
a setI of input vectors,I ⊆ V n, a setO of output vectors,
O ⊆ V n, and∆, a total relation fromI toO.

Example 1.In then-processk-set-agreement problem over a
set of valuesV , |V | ≥ k+1, which we abbreviate as the(n, k)-
set-agreement problem,I is the set of all lengthn vectors over
V , andO is the set of all lengthn vectors overV containing
at mostk different values. For anyw ∈ I,∆(w) is the set of
all vectors inO whose values are included among those inw.

3.2 Solving decision problems

LetD = 〈I,O, ∆〉 be ann-port decision problem; we define
what it means for an I/O automatonA (in particular, a shared
memory system) to solveD. A is required to have inputs
init(v)i and outputsdecide(v)i, wherev ∈ V and1 ≤ i ≤ n.
Each suchi is associated to a process of aA, and is used to
communicate with other modules via the corresponding in-
put and output actions. We say that aninit(v)i or decide(v)i

occurs inport i.
We considerA composed with any user automatonU that

submits at most oneiniti on each porti. We say that a set of
init(vi)i actions, one for eachi, 1 ≤ i ≤ n, formsthe vector
(v1, . . . , vn). A set ofdecide(vi)i actions for different values
of i can becompletedto a vector in a given set ofn-vectors, if
there is one vector in the set,w, such thatw(i) = vi for every
decide(vi)i action. We require the following conditions:

Well-formedness:A only produces adecidei if there is a pre-
cedinginiti, andA never responds more than once on the
same port.

Correct answers: Ifinit events occur on all ports, forming a
vectorw ∈ I, then the outputs that appear indecideevents
can be completed to a vector in∆(w).
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We say thatA solvesD provided that for any suchU , the
compositionA × U guarantees well-formedness and correct
answers. In addition, we consider a liveness condition express-
ing fault-tolerance:

f -failure termination: In any fair execution ofA × U , if init
events occur on all ports andstopevents occur on at most
f ports, then adecideoccurs on every non-failing port.

A is said toguaranteef -failure terminationprovided that it
satisfies thef -failure termination condition for anyU , and
A is said to guaranteewait-free terminationprovided that it
guaranteesn-failure termination (or, equivalently,n−1-failure
termination).

3.3 Fault-tolerant reducibility

We define the notion off -reducibility from ann-port decision
problemD = 〈I,O, ∆〉 to ann′-port decision problemD′ =
〈I ′,O′, ∆′〉, for an integerf , 0 ≤ f ≤ n′.

The reducibility is motivated by the way the BG-simu-
lation algorithm operates. In that algorithm, a shared mem-
ory systemP simulates anf -fault-tolerant systemP ′ that
solvesD′. The simulating systemP is supposed to solve
D, and so it obtains from its environment an input vector
w ∈ I, one component per process. Each processi, based on
its own input valuew(i), determines a “proposed” input vec-
torgi(w(i)) ∈ I ′. The actual input for each simulated process
j of P ′ is chosen arbitrarily from among thejth components
of the proposed input vectors. Thus, for eachw ∈ I, there is
a setG(w) ⊆ I ′, of possible input vectors of the simulated
systemP ′.

When the “subroutine” that solvesP ′ produces a result
(a vector inO′), different processes ofP can obtain different
partial information about this result. However, with at most
f stopping failures, the only difference is that each process
can miss at mostf components; the possible variations are
captured by theF relation below.Then each processiofP uses
its partial informationx(i) to decide on a final value,hi(x(i)).
The values produced in this way, combined according to the
H relation, must form a vector inO. The formal definitions
follow.

For a setW of lengthn vectors and an indexi in {1,
. . . , n},W (i) denotes{w(i) : w ∈ W}, andW̄ denotes the
Cartesian productW (1) × W (2) × . . . × W (n). Thus,W̄
consists of all the vectors that can be assembled from vectors
in W by choosing each component to be the corresponding
component of some vector inW .

For a lengthn vectorw of values inV , and0 ≤ f ≤ n,
viewsf (w) denotes the set of lengthn vectors overV ∪ {⊥}
that are obtained by changing at mostf of the components
of w to⊥. If W is a set of lengthn vectors, thenviewsf (W )
denotes∪w∈W {viewsf (w)}.

Our reducibility is defined in terms of three auxiliary pa-
rameterized relationsG, F andH, depicted in the following
diagram. The relationG is defined by relationsg1, . . . , gn.
The relationH is defined by relationsh1, . . . , hn, and f .
And the relationF is defined byf . Thus we use the nota-
tionG = G(g1, g2, . . . , gn),H = H(f, h1, h2, . . . , hn), and
F = F (f) to emphasize thatg1, g2, . . . , gn, h1, h2, . . . , hn,

andf are the key parameters whose existence is asserted in
the following definition of reducibility.

I G−→ I ′

↓ ∆ ↓ ∆′

O H←− F (O′) F←− O′

1. G = G(g1, g2, . . . , gn), a total relation fromI toI ′; here,
eachgi is a function fromI(i) to I ′.
For anyw ∈ I, letW ⊆ I ′ denote the set of all vectors
of the formgi(w(i)), 1 ≤ i ≤ n, and defineG(w) = W̄ .
We assume that for eachw ∈ I,G(w) ⊆ I ′.

2. F = F (f), a total relation fromO′ to (viewsf (O′))n.
For anyw ∈ O′, F (w) = (viewsf (w))n.

3. H = H(f, h1, h2, . . . , hn), a total (single-valued) rela-
tion from(viewsf (O′))n toV n; here, eachhi is a function
from viewsf (O′) toO(i).
For anyx ∈ (viewsf (O′))n, H(x) contains exactly the
lengthn vectorw such thatw(i) = hi(x(i)) for everyi.

Definition 1 (f -Reducibility). SupposeD = 〈I,O, ∆〉 is an
n-port decision problem,D′ = 〈I ′,O′, ∆′〉 is ann′-port deci-
sionproblem,and0 ≤ f ≤ n′.ThenD isf -reducibletoD′ via
relationsG = G(g1, g2, . . . , gn) andH = H(f, h1, h2, . . . ,

hn), written asD ≤G,H
f D′, provided thatG ·∆′ ·F ·H ⊆ ∆.

The following examples give some pairs of decision prob-
lems that do and do not satisfy the reducibility. Because the
reducibility expresses the power of the BG-simulation algo-
rithm, the examples indicate situations where the algorithm
can and cannot be used.

Example 2.(n, k)-set agreement isf -reducible to(n′, k′)-set
agreement fork ≥ k′, f < min{n, n′}.

This is verified as follows. Forv ∈ V , definegi(v) to be
the vectorvn′

. Also, forw ∈ viewsf (V n′
), definehi(w) to be

the first entry ofw different from⊥. It is easy to check that
Definition 1 is satisfied.

Example 3.(n, k)-set agreement is notf -reducible to(n′,
k′)-set agreement ifk ≤ f < k′.

If this reducibility held, then the main theorem of this paper,
Theorem 5, together with the fact that(n′, k′)-set agreement
is solvable whenf < k′ [8], would imply the existence of an
f -fault-tolerant algorithm to solve(n, k)-set-agreement. But
this contradicts the results of [5,11,18,26].

3.4 Fault-tolerant simulation

We present a specification, in the I/O automata formalism,
of a fault-tolerant distributed simulation. In Theorem 2 we
show how this specification corresponds to the reducibility
of Sect.3.3. The reducibility relates two decision problems,
while the simulation relates two shared memory systems.

We start, in Sect.3.4.1, by describing the simulated system,
P ′. Each of the processes in the system,P, that is going to sim-
ulateP ′ gets its own input. These processes have somehow to
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produce, out of their inputs, inputs for the simulated processes.
Also, out of the outputs produced by the simulated processes,
they have somehow to produce outputs for themselves. These
two (distributed) procedures, of input translation and of output
translation, are what is unique to the fault-tolerant simulation.
Together with the natural, step-by-step simulation ofP ′, they
are modeled by an I/O automata calledSimpleSpec, which is
described in Sect.3.4.2. Finally, in Sect.3.4.3, we present a
formal definition of simulation, and show that it implements
our reducibility notion.

3.4.1 The simulated algorithmP ′

We assume that the algorithm to be simulated is given in the
form of ann′-process snapshot shared memory system,P ′. It
has only a single snapshot shared variable, calledmem′. We
assume that each component ofmem′ takes on values in a set
R, with a distinguished initial valuer0. Thus, the snapshot
shared variablemem′ has a unique initial value, consisting
of r0 in every component. Furthermore, we assume thatP ′
solves a decision problemD′. In this subsection and the next,
we consider only safety properties, and so we omit thestop
actions.

We make some simplifying “determinism” assumptions
aboutP ′, without loss of generality: We assume that each
process has only one initial state. Also, each process has, in
any state, at most one non-input action enabled. Moreover, for
any action performed from any state, we assume that there
is a uniquely-defined next state. Also, the initial state of each
process is “quiescent” – no non-input actions are enabled (until
an input arrives). For each other state, exactly one non-input
action is enabled. In any state after a process has executed a
“decide” , only local actions are enabled.

The following is some useful terminology about system
P ′. For any states of a processj of P ′, definenextop(s) to be
an element of{“init” , “snap” , “local” } ∪ {(“update” , r) :
r ∈ R} ∪ {(“decide” , v) : v ∈ V }. Specifically, for a quies-
cent states, nextop(s) = “init” ; for a states in which the next
action is asnap,nextop(s) = “snap” ; for a states in which the
next action is anupdate(i, r), nextop(s) = (“update” , r); for
a states in which the next action is local,nextop(s) = “local” ;
and for a states in which the next action is to decide on value
v, nextop(s) = (“decide” , v). Our determinism assumptions
imply that for each states, nextop(s) is uniquely defined.

For any states of a processj such thatnextop(s) = “init”
and anyv ∈ V , define trans-init(s, v) to be the state that
results from applyinginit(v)j to s. For any states of a process
j such thatnextop(s) = “snap” and anyw ∈ Rn′

, define
trans-snap(s, w) to be the state that results from performing
the snapshot operation from states, with the return value for
the snapshot beingw. Finally, for any states of a processj
such thatnextop(s) is an“update” , “local” , or “decide” pair,
definetrans(s) to be the state ofj that results from performing
the operation from states.

3.4.2 TheSimpleSpecautomaton

Consider algorithmP ′, which solves problemD′ guaranteeing
f -failure termination, together with relationsG andH. The

definition of what we mean by a simulation is based on a safety
specification expressed by theSimpleSpecG,H

f (P ′) automa-
ton, or simplySimpleSpec. A system ofn processes,P, which
is supposed to simulateP ′, should implementSimpleSpec, in
a sense described in Sect.3.4.3.

TheSimpleSpecautomaton directly simulates systemP ′,
in a centralized manner. Repeatedly, a processj of P ′ is cho-
sen nondeterministically and its next step simulated. The only
unusual feature is the way of choosing the inputs for theP ′
processes and the outputs for theP processes, usingG and
H relations. In order to determine an inputv for a processj
of P ′, a processi is chosen nondeterministically from among
those that have received their inputs, andv is set to thej-th
component of the vectorgi(input(i)).At any time after at least
n′ − f of the processes ofP ′ have produced decision values,
outputs can be produced, using the functionshi.

We give a formal description of theSimpleSpecautomaton.

SimpleSpec:
Signature:

Input:
init(v)i, i ∈ {1, . . . , n}

Output:
decide(v)i, i ∈ {1, . . . , n}

Internal:
sim-initj , j ∈ {1, . . . , n′}
sim-snapj , j ∈ {1, . . . , n′}
sim-updatej , j ∈ {1, . . . , n′}
sim-localj , j ∈ {1, . . . , n′}
sim-decidej , j ∈ {1, . . . , n′}

States:

sim-mem, a memory ofP ′ (an element ofRn′
), initially the

initial memory(r0)n′

for eachi ∈ {1, . . . , n}:
input(i) ∈ V ∪ {⊥}, initially ⊥
reported(i), a Boolean, initiallyfalse

for eachj ∈ {1, . . . , n′}:
sim-state(j), a state ofj, initially the initial state
sim-decision(j) ∈ V ∪ {⊥}, initially ⊥

Transitions:
init(v)i

Effect:
input(i) := v

sim-initj
Precondition:

nextop(sim-state(j)) = “init”
for somei
input(i) �=⊥
v = gi(input(i))(j)

Effect:
sim-state(j) := trans-init(sim-state(j), v)

sim-snapj
Precondition:

nextop(sim-state(j)) = “snap”
Effect:

sim-state(j) :=
trans-snap(sim-state(j), sim-mem)
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sim-updatej
Precondition:

nextop(sim-state(j)) = (“update” , r)
Effect:

sim-state(j) := trans(sim-state(j))
sim-mem(j) := r

sim-localj
Precondition:

nextop(sim-state(j)) = “local”
Effect:

sim-state(j) := trans(sim-state(j))

sim-decidej
Precondition:

nextop(sim-state(j)) = (“decide” , v)
Effect:

sim-state(j) := trans(sim-state(j))
sim-decision(j) := v

decide(v)i

Precondition:
input(i) �=⊥
reported(i) = false
w is a “subvector” ofsim-decision
|w| ≥ n′ − f
v = hi(w)

Effect:
reported(i) := true

Tasks:

Arbitrary. They are not used in the proof.

A sim-initj action is used to simulate aninit step of process
j. To simulate any other step ofj, the functionnextop is
used to determine what the next operation is:“init” , “snap” ,
(“update” , r), “local” , or (“decide” , v). Then the state tran-
sition specified byP ′ is performed, using the appropriate func-
tion: trans-init, trans-snapor trans. Once the simulation of at
leastn′ − f processes has been completed a decision value
for i can be produced, usinghi. In the code this is expressed
by a “subvector” ofsim-decision, where “subvector” means
replacing zero or more entries of the vectorsim-decisionby
⊥, and|w| is the number of entries different from⊥.

Theorem 1. AssumeP ′ solvesD′ andD ≤G,H
f D′.

ThenSimpleSpecG,H
f (P ′) solvesD.

Proof. Following Sect. 3.2, considerSimpleSpecG,H
f (P ′)

composed with any user automatonU that submits at most
oneiniti on each porti.

To prove well-formedness, we note that it follows directly
from the code thatSimpleSpecG,H

f (P ′) only produces a
decidei if there is a precedinginiti, and it never responds more
than once on the same port.

To prove correct answers, assumeinit events occur on all
ports, forming a vectorw ∈ I. Then the code forsim-initguar-
antees that the inputs forP ′ that are produced can be completed
to a vectorw′ ∈ G(w). Then the code ofSimpleSpecG,H

f (P ′)

simulates a centralized execution ofP ′ with these inputs,
and hence the vectorw′′ of output values that is stored in
sim-decisioncan be completed to a vector in∆′(w′). Then
the code fordecideguarantees that the outputs that appear
in decideevents can be completed to a vector inH(F (w′′)).
It follows that the outputs appearing indecideevents can be
completed to a vector inH(F (∆′(G(w)))), and hence (since
D ≤G,H

f D′) to a vector in∆(w). Thus,SimpleSpecG,H
f (P ′)

produces correct answers.

3.4.3 Definition of simulation

We now define a notion of fault-tolerant simulation; our defi-
nition includes both safety and liveness conditions. We had to
make two choices for this definition. First, on the way the sim-
ulating processes produce inputs for the simulated processes
from their own inputs, and on the way they produce outputs
from the outputs of the simulated processes. Our choice was
defined by the way the the BG-simulation algorithm operates.
The second choice is about how detailed the simulation should
be. One possibility that comes to mind is to require a step-by-
step simulation, executing each instruction of each simulated
program. Our choice was to use the weakest notion of sim-
ulation that would still be sufficient for the applications we
present. Our simulation specification deals only with exter-
nal behaviors, and does not require that the program given by
P ′ be simulated step-by-step. The key property guaranteed by
such a simulation is formally stated in Theorem 2.

We need a preliminary definition and lemma. Suppose that
A andB are two I/O automata with the same inputsinit(v)i

and outputsdecide(v)i, v ∈ V , 1 ≤ i ≤ n. We considerA
andB composed with any user automatonU that submits at
most oneiniti on each porti. We say thatA solvesB provided
that for any suchU , every trace of the compositionA× U is
also a trace of the compositionB × U .

Lemma 1. Suppose thatA andB are two I/O automata with
the same inputs init(v)i and outputs decide(v)i, v ∈ V , 1 ≤
i ≤ n. If A solvesB andB solves ann-port decision problem
D thenA solvesD.

Proof. By assumption, every trace ofA × U is also a trace
of B × U . SinceB solvesD, every trace ofB × U satisfies
well-formedness and correct answers. Therefore, every trace
ofA×U satisfies well-formedness and correct answers, soA
solvesD.

Definition 2 (fault-tolerant simulation). SupposeP is an
n-process shared memory system,P ′ is ann′-process shared
memory system, and0 ≤ f ≤ n′. ThenP f -simulatesP ′ via
relationsG = G(g1, g2, . . . , gn) andH = H(f, h1, h2, . . . ,
hn), written asP simulatesG,H

f P ′, provided that both of the
following hold:

(1) P solves SimpleSpecG,H
f (P ′).

(2) IfP ′ guaranteesf -failure termination thenP guarantees
f -failure termination.

Note that condition (1) involves safety only, and so we
follow the convention (of Sect.2) of not including thestop
actions inP andP ′. However, condition (2) is a fault-tolerance
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condition, and so we assume there that thestopactions are
included, according to the convention.

The relationship between our simulation and reducibility
notions is as follows:

Theorem 2. AssumeP ′ solvesD′ and guaranteesf -failure
termination. Assume thatD ≤G,H

f D′ andP simulatesG,H
f

P ′. ThenP solvesD and guaranteesf -failure termination.

Proof. We first show thatP solvesD. Theorem 1 implies that
SimpleSpecG,H

f (P ′)solvesD. By property (1) of the definition

of f -simulation, we have thatP solvesSimpleSpecG,H
f (P ′).

Therefore, Lemma 1 implies thatP solvesD, as needed.
Now we show thatP guaranteesf -failure termination.

We know thatP ′ guaranteesf -failure termination. SinceP
simulatesG,H

f P ′, property (2) of the definition off -simulation
implies thatP guaranteesf -failure termination, as needed.

Later we useTheorem 2 to show that ifP ′ solvesD′ withf -
failure termination andD ≤G,H

f D′, then there exists a snap-
shot shared memory systemP that solvesD with f -failure
termination. The proof consists of describing a specific snap-
shot shared memory systemP such thatP simulatesG,H

f P ′.
This result is stated in Theorem 5; the corresponding version
for read/write shared memory systems is stated in Theorem 7.

Notice that this simulation specification deals only with
external behaviors, and does not require that the program given
byP ′ be simulated step-by-step. This requirement is sufficient
for the applications we present.

4 A safe agreement module

The simulation algorithm uses a component that we call a
safe agreementmodule. This module solves a variant of the
ordinary agreement problem and guarantees failure-free ter-
mination. In addition, it guarantees a nice resiliency property:
its susceptibility to failure on each port is limited to a desig-
nated “unsafe” portion of an execution. If no failure occurs
during these unsafe intervals, then decisions are guaranteed
on all non-failing ports on which invocations occur.

Formally, we assume that the module communicates with
its “users” on a set ofn portsnumbered1, . . . , n. Each port
i supports input actions of the formpropose(v)i, v ∈ V , by
which a user at porti proposes specific values for agreement,
and output actions of the formsafei andagree(v)i, v ∈ V .
Thesafei action is an announcement to the user at porti that
the unsafe portion of the execution corresponding to porti
has been completed, and theagree(v)i is an announcement on
port i that the decision value isv. In addition, we assume that
port i supports an input actionstopi, representing a stopping
failure.

We say that a sequence ofproposei, safei andagreei ac-
tions iswell-formedfor i provided that it is a prefix of a se-
quence of the formpropose(v)i, safei,agreei. We assume that
the users preserve well-formedness on every port, i.e., there is
at most oneproposei event for any particulari. Then we re-
quire the following properties of any execution of the module
together with its users:

Well-formedness: For anyi, the interactions between the
module and its users on porti are well-formed fori.

Agreement: All agreement values are identical.
Validity: Any agreement value must be proposed.

In addition, we require two liveness conditions, which are
stated in terms of fair executions. The first condition says that
anyproposeevent on a non-failing port eventually receives a
safeannouncement. This guarantee is required in spite of any
failures on other ports.

Wait-free progress: In any fair execution, for anyi, if a
proposei event occurs and nostopi event occurs, then a
safei event occurs.

The second liveness condition says that if the execution does
not remain unsafe for any port, then anyproposeevent on a
non-failing port eventually receives anagreeannouncement.

Safe termination: In any fair execution, if there is noj such
thatproposej occurs andsafej does not occur, then for any
i, if aproposei event occurs and nostopi event occurs, then
agreei occurs.

An I/O automaton with the appropriate interface is said to be
a safe agreement moduleprovided that it guarantees all the
preceding conditions (for all users).

We now describe a simple design (using snapshot shared
memory) for a safe agreement module. It is a slight simplifi-
cation of the one in [5].

The snapshot shared memory contains aval component
and alevelcomponent for each processi. When processi re-
ceives apropose(v)i, it records the valuev in itsvalcomponent
and raises itslevel to 1. Theni uses a snapshot to determine
thelevel’s of the other processes. Ifi sees that any process has
attainedlevel= 2, then it backs off and resets itslevel to 0,
and otherwise, it raises itslevelto 2.

Next, processi enters a wait loop, repeatedly taking snap-
shots until it sees a situation where no process haslevel= 1.
When this happens, the set of processes that it sees withlevel=
2 is nonempty. Letv be theval value of the process with the
smallest index withlevel = 2. Then processi performs an
agree(v)i output.

In the following code, we do not explicitly represent the
stopi actions. We assume that thestopi action just puts process
i in a special “stopped” state, from which no further non-input
steps are enabled, and after which any input causes no changes.

SafeAgreement:
Shared variables:

x, a lengthn snapshot value; for eachi,x(i)has components:
level∈ {0, 1, 2}, initially 0
val ∈ V ∪ {⊥}, initially ⊥

Actions of i:

Input:
propose(v)i, v ∈ V

Output:
safei
agree(v)i

Internal:
update1i
snap1i
update2i
waiti
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States ofi:

input, output∈ V ∪ {⊥}, initially ⊥
x-local, a snapshot value; for eachj, x-local(j) has compo-
nents:

level∈ {0, 1, 2}, initially 0
val ∈ V ∪ {⊥}, initially ⊥

status∈ {idle, update1, snap1, update2, safe,wait, report},
initially idle

Transitions of i:

propose(v)i

Effect:
input := v
status:= update1

update1i
Precondition:

status= update1
Effect:

x(i).level := 1
x(i).val := input
status:= snap1

snap1i
Precondition:

status= snap1
Effect:

x-local := x
status:= update2

update2i
Precondition:

status= update2
Effect:

if ∃j : x-local(j).level= 2
thenx(i).level := 0
elsex(i).level := 2
status:= safe

safei
Precondition:

status= safe
Effect:

status:= wait

waiti
Precondition:

status= wait
Effect:

if � ∃j : x(j).level= 1
and∃j : x(j).level= 2 then

k := min{j : x(j).level= 2 }
output:= x(k).val
status:= report

agree(v)i

Precondition:
status= report
v = output

Effect:
status:= idle

Tasks ofi:

All actions comprise a single task.

Theorem 3. SafeAgreement is a safe agreement module.

Proof. Well-formedness and validity are easy to see. We ar-
gue agreement, using an operational argument. Suppose that
processi is the first to perform a successfulwait step, that is,
one that causes it to decide, and suppose that it decides on the
val of processk. Let π be the successfulwaiti step; then at
stepπ, processi sees thatx(j).level �= 1 for all j, andk is the
smallest index such thatx(k).level= 2.

We claim that no processj subsequently setsx(j).level
:= 2. Suppose for the sake of contradiction that processj
does subsequently setx(j).level := 2 in anupdate2j step,φ.
Sincex(j).level �= 1 whenπ occurs, it must be that processj
must perform anupdate1j and asnap1j afterπ and beforeφ.
But then processj must seex(k).level= 2 when it performs
its snap1j , which causes it to back off, settingx(j).level :=
0. This is a contradiction, which implies that no processj
subsequently setsx(j).level := 2. But this implies that any
process that does a successfulwait step will also seek as the
smallest index such thatx(k).level = 2, and will therefore
also decide onk’s val.

The wait-free progress property is immediate, because pro-
cessi proceeds without any delay until it performs itssafei
output action.

To see the safe termination property, assume that there
is no j such thatproposej occurs andsafej does not occur.
Then there is noj such thatx(j).level remains equal to1
forever, so eventually all thelevelvalues are in{0, 2}. Then
any non-failing processiwill succeed in any subsequentwaiti
statement, and so eventually performs anagreei output action.

5 The BG simulation algorithm

In this section, we present the basic snapshot shared memory
simulation algorithm, which we will show satisfies Defini-
tion 2.

We present the algorithm as ann-process snapshot shared
memory systemQwith a single snapshot shared variable. This
algorithm is assumed to interact not only with the usual en-
vironment, viainit anddecideactions, but also with a two-
dimensional array of safe agreement modulesAj,�, j ∈ {1,
. . . , n′}, % ∈ N , N = {0, 1, 2, . . . }. In the final version
of the simulation algorithm, systemP, these safe agreement
modules are replaced by implementations and the whole thing
implemented by a snapshot shared memory system with a sin-
gle shared variable. The systemQ is assumed to interact with
eachAj,� via outputspropose(w)j,�,i and inputssafej,�,i and
agree(w)j,�,i. Here, we subscript the safe agreement actions
by the particular instance of the protocol. For% = 0, we have
w ∈ V . For% ∈ N+, we havew ∈ Rn′

.
SystemQ simulates then′ processes ofP ′ (P ′ is described

in Sect.3.4.1), using a safe agreement protocolAj,0 to allow all
processes ofQ to agree on the input of each processj, and also
a safe agreement protocolAj,�, % ∈ N+ to allow all processes
to agree on the value returned by the%’th simulated snapshot
statement of each processj. Other steps are simulated directly,
with no agreement protocol. Each processi of Q simulates
the steps of each processj of P ′ in order, waiting for each
to complete before going on to the next one. Processi works
concurrently on simulating steps of different processes ofP ′.
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However, it is only permitted to be in the “unsafe” portion of
its execution for one processj of P ′ at a time.

To simulate processj, processi keeps locally the current
value of the state ofj, in sim-state(j), the number of steps that
it has simulated forj, in sim-steps(j), and the number of snap-
shots that it has simulated forj, in sim-snaps(j). The shared
memory ofQ is a single snapshot variablemem, containing
a portionmem(i) for each processi of Q. In its component,
processi keeps track of the latest values of all the components
of the snapshot variable ofP ′, according toi’s local simu-
lation of P ′. Processi keeps the value ofj’s component in
mem(i).sim-mem(j). Along with this value, it keeps a counter
inmem(i).sim-steps(j), which counts the number of steps that
it has simulated forj, up to and including the latest step at
which processj of P ′ updated its component.

A function latest is used in thesnapaction to combine
the information in the various components ofmemto produce
a single lengthn′ vector ofR values, representing the lat-
est values written by all the processes ofP ′. This function
operates “pointwise” for eachj, selecting thesim-mem(j)
value associated with the highestsim-steps(j). I.e., assume
k = maxi{mem(i).sim-steps(j)}. Then, let î be an index
such thatmem(̂i).sim-steps(j) = k. The functionlatestse-
lects the valuemem(̂i).sim-mem(j), for j. As we shall see (in
Lemma 3), this value must be unique.

When processi simulates a decision step ofj, it stores
the decision value in the local variablesim-decision(j). Once
processi has simulated decision steps of at leastn′ − f pro-
cesses, that is, when|sim-decision| ≥ n′ − f , it computes
a decision valuev for itself, using the functionhi, that is,
v := hi(sim-decision).

In the following code, we do not represent thestopactions,
since the difficult part of the correctness proof is the safety ar-
gument. After the safety argument we give the fault-tolerance
argument, and introduce thestopactions.

Simulation SystemQ:
Shared variables:

mem, a lengthn snapshot value; for eachi,mem(i) has com-
ponents:

sim-mem, a vector inRn′
, initially everywherer0

sim-steps, a vector inNn′
, initially everywhere0

Actions of i:

Input:
init(v)i, v ∈ V
safej,�,i, � ∈ N
agree(v)j,�,i, � = 0 andv ∈ V ,

or � ∈ N+ andv ∈ Rn

Output:
decide(v)i, v ∈ V
propose(v)j,�,i, � = 0 andv ∈ V ,

or � ∈ N+ andv ∈ Rn′

Internal:
sim-updatej,i

snapj,i

sim-localj,i

sim-decidej,i

States ofi:

input∈ V ∪ {⊥}, initially ⊥
reported, a Boolean, initiallyfalse
for eachj:

sim-state(j), a state ofj, initially the initial state
sim-steps(j) ∈ N , initially 0
sim-snaps(j) ∈ N , initially 0
status(j) ∈ {idle, propose, unsafe, safe}, initially idle
sim-mem-local(j) ∈ Rn′

, initially arbitrary
sim-decision(j) ∈ V ∪ {⊥}, initially ⊥

Transitions of i:

init(v)i

Effect:
input := v

propose(v)j,0,i

Precondition:
status(j) = idle
� ∃k : status(k) = unsafe
nextop(sim-state(j)) = “init”
input �=⊥
v = gi(input)(j)

Effect:
status(j) := unsafe

safej,�,i

Effect:
status(j) := safe

agree(v)j,0,i

Effect:
sim-state(j) :=
trans-init(sim-state(j), v)

sim-steps(j) := 1
status(j) := idle

snapj,i

Precondition:
nextop(sim-state(j)) = “snap”
status(j) = idle

Effect:
sim-mem-local(j) := latest(mem)
status(j) := propose

propose(w)j,�,i, � ∈ N+

Precondition:
status(j) = propose
� ∃k : status(k) = unsafe
sim-snaps(j) = � − 1
w = sim-mem-local(j)

Effect:
status(j) := unsafe

agree(w)j,�,i, � ∈ N+

Effect:
sim-state(j) :=
trans-snap(sim-state(j), w)

sim-steps(j) := sim-steps(j) + 1
sim-snaps(j) := sim-snaps(j) + 1
status(j) := idle
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sim-updatej,i

Precondition:
nextop(sim-state(j)) = (“update” , r)

Effect:
sim-state(j) := trans(sim-state(j))
sim-steps(j) := sim-steps(j) + 1
mem(i).sim-mem(j) := r
mem(i).sim-steps(j) := sim-steps(j)

sim-localj,i

Precondition:
nextop(sim-state(j)) = “local”

Effect:
sim-state(j) := trans(sim-state(j))
sim-steps(j) := sim-steps(j) + 1

sim-decidej,i

Precondition:
nextop(sim-state(j)) = (“decide” , v)

Effect:
sim-state(j) := trans(sim-state(j))
sim-steps(j) := sim-steps(j) + 1
sim-decision(j) := v

decide(v)i

Precondition:
input �=⊥
reported= false
|sim-decision| ≥ n′ − f
v = hi(sim-decision)

Effect:
reported:= true

Tasks ofi:

{decide(v)i : v ∈ V }
for eachj:

all non-input actions involvingj

6 Correctness proof

The liveness proof, which is quite simple, is postponed to the
end of this section. We start with the proofs of safety prop-
erties for the main simulation algorithm. For these, we use
invariants involving the states of the safe agreement modules.
Since we do not want these invariants to depend on any partic-
ular implementation of safe agreement, we add abstract state
information, in the form of history variables that are definable
for all correct safe agreement implementations:

proposed-vals⊆ V , initially ∅
agreed-val∈ V ∪ {⊥}, initially ⊥
proposed-procs⊆ {1, . . . , n}, initially ∅
agreed-procs⊆ {1, . . . , n}, initially ∅

These history variables are maintained by adding the following
new effects to actions:

propose(v)i

Effect:
proposed-vals:= proposed-vals∪ {v}
proposed-procs:= proposed-procs∪ {i}

agree(v)i

Effect:
agreed-val:= v
agreed-procs:= agreed-procs∪ {i}

For the safety part of the proof, we use three levels of abstrac-
tion, related by forward and backward simulation relations.
Forward and backward simulation relations are notions used
to show that one I/O automaton implements another [24], or
in our case, that one I/O automaton solves another; they have
nothing to do with “simulations” in the sense of the BG sim-
ulation algorithm. The first level of abstraction is the specifi-
cation itself; that is, theSimpleSpecautomaton. The second
level of abstraction is theDelayedSpecautomaton described
next in Sect.6.1. The third level of abstraction is the simula-
tion algorithmP itself (obtained by composingQ with safe
agreement implementations). We will prove in Sect.6.1 that
DelayedSpecsolvesSimpleSpec, and in Sect.6.2 thatP solves
DelayedSpec. This implies thatP solvesSimpleSpec, which
is what is needed for the safety part of Definition 2.

6.1 TheDelayedSpecautomaton

Our second level of abstraction is theDelayedSpecautomaton.
This is a slight modification ofSimpleSpec, which replaces
each snapshot step of a processj of P ′ (sim-snapj) with a
series ofsnap-tryj steps during which snapshots are taken and
their values recorded, followed by onesnap-succeedj step in
which one of the recorded snapshot values is chosen for actual
use.

TheDelayedSpecautomaton is the same asSimpleSpec,
except for the snapshot attempts. There is an extra state com-
ponentsnap-set(j), which keeps track of the set of snapshot
vectors that result from doingsnap-tryj actions. Thesim-snap
actions are omitted.

DelayedSpec:
Signature:

Input:
As inSimpleSpec

Output:
As inSimpleSpec

Internal:
As inSimpleSpecbut instead of
sim-snapj , j ∈ {1, . . . , n′}:

snap-tryj
snap-succeedj

States:

As inSimpleSpecbut in addition:
snap-set(j), a set of vectors inRn′

, initially empty

Transitions: As inSimpleSpecbut instead ofsim-snapj :

snap-tryj
Precondition:

nextop(sim-state(j)) = “snap”
Effect:

snap-set(j) := snap-set(j) ∪ {sim-mem}
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snap-succeedj
Precondition:

nextop(sim-state(j)) = “snap”
w ∈ snap-set(j)

Effect:
sim-state(j) := trans-snap(sim-state(j), w)
snap-set(j) := ∅

Tasks:

As inSimpleSpec

It should not be hard to believe thatDelayedSpecsolves
SimpleSpec– the result of a sequence ofsnap-trysteps plus
onesnap-succeedstep is the same as if a singlesim-snapoc-
curred at the point of the selected snapshot. Formally, we use
a backward simulation to prove the implementation relation-
ship. The reason for the backward simulation is that the deci-
sion of which snapshot is selected is made after the point of
the simulated snapshot step.

The backward simulation relation we use (for any fixed
U ) is the relationb from states ofDelayedSpec× U to states
of SimpleSpec×U that is defined as follows. Ifs is a state of
DelayedSpec× U andu is a state ofSimpleSpec× U , then
(s, u) ∈ b provided that the following all hold:

1. The state ofU is the same inu ands.
2. u.sim-mem= s.sim-mem.
3. For eachi,

(a) u.input(i) = s.input(i).
(b) u.reported(i) = s.reported(i).

4. For eachj,
(a) u.sim-state(j) ∈ {s.sim-state(j)}∪
{trans-snap(s.sim-state(j), w) : w ∈ s.snap-set(j)}.

(b) u.sim-decision(j) = s.sim-decision(j).

That is, all state components are the same inu ands, with
the sole exception thatu.sim-state(j) ∈ {s.sim-state(j)} ∪
{trans-snap(s.sim-state(j), w) : w ∈ s.snap-set(j)}, that is,
u.sim-state(j) is eithers.sim-state(j), or else the result of
applying one of the snapshot results tos.sim-state(j). Each
sim-stepj step ofSimpleSpecis “implemented” by a chosen
snap-tryj step ofDelayed Spec.

Lemma 2. Relationb is abackwardsimulation fromDelayed-
Spec×U to SimpleSpec×U .
Proof (sketch).Let (s, π, s′) be a step ofDelayedSpec× U ,
and let(s′, u′) ∈ b. We produce a corresponding execution
fragment ofSimpleSpec× U , from u to u′, with (s, u) ∈ b.
The construction is in cases based on the type of action. The
interesting cases aresnap-tryandsnap-succeed:

1. π = snap-tryj .
Let x denotes.sim-mem. If u′.sim-state(j) =
trans-snap(s′.simstate(j), x), then let the corresponding
execution fragment be(u, sim-snapj , u

′), whereu is the
same asu′, except thatu.sim-state(j) = s.sim-state(j).
This is an execution fragment becauses.sim-state(j) =
s′.sim-state(j).
Otherwise, let the corresponding execution fragment be
just the single stateu′. That is,u = u′. Then we know

that, either (i)u′.sim-state(j) = s′.sim-state(j), or (ii)
u′.sim-state(j) ∈ {trans-snap(s′.sim-state(j), w) : w ∈
s′.snap-set(j), w �= x}. Sinceu = u′, we need to prove
that u′.sim-state(j) is in the set {s.sim-state(j)} ∪
{trans-snap(s.sim-state(j), w) : w ∈ s.snap-set(j)}. If
case (i) holds the claim follows easily from the fact that
s.sim-state(j) = s′.sim-state(j). Hence, assume case (ii)
holds.We know thats.snap-set(j) ⊇ s′.snap-set(j)−{x},
and henceu′.sim-state(j)= trans-snap(s′.sim-state(j), w),
where w ∈ s.snap-set(j). The proof follows since
s.sim-state(j) = s′.sim-state(j).

2. π = snap-succeedj .
The corresponding execution fragment consists of only
the single stateu′. We must show that(s, u′) ∈ b. Fix
x ∈ s.snap-set(j) to be the snapshot value selected in the
step we are considering.
Everything carries over immediately, except for the equa-
tion involving theu′.sim-state(j) component. For this, we
know thatu′.sim-state(j) ∈ {s′.sim-state(j)}∪ {trans-
snap(s′.sim-state(j), w) : w ∈ s′.snap-set(j)}. But by
the code forsnap-succeedj , the sets′.snap-set(j) is empty.
Thusu′.sim-state(j) = s′.sim-state(j).
Now, s′.sim-state(j) = trans-snap(s.sim-state(j), x), by
the code. Which implies thatu′.sim-state(j) = trans-
snap(s.sim-state(j), x). Therefore, u′.sim-state(j) ∈
{s.sim-state(j)} ∪ {trans-snap(s.sim-state, w) : w ∈
s.snap-set(j)}, as needed.

This lemma implies that every trace ofDelayedSpec× U
is a trace ofSimpleSpec×U [24], that is (recall the definition
of “solves” in Sect.3.4.3):

Corollary 1. DelayedSpec solves SimpleSpec.

6.2 The systemQ with safe agreement modules

Our third and final level is the systemQ, composed with arbi-
trary safe agreement modules, and with theproposeandagree
actions reclassified as internal. We show that this system, com-
posed with a userU that submits at most oneiniti action on
each port, implementsDelayedSpec×U in the sense of trace
inclusion; that is, this system solvesDelayedSpec×U (in the
sense of Sect.3.4.3). The idea is that individual processes of
Q that are simulating a snapshot step of a processj ofP ′ “try”
to perform the simulated snapshot at the point where they take
their actual snapshots. At the point where the appropriate safe
agreement module chooses the winning actual snapshot, the
simulated snapshot “succeeds”. As in theDelayedSpec, this
choice is made after the snapshot attempts.

Formally, we use a weak forward simulation [24]. The
word “weak” simply indicates that the proof uses invariants.
We need the invariants for the definition as well as for the proof
of the forward simulation: strictly speaking, the definition of
the forward simulation we use is ambiguous without them.

Lemma 3 gives “coherence” invariants, asserting consis-
tency among three things: information kept by the processes
ofQ, information in the safe agreement modules, and a “run”
(as defined just below) of an individual processj of P ′. Note
that Lemma 3 does not talk about global executions ofP ′, but
only about runs of an individual process ofP ′.
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Define arun of processj of P ′ to be a sequence of the
form ρ = s0, c1, s1, c2, s2, . . . , sk, where eachsi is a state
of processj, and eachci is a “change”, that is, one of the
following: (“init” , v), (“snap” , w), (“update” , r), “local” ,
(“decide” , v); the first state is the unique start state, and each
change yields a transition from the preceding to the succeeding
state.

A consequence of the next lemma is that every process
i that simulates steps of a processj simulates the same run
of j. As we shall see, the run is determined by thei process
that is furthest ahead in the simulation ofj; thus, only such
an i process can affect the outcome of the next step ofj.
Moreover, it can affect only the outcome of snapshot steps.
Once the outcome of a snapshot step is determined,i can
proceed with the simulation ofj locally (without reading the
shared variable), up to the next snapshot step.

Invariant 1 relates the information in the processes ofQ
and the safe agreement modules. Invariants 2 and 3 relate the
processes ofQ and a given runρ of processj. Invariants 4
and 5 relateρ and the safe agreement modules. Invariant 6
relates all three types of information: it relates information in
certain processes ofQ, the runρ (those that are “current” in
their simulation ofj, according toρ) and the safe agreement
modules.

Lemma 3. For every reachable state ofQ composed with ab-
stract safe agreement modules and a userU , and for each
processj, there is a runρ = s0, c1, s1, . . . , sk of processj
such that:

1. For anyi:
(a) sim-steps(j)i ≥ 1 if and only ifi ∈ agreed-procsj,0.
(b) For any% ≥ 1, sim-snaps(j)i ≥ % if and only if i ∈

agreed-procsj,�.
(c) i ∈ proposed-procsj,0 − agreed-procsj,0 if and only

if nextop(sim-state(j)i) = “init” and status(j)i ∈
{unsafe, safe}.

(d) Forany% ≥ 1, i ∈ proposed-procsj,�−agreed-procsj,�
if and only if nextop(sim-state(j)i) = “snap”, sim-
snaps(j)i = %− 1, andstatus(j)i ∈ {unsafe, safe}.

2. k = maxi{sim-steps(j)i}.
3. For anyi, if sim-steps(j)i = % then:
(a) sim-state(j)i = s�.
(b) sim-snaps(j)i is the number of“snap”’s amongc1,

. . . , c�.
(c) mem(i).sim-mem(j) is the value written in the last

“update”amongc1, . . . , c�, if any, elser0.
(d) mem(i).sim-steps(j) is the number of the last

“update”amongc1, . . . , c�, if any, else0.
4. (a) (“init” , v)appears inρ if andonly ifagreed-valj,0 = v.
(b) (“snap”, w) is the %’th snapshot inρ if and only if

agreed-valj,� = w.
5. If proposed-valsj,� �= ∅ andagreed-valj,� =⊥ for some%

then

(a) If % = 0 then ρ consists of only one states, and
nextop(s) = “init” .

(b) If % ≥ 1, thennextop(sk) = “snap”, and the number
of snaps inρ is %− 1.

6. For any % ≥ 1, if nextop(sk) = “snap” and the num-
ber of “snaps” in ρ is % − 1, then proposed-valsj,� =

{sim-mem-local(j)i : sim-steps(j)i = k andstatus(j)i

∈ {unsafe, safe}}.
Proof. Let s be any reachable state ofQ composed with ab-
stract safe agreement modules and a userU . Fors equal to the
initial state it is simple to check that the lemma holds. Assume
it holds for some states, and we prove that it holds for any state
s′, after a step(s, π, s′). Letρ = s0, c1, s1, . . . , sk be a run of
processj, corresponding tos, whose existence is guaranteed
by the lemma. We prove there is a runρ′ corresponding tos′,
that satisfies the requirements of the lemma. The runρ′ will
be either equal toρ, or else obtained fromρ by appending a
changeck+1 and a statesk+1. We skip the proof of invariant 1,
which is simple and does not talk aboutρ.

For states, k = maxi{s.sim-steps(j)i}. Letk′ be the cor-
responding value ins′; i.e.k′ = maxi{s′.sim-steps(j)i}.

First assumek′ = k+ 1. Then, for somei, π must be one
of: agree(w)j,0,i, agree(w)j,�,i for % ∈ N+, sim-updatej,i,
sim-localj,i, or sim-decidej,i, since these are the only cases
that increment asim-stepscomponent. Moreover, we have
s.sim-steps(j)i = k, and hence, by part 3(a) of the lemma,
sk = s.sim-state(j)i. For each one of these possibilities,ρ′
is obtained fromρ by appending the corresponding change:
(“init” , w) for an agree(w)j,0,i; (“snap” , w) for an agree
(w)j,�,i, % ∈ N+ ; (“update” , r) for asim-updatej,i; “local”
for asim-localj,i; (“decide” , v) for asim-decidej,i, and after
the change, appending to the run the statesk+1, resulting from
the corresponding transition function (trans-init, trans-snap,
or trans) applied tosk. That is,sk+1 = s′.sim-state(j)i. Thus,
in s′, processi is the first one to finish the simulation of the
k′-th step ofj ands′.sim-steps(j)i = k′; while for every other
processi′, s′.sim-steps(j)i′ < k′.

First notice that part 2 of the lemma clearly holds fors′.
Consider the case ofπ = agree(w)j,�,i for % ∈ N+ (we
omit the proofs of the other cases, which are analogous). For
part 3 of the lemma, we need to consider only the case of
% = k + 1, since the cases of% < k + 1 hold by the in-
duction hypothesis. Thus, we need to consider only processi.
Part (a) holds by the definition ofsk+1. Part (b) holds because
s.sim-snaps(j)i is the number ofsnap’s amongc1, . . . , ck,
ands′.sim-snaps(j)i = s.sim-snaps(j)i + 1, while ck+1 =
(“snap” , w). Part (c), (d), and part 4(a) of the lemma hold by
induction hypothesis. For part 4(b) of the lemma, notice that
there are%−1 snap’s in ρ. Thus, inρ′ there are% snap’s, and in-
deedagreed-valj,� = w. Part 5 holds trivially because process
i is the first one to finish the simulation of the%-thsnapof j, and
henceproposed-valsj,�′ �= ∅andagreed-valj,�′ �=⊥ for %′ ≤ %,
whileproposed-valsj,�′ = ∅ andagreed-valj,�′ =⊥ for %′ > %.
Finally, consider part 6. Since ins′ there are no processesi′
with sim-steps(j)i′ = k+ 1 andstatus(j)i′ ∈ {unsafe, safe},
then we have to proveproposed-valsj,�+1 = ∅. Observe that
s.sim-snaps(j)i′ = %− 1 for anyi′ with s.sim-steps(j)i′ = k.
Then,s.sim-snaps(j)i′ < % for all i′, and hence noi′ has yet
executed apropose(w)j,�+1.

Now assumek′ = k. In this case,ρ′ = ρ. Clearly part 2
of the lemma holds. The cases ofπ equal toagree(w)j,0,i,
agree(w)j,�,i, % ∈ N+, sim-updatej,i, sim-localj,i, or
sim-decidej,i, are similar to each other. Let us consider the
most interesting:π = agree(w)j,�,i. We have thats.sim-
snaps(j)i = % − 1 ands′.sim-snaps(j)i = %. Assumes.sim-
steps(j)i = k1, k1 < k. To prove part 3 take% = k1 + 1.
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Part (a) follows becauses.sim-state(j)i = sk1 , andw ∈
agreed-valj,�, so that the effect ofπ when trans-snapis ap-
plied givessk1+1 = s′.sim-state(j)i. Part (b) follows because
s.sim-snaps(j)i is the number ofsnap’s amongc1, . . . , c�−1,
and c� is a snap, and therefores′.sim-snaps(j)i = s.sim-
snaps(j)i + 1 is the number ofsnap’s amongc1, . . . , c�. The
other parts of the lemma follow easily by induction.

Another case is whenπ is propose(v)j,0,i, or whenπ is
propose(w)j,�,i, % ∈ N+. Consider the second possibility. To
check part 5 of the lemma assumes′.proposed-valsj,� �= ∅
ands′.agreed-valj,� =⊥, while s.proposed-valsj,� = ∅ and
s.agreed-valj,� =⊥.Then,π is the firstproposefor j and%, and
hencek = s.sim-steps(j)i. Also, we have thats′.nextop(sim-
state(j)i) = “snap” becauses.status(j) = propose. Thus
nextop(sk) = “snap” . To complete the proof of the claim
notice that the number ofsnapsin ρ is %− 1, by the induction
hypothesis for part 3 (a) and (b). Finally, part 6 of the lemma
is easy to check becausew = s.sim-mem-local(j)i is added
to the setproposed-valsj,�.

The forward simulation relation we use is the relationf
from states ofQ composed with safe agreement modules and
U to states ofDelayedSpec×U that is defined as follows. Ifs
is a state of theQ system andu is a state ofDelayedSpec×U ,
then(s, u) ∈ f provided that the following all hold:

1. The state ofU is the same inu ands.
2. u.sim-mem= latest(s.mem).
3. For everyi,

(a) u.input(i) = s.inputi.
(b) u.reported(i) = s.reportedi.

4. For everyj,
(a) u.sim-state(j) = s.sim-state(j)i, wherei is the index

of the maximum value ofs.sim-steps(j).
(b) If there existsi with s.sim-decision(j)i �=⊥ then

u.sim-decision(j) = s.sim-decision(j)i for some such
i, elseu.sim-decision(j) =⊥.

(c) If nextop(u.sim-state(j)) = “snap” then u.snap-
set(j) = {s.sim-mem-local(j)i : s.sim-steps(j)i =
maxk{s.sim-steps(j)k} ands.status(j)i �= idle} else
u.snap-set(j) = ∅.

Thus, the simulated memoryu.sim-memis determined by the
latest information that any of the processes ofQ has about the
memory, and likewise for the simulated process states and sim-
ulated decisions. Also, the snapshot setsu.snap-set(j) are de-
termined by the snapshot values saved in local process states,
in Q.

Eachsnap-trystep ofDelayedSpecis “implemented” by a
currentsnapofQ. Eachsnap-succeedstep is implemented by
the firstagreestep of the appropriate safe agreement module,
and likewise for eachsim-init step. Eachsim-updatestep is
implemented by the first step at which some process simu-
lates that update, and likewise for the other types of simulated
process steps.

Lemma 4. The relationf is a weak forward simulation from
Q composed with safe agreement modules andU to Delayed-
Spec×U .
Proof (sketch).Let (s, π, s′) be a step of theQ system, and
let u be any state ofDelayedSpec× U such that(s, u) ∈ f .
We produce an execution fragment ofDelayedSpec×U , from

u to a stateu′, such that(s′, u′) ∈ f . The proof is by cases,
according toπ. These are the most interesting cases:

1. π = snapj,i.
If sim-steps(j)i is the maximum value ofsim-steps(j) (in
boths ands′), then this simulatessnap-tryj , else it simu-
lates no steps.
Assume the first case: thatsim-steps(j)i is the maximum
value ofsim-steps(j). The corresponding execution frag-
ment is(u, snap-tryj , u

′), whereu′ is the same asu except
thatu′.snap-set(j) = u.snap-set(j)∪{u.sim-mem}. Since
(s, π, s′) is a step ofQ, the precondition forπ holds ins
andnextop(s.sim-state(j)i) = “snap” . Since(s, u) ∈ f ,
nextop(u.sim-state(j)) = “snap” , by 4(a) of the defini-
tion of f . Therefore, the precondition forsnap-tryj holds
in u, and(u, snap-tryj , u

′) is an execution fragment.
To prove that(s′, u′) ∈ f , the only nontrivial part of
the definition off to check is 4(c); sincenextop(u′.sim-
state(j)) = “snap” , we do have to verify thatu′ satisfies
part 4(c) of the definition off . We know thatu.snap-set(j)
is equal to the set{s.sim-mem-local(j)i : s.sim-steps(j)i

= maxk{s.sim-steps(j)k} and such thats.status(j)i �=
idle}, because(s, u) ∈ f . Now,u′.snap-set(j) = u.snap-
set(j)∪{u.sim-mem}.Also,u.sim-mem= latest(s.mem),
by part 3 of the definition off . After the snapj,i, we
getlatest(s.mem) = s′.sim-mem-local(j)i. It follows that
u′.snap-set(j) is equal tou.snap-set(j) ∪ {s′.sim-mem-
local(j)i}, and hence,u′.snap-set(j) is equal to{s′.sim-
mem-local(j)i : s′.sim-steps(j)i = maxk{s′.sim-steps
(j)k} ands′.status(j)i �= idle}, as desired.
The case wheresim-steps(j)i is not the maximum value
of sim-steps(j) is trivial.

2. π = agree(w)j,�,i, % ∈ N+.
If this increases the maximum value ofsim-steps(j) then
it simulatessnap-succeedj with a decision value ofw, else
simulates no steps.
Consider the case whereπ increases the maximum value
of sim-steps(j). Let k = maxi{s.sim-steps(j)i}. Then,
s.sim-steps(j)i = k, ands′.sim-steps(j)i = k + 1. By
Lemma 3, for states, there is a run forj, ρ = s0, c1, s1,
. . . , sk, with sk = s.sim-state(j)i. Now, part 1(d) of
Lemma 3 impliesnextop(s.sim-state(j)i) = “snap” ,
s.sim-snaps(j)i = % − 1, and s.status(j)i ∈ {unsafe,
safe}. Since(s, u) ∈ f , u.sim-state(j) = s.sim-state(j)i,
and hence,nextop(u.sim-state(j)i) = “snap” .We want to
prove that(u, snap-succeedj , u

′) with a decision value of
w is an execution fragment. Since we already proved that
nextop(u.sim-state(j)i) = “snap” , to prove that the pre-
condition of thesnap-succeedj holds it remains to show
thatw ∈ u.snap-set(j).
To prove thatw ∈ u.snap-set(j), recall that s.sim-
snaps(j)i = % − 1, and hence,% − 1 is the number of
“snap” ’s in ρ, by part 3(b) of Lemma 3. Thus, the hypoth-
esis of part 6 of Lemma 3 holds, ands.proposed-valsj,� =
{s.sim-mem-local(j)i : s.sim-steps(j)i = k and
s.status(j)i ∈ {unsafe, safe}}. We know thatwmust be in
the sets.proposed-valsj,�, because(s, agree(w)j,�,i, s

′) is
an execution fragment. Thus,w = s.sim-mem-local(j)i′ ,
for somei′ with s.sim-steps(j)i′ = k ands.status(j)i′ ∈
{unsafe, safe}. To complete the proof of the claim, notice
that part 4(c) of the definition of f implies that
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u.snap-set(j) = {s.sim-mem-local(j)i : s.sim-steps(j)i

= maxk{s.sim-steps(j)k} and s.status(j)i �= idle}.
Therefore,w must be inu.snap-set(j).
Finally, it is easy to verify that(s′, u′) ∈ f : we need only
to check conditions 4(a) and 4(c) of the definition off .
Clearly 4(a) holds. For 4(c) observe thatu′.snap-set(j) =
∅. If nextop(u′.sim-state(j)) �= “snap” then 4(c) holds.
But if nextop(u′.sim-state(j)) = “snap” 4(c) also holds,
since i is the only one achieving the maximum of
maxk{s′.sim-steps(j)k}, ands′.status(j)i = idle.
The case whereπ does not increase the maximum value
of sim-steps(j) is simple. Here no steps are simulated and
u = u′. To see that(s′, u′) ∈ f , we need to check only
that parts 4(a) and 4(c) of the definition off hold. This
follows easily from the fact that(s, u) ∈ f , and that the
maximum value ofsim-steps(j) does not change.

We conclude that every trace ofQ composed with safe
agreement modules and a userU is a trace ofDelayedSpec×U :

Corollary 2. Q composed with safe agreement modules
solves DelayedSpec.

Combining Corollaries 2 and 1, we obtain:

Corollary 3. Q composed with safe agreement modules
solves SimpleSpec.

Corollary 3 is almost, but not quite, what we need. It
remains to compose theQ automaton with snapshot shared
memory systems that implement all the safe agreement mod-
ules, then to merge all the processes of all these various compo-
nents systems in order to form a single shared memory system.
The resulting system has infinitely many snapshot shared vari-
ables; we combine all these to yield a systemP with a single
snapshot shared variable. We conclude that for every userU
that submits at most oneiniti action on each port, every trace
of P × U is a trace ofSimpleSpec× U . That is,

Lemma 5. P solves SimpleSpec.

Lemma 5 yields the safety requirements of a fault-tolerant
simulation, as expressed by part (1) of Definition 2. Now we
prove the fault-tolerance requirements, as expressed by part (2)
of Definition 2. The argument is reasonably straightforward,
based on the fact that each process ofQ can, at any time, be
in the unsafe region of code for at most one process ofP ′.
As before, since we are reasoning about fault-tolerance, we
consider explicitstopactions.

Lemma 6. If P ′ guaranteesf -failure termination thenP
guaranteesf -failure termination.

Proof. Assume thatP ′ guaranteesf -failure termination.
Each processi of P simulates the steps of each processj

of P ′ in order, waiting for each step to complete before going
on to the next one. Processiworks concurrently on simulating
steps of different processes ofP ′. However, it is only permitted
to be in the “unsafe” portion of its execution for one process
j of P ′ at a time.

Recall that the specification of safe-agreement stipulates
that if a non-failing processi executes aproposej,�,i action
it will get an agreej,�,i action, unless some other processi′,
simulating step% of j, fails when “unsafe.” In this casei′ could

block the simulation ofj. However, sincei′ is allowed to par-
ticipate in this safe agreement only if it is not currently in the
“unsafe” portion of any other safe agreement execution, then
i′ can block at most one simulated process. In any execution in
which at mostf simulator processes fail, at mostf simulated
processes are blocked, and each non-failing simulatori can
complete the simulation of at leastn′−f processes. Therefore,
sinceP ′ satisfiesf -failure termination, a non-failing simulator
will eventually execute itsdecidestep. Thus the whole system
satisfiesf -failure termination.

Lemmas 5 and 6 yield:

Theorem 4. P is anf -simulation ofP ′ via relationsG and
H.

Now, from Theorem 4 and Theorem 2 we get the result
that leads to the applications in Sect.8:

Theorem 5. Suppose that thereexistsasnapshot sharedmem-
ory system that solvesD′ and guaranteesf -failure termina-
tion, and suppose thatD ≤G,H

f D′. Then there exists a snap-
shot shared memory system that solvesD and guaranteesf -
failure termination.

7 Simulation in read/write systems

A system using snapshot shared memory can be implemented
in a wait-free manner in terms of single-writer multi-reader
read/write shared variables [1]. It follows that Theorem 5 ex-
tends to read/write systems. However, in this section we pro-
vide a direct construction, showing how to produce a read/
write shared memory systemP thatf -simulates a read/write
shared memory systemP ′. The read/write simulation algo-
rithm is essentially the same as the snapshot simulation al-
gorithm, except that a snapshot operation is replaced by a
sequence of reads in arbitrary order.

The reasons why we presented the snapshot simulation
algorithm first are that it is simpler, and that the correctness
proof of the read/write simulation algorithm is based on that
of the snapshot algorithm.

We assume that the system we want to simulate,P ′
RW , is an

n′-process read/write shared memory system. We describe an
n-process read/write simulating systemQRW . As before, this
algorithm is assumed to interact with the usual environment,
via init anddecideactions, and also with a two-dimensional ar-
ray of safe agreement modulesAj,�, j ∈ {1, . . . , n′}, % ∈ N ,
N = {0, 1, 2, . . . }. In the complete version of the simula-
tion algorithm, denotedPRW , these safe agreement modules
are replaced by read/write memory implementations and the
whole thing implemented by a read/write shared memory sys-
tem.

The simulated systemP ′
RW has a sequencemem′ of n′

read/write shared variables. Each variablemem′(j) is a single-
writer multi-reader variable, written by processj of P ′

RW ,
taking on values inR, and with initial valuer0. Furthermore,
we assume thatP ′ solves a decision problemD′, guaranteeing
f -failure termination.

We use terminology about systemP ′
RW which is simi-

lar to that of systemP ′, as described in Sect.3.4.1. Namely,
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for any states of a processj of P ′
RW , definenextop(s) to

be an element of{“init” , “local” } ∪ {(“read” , j′) : 1 ≤
j′ ≤ n′} ∪ {(“update” , r) : r ∈ R} ∪ {(“decide” , v) : v ∈
V }. As before, our determinism assumptions imply that each
states has a well defined and unique value ofnextop(s). For
any states of a processj such thatnextop(s) = “init” and
anyv ∈ V , definetrans-init(s, v) to be the state that results
from applying init(v)j to s. For any states of a processj
such thatnextop(s) = (“read” , j′) and anyw ∈ R, define
trans-read(s, w) to be the state that results from performing
the read operation of thej′th variable from states, with the
return value for the read beingw. Finally, for any states of
a processj such thatnextop(s) is an “update” , “local” , or
“decide” pair, definetrans(s) to be the state ofj that results
from performing the operation from states.

The systemQRW is assumed to interact with eachAj,� via
outputspropose(w)j,�,i and inputssafej,�,i andagree(w)j,�,i.
In fact,QRW is very similar toQ. The difference is that each
snapshot operation used byQ (the only place snapshots are
used is in the computation oflatest) is replaced by a sequence
of read operations inQRW , as described next.

The shared memory ofQRW consists of a sequence
mem-RWof n read/write shared variables. Each variable
mem-RW(i) is a single-writer multi-reader variable, written by
processi ofQRW . Inmem-RW(i), processi keeps track of the
latest values in all the variables ofP ′

RW , according toi’s local
simulation ofP ′

RW .Along with each such value,sim-mem(j),
it keeps a tagsim-steps(j), which counts the number of steps
that it has simulated forj, up to and including the latest step
at which processj of P ′

RW updated its register.
The code ofQRW has the same transitions as those ofQ,

except that thesnap is replaced byreadingand read-done,
and the necessary syntactic modifications are made to the
proposeandagreetransitions. The formal description appears
below. Processi simulates a “read” of variablej′ by pro-
cessj, by reading all the variables inmem-RWand com-
bining the information in these variables to produce a single
value inR: the value produced is the latest value written by
any of the processes ofQRW in its copy of the shared vari-
able of j′. More precisely, processi executes a series ofn
readingj,i actions in arbitrary order, one for eachi′, selecting
themem-RW(i′).sim-mem(j′) value associated with the high-
estmem-RW(i′).sim-steps(j′) (this value must be unique).
In the code below,m(j) keeps track of the highestmem-
RW(i′).sim-steps(j′) encountered so far.m(j) is initialized to
−1, becausemem-RW(i′).sim-steps(j′) takes values greater
or equal than0. There is alsoread-set(j) which keeps track
of the indexes of processes that have been considered. Thus,
read-set(j) is initially empty. Once then components of
mem-RWhave been read,read-set(j) = {1, . . . , n} and
read-donej,i can be executed. This in turn allows comple-
tion of the simulation of the “read” with the execution of the
propose(w)j,�,i andagree(w)j,�,i actions.

Simulation SystemQRW

Same asQ but with the following changes:
Shared variables:

As in Q but instead ofmem:
mem-RW, a sequence ofn read/write variables; for eachi,
mem-RW(i) has components:

sim-mem, a vector inRn′
, initially everywherer0

sim-steps, a vector inNn′
, initially everywhere0

Actions of i:

Input:
As in Q

Output:
As in Q

Internal:
As in Q but instead ofsnapj,i:
readingj,i

read-donej,i

States ofi:

As in Q except for:
for eachj,
instead ofsim-snaps:

sim-reads(j) ∈ N , initially 0
instead ofsim-mem-local:

sim-mem-local-RW∈ R, initially arbitrary
and in addition:

read-set(j) a set of integers, initially empty
m(j) ∈ N ∪ {−1}, initially −1

Transitions of i:

As in Q but instead ofsnapj,i,

readingj,i

Precondition:
nextop(sim-state(j)) = (“read” , j′)
status(j) = idle
i′ ∈ {1, . . . , n}-read-set(j)

Effect:
read-set(j) := read-set(j) ∪ {i′}
if mem-RW(i′).sim-steps(j′) > m(j) then

sim-mem-local-RW(j) :=
mem-RW(i′).sim-mem(j′)

m(j) := mem-RW(i′).sim-steps(j′)

read-donej,i

Precondition:
nextop(sim-state(j)) = (“read” , j′)
status(j) = idle
read-set(j) = {1, . . . , n}

Effect:
read-set(j) := ∅
m(j) := −1
status(j) := propose

propose(w)j,�,i, � ∈ N+

Precondition:
status(j) = propose
� ∃k : status(k) = unsafe
sim-reads(j) = � − 1
w = sim-mem-local-RW(j)

Effect:
status(j) := unsafe

agree(w)j,�,i, � ∈ N+

Effect:
sim-state(j) :=
trans-read(sim-state(j), w)

sim-steps(j) := sim-steps(j) + 1
sim-reads(j) := sim-reads(j) + 1
status(j) := idle
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Tasks ofi:

As in Q.

To prove the correctness of the read/write simulation algo-
rithm, we define an intermediate system,SnapSim. The only
difference betweenQRW andSnapSimis that to simulate a
read action of thej′th component,SnapSimperforms a snap-
shot ofmem-RWand applies a functionlatestsnp to the re-
sult, instead of performing a series of reads. The function
latestsnp for j′ is defined as follows. It returns a single value
of R, representing the latest value written by all the pro-
cesses in themem-RWvariable ofj′. That is, letk = maxi′

{mem-RW(i′).sim-steps(j′)}, and choose anyi′′ such that
mem-RW(i′′).sim-steps(j′) = k. Thereforelatestsnp(mem-
RW, j′) = mem-RW(i′′).sim-mem(j′). (We claim this is
uniquely defined.) In the code ofSnapSimthe readingand
read-donetransitions are replaced by areadtransition:

Simulation SystemSnapSim.:
Shared variables:

As in QRW

Actions of i:

Input:
As in QRW

Output:
As in QRW

Internal:
As in QRW , except thatreadingj,i andread-donej,i

are replaced byreadj,i

States ofi:

As in QRW

Transitions of i:

As in QRW , except thatreadingj,i andread-donej,i

are replaced byreadj,i:

readj,i

Precondition:
nextop(sim-state(j)) = (“read” , j′)
status(j) = idle

Effect:
sim-mem-local-RW(j) := latestsnp(mem-RW, j′)
status(j) := propose

Tasks ofi:

As in QRW .

It is not hard to verify that an execution ofQRW corre-
sponds to an execution ofSnapSim: Consider aread-donej,i
and the correspondingreadingj,i’s, for some fixed valuesj, i.
Thus the preconditionnextop(sim-state(j)) = (“read” , j′)

holds for some particularj′’; fix j′.Also,sim-reads(j) = %−1
for some value of%. Thus, for the rest of the argument, we have
fixed values of%, i, j, j′.

Replace all of theseread-donej,i andreadingj,i’s by a sin-
glereadj,i, which occurs somewhere between the firstreadingj,i
and the lastreadingj,i, at a point when the highestsim-steps(j′)
takes the value recorded by theread-donej,i. That is, theread
is placed at a point wheremaxi′{mem-RW(i′).sim-steps(j′)}
is equal to the value ofm(j) at the point of theread-done. Such
a point exists because thesim-stepsvariables increase by one
unit at a time, and because the final value ofm(j) satisfies the
following: it is at least the value ofmaxi′{mem-RW(i′).sim-
steps(j′)} at the moment of the firstreadingj,i, and at most the
value ofmaxi′{mem-RW(i′).sim-steps(j′)} at the moment of
the lastreadingj,i.

Note that the value ofsim-mem-local-RW(j) at the point
of theread-done(which is the value returned by the sequence
of readingsteps inQRW ) is the same as the value ofmem-
RW(i′′).sim-mem(j′) at the point where theread is placed,
for any i′′ with mem-RW(i′′).sim-steps(j′) = maxi′{mem-
RW(i′).sim-steps(j′)}.

It follows that every trace ofQRW with safe-agreement
modules andU is also a trace ofSnapSimwith safe-agreement
modules andU . Now, the same proof technique that we used to
proof that every trace ofQ with safe-agreement modules and
U is a trace ofDelayedSpec×U can also be used to prove that
every trace ofSnapSimwith safe-agreement modules andU is
a trace ofDelayedSpecRW ×U , whereDelayedSpecRW is the
read/write memory version ofDelayedSpec. Also, the proof
technique used for Corollary 1 can be used to prove that ev-
ery trace ofDelayedSpecRW ×U is a trace ofSimpleSpecRW×U , the read/write memory version ofSimpleSpec. Combin-
ing all these facts, we see that every trace ofQRW with safe-
agreement modules andU is also a trace ofSimpleSpecRM ×
U . Therefore:

Lemma 7. QRW composed with safe agreement modules
solves SimpleSpecRW .

As before, we composeQRW with read/write shared mem-
ory systems that implement all the safe agreement modules,
and then merge all the processes of all these various compo-
nents systems in order to form a single shared memory system,
PRW . We see that, for every userU that submits at most one
initi action on each port, every trace ofPRW ×U is a trace of
SimpleSpecRW × U . That is:

Lemma 8. PRW solves SimpleSpecRW .

The fault-tolerance argument is analogous to the one for
snapshot shared memory systems:

Lemma 9. If P ′
RW guaranteesf -failure termination then

PRW guaranteesf -failure termination.

Now Lemmas 8 and 9 yield (restating Definition 2, the
definition off -simulation, in terms ofSimpleSpecRW ):

Theorem 6. PRW is an f -simulation ofP ′
RW via relations

G andH.

And we get the analogue of Theorem 5 (using the analogue
of Theorem 2 for read/write systems):
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Theorem 7. Suppose that there exists a read/write shared
memory system that solvesD′ and guaranteesf -failure ter-
mination, and suppose thatD ≤G,H

f D′. Then there exists a
read/write shared memory system that solvesD and guaran-
teesf -failure termination.

8 Applications

In Sect.8.1, we describe the notion of aconvergence task[16],
which is used to specify a family of decision problems, one
for each number of processes. For example, binary consensus
is a convergence task – it yields a decision problem for any
number of processes. In Theorem 8, we show that one decision
problem in the family of problems specified by a convergence
task is solvable if and only if any other problem in the family
is solvable. The proof is based on Theorem 5.

In Sect.8.2 we use this theorem to obtain various possibil-
ity and impossibility results for read/write and snapshot shared
memory systems.

8.1 Convergence tasks

In Sect.3.1 we defined ann-port decision problem in terms
of two sets ofn-vectors,I andO, and a total relation∆ from
I to O. Thus, a decision problem is specified for a certain
number of processes,n. For the applications in the next sub-
section, we would like to talk about a “problem” in general,
without specifying the number of processes. For example, in
the binary consensus problem, any number of processes start
with binary inputs, and have to agree on some process’ input
value. Strictly speaking, this is not a decision problem, but a
family of decision problems, one for eachn.

In principle, one could define a family of decision prob-
lems, in a way that for two different values ofn, the corre-
sponding decision problems are completely unrelated. But this
is not what one would mean by a “family.” We now describe a
way of defining a family of decision problems called conver-
gence tasks [16]. We prove that it is a “family” in the sense,
roughly, that one decision problem in the family is solvable if
and only if any other is.

For defining convergence tasks, it will be convenient to talk
about sets instead of vectors, since the position of an element
in the vector will be immaterial. That is, in the kind of decision
problems we will be considering, any permutation of an input
(output) vector will also be an input (output) vector. We call a
set asimplex,to follow the notation of topology. An element
of a simplex is avertex.A complexis a family of simplexes
closed under containment.1

For a complexK, skelk(K) denotes the subcomplex
formed by all simplexes ofK of size at mostk+1. For exam-
ple, skel0(K) consists of all the vertices ofK, andskel1(K)
consists of all the vertices and all the simplexes of size two.
Thusskel1(K) can be thought of as a graph, with simplexes
of size2 as edges and simplexes of size1 as vertices.

1 Thus the complexes we consider here are “colorless,” as opposed
to the colored complexes considered usually in the topology approach
to distributed computing (e.g. [7,18,15]), where each element of a
simplex has associated a process id.

Informally, if S is an input simplex of a convergence task,
each process can receive as input value any vertex ofS, such
that the input values are a subset ofS (two processes may
receive the same vertex). The convergence task specifies a set
of legal output simplexes forS, denotedΨ(S). Each process
has to choose an output a vertex (two processes may choose
the same vertex), such that the vertices form an output simplex
of Ψ(S). Let n-vectors(S) be the set ofn-vectors of values
fromS. Thus, ifS is an input simplex, thenn-vectors(S) are
input vectors, and ifL is an output simplex thenn-vectors(L)
are output vectors.

LetK be a complex. The correspondingn-port vector set
K̃n is defined as follows.〈v1, . . . ,vn〉 is a vector inK̃n if and
only if v1, . . . ,vn (not necessarily distinct) form a simplex
in K; that is,K̃n = ∪S∈K n-vectors(S). For a vectorw, let
set(w) be the simplex of values ofw. Thus, ifw ∈ K̃n then
set(w) ∈ K.

Formally, aconvergence task[L,K, Ψ ] consists of two ar-
bitrary complexes,L andK, called theinput complexand the
output complex, respectively, and a relationΨ carrying each
simplex ofL to a non-empty subcomplex ofK, such that ifL0
is a face ofL1, thenΨ(L0) ⊆ Ψ(L1).

For eachn, then-port decision problem of[L,K, Ψ ] is
〈L̃n, K̃n, Ψ̃〉, whereΨ̃ is as follows:Ψ̃(w) contains everyn-
vectorw′ such thatw′ ∈ n-vectors(S), for S ∈ Ψ(set(w)).

In the next subsection, we consider the following conver-
gence tasks.

1. The N -consensus convergence taskis [SN−1, skel0

(SN−1), skel0], whereSN−1 consists of a simplex of size
N ,N > 1, and its subsimplexes. Thus, for eachn, it yields
a consensus decision problem [11] forn processes, where
the processes start withN possible input values, which
are the vertices ofSN−1. If the processes start with values
that form an input simplexS ∈ SN−1, they have to de-
cide values that form a simplex inskel0(S). Since the only
simplexes ofskel0(S) are the vertices ofS, the processes
have to decide on the same vertex, that is, they all have to
agree on one of the input vertices ofS.

2. The(N, k)-set agreement convergence task,0 < k < N ,
is [SN−1, skelk−1(SN−1), skelk−1]. Thus, for eachn, it
yields ann-processk-set-agreement problem over a set
SN−1 of N values (see Example 1).

3. Theloop agreement convergence task[16] is [S2,K, Λ],
whereS2 is the 2-simplex(s0, s1, s2) and its subsim-
plexes,K is an arbitrary finite complex with three distin-
guished verticesv0,v1,v2,Λ(si) = vi,Λ(si, sj) is some
path (simplexes of size1 and2) λij with end-pointsvi and
vj , andΛ(S2) = K.

Other examples of convergence tasks appear in [16], like
uncolored simplex agreement, barycentric agreement, andε-
agreement.

Theorem 8. For a convergence task[L, K, Ψ ], letD = 〈I,
O, ∆〉 be the correspondingn-port decision problem,D′ =
〈I ′,O′, ∆′〉 then′-port decisionproblem,andf < min{n, n′}.
If there exists a snapshot shared memory system that solvesD
and guaranteesf -failure termination then there exists a snap-
shot shared memory system that solvesD′ and guarantees
f -failure termination.
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Proof. By Theorem 5, it suffices to show thatD ≤G,H
f D′,

for someG = G(g1, g2, . . . , gn) andH = H(f, h1, h2,
. . . , hn). Definegi(v) to be then′-vector with all entries equal
to v, andhi(w) to be any of the elements ofw different from
⊥.

Now we prove the requirementG · ∆′ · F · H ⊆ ∆ of
Definition 1. Take any input vectorw ∈ I. Thusset(w) ∈ L.
For anyw1 ∈ G(w),

set(w1) ⊆ set(w), (1)

and hence,set(w1) ∈ L, sinceL is closed under containment.
That is,w1 ∈ I ′.

Now, take anyw2 ∈ ∆′(w1). Thereforeset(w2) ∈ Ψ
(set(w1)). By definition ofH andF , anyw3 ∈ H(F (w2))
satisfiesset(w3) ⊆ set(w2). Thus,set(w3) ∈ Ψ(set(w1)),
sinceset(w2) ∈ Ψ(set(w1)) andΨ(set(w1)) is (a complex)
closed under containment.

Finally, we need to prove thatset(w3) ∈ Ψ(set(w)), since
this implies thatw3 ∈ ∆(w). This holds becauseΨ(set(w1))
⊆ Ψ(set(w)), by Eq.1.

Applying Theorem 7 (instead of Theorem 5), we get the
same result for read/write systems.

8.2 Possibility and impossibility results

Theorem 8 can be used to extend results that are known for
a small number of processes to larger numbers, for fixedf .
In this section we present several applications of this kind.
All the applications we present hold for read/write memory
systems and for snapshot memory systems, since one can use
the read/write memory or the snapshot memory version of
Theorem 8.

Consensus.It is known [11,20] that the consensus decision
problem is not solvable withf -failure termination, whenf ≥
1. In particular, wait-free2-process consensus is unsolvable
[13]. It is possible to use only this particular result, and The-
orem 8 to prove the following:

Corollary 4. The consensus problem is not solvable for
f ≥ 1.

Set Agreement.It is known from [5,26,18] that the(n, k)-
set agreement problem is not wait-free solvable. This result
together with Theorem 8 implies:

Corollary 5. There is no algorithm that solves the(n, k)-set
agreement problem withf -failure termination iff ≥ k.
Computability. It is known [12] that the problem of telling
if a decision problem forn processes,n ≥ 3, has a wait-
free solution is not computable (i.e., is undecidable). This was
proved2 in [16] by showing that the following problem is not
computable: Given a loop agreement convergence task, tell
if the n-port corresponding decision problem has a wait-free
solution. This result, together with Theorem 8, implies the
following:

2 In fact, in [16], the result of Corollary 6 is proved directly, and
in more general models of shared memory.

Corollary 6. Let 2 ≤ f < n. The problem of telling if an
n-port loop agreement decision problem has a solution with
f -failure termination is not computable.

Also, whenf = 1, it was proved in [4] that the problem
of telling if an arbitrary decision problem has solution withf -
failure termination is computable. In particular, the problem
is computable for any2-port decision problem obtained from
a convergence task. It is possible to use only this particular
result, and Theorem 8, to prove the following:

Corollary 7. The problem of telling if ann-port decision
problemcorresponding to a convergence taskT has a solution
with 1-failure termination is computable.

Notice that the results in [4] apply to general decision prob-
lems, while this corollary is about decision problems produced
by convergence tasks. Also, we stress that Corollary 7 follows
from the results of [4]. The point here is that Corollary 7 can
be proved by showing only the computability for2-port, de-
cision problems; a problem conceivably easier than to prove
it directly for arbitraryn.

9 Discussion

We have presented the beginnings of a method to translate re-
sults in one distributed system model to another. We have in-
troduced a general way of simulating a distributed algorithm of
n processes andf fault-tolerance, by a distributed system with
a different number of processes and the same fault-tolerance.
We have presented a precise description of this fault-tolerant
simulation algorithm, a careful description of what it accom-
plishes, as well as a proof of correctness.

Specifically, we have defined a notion offault-tolerant re-
ducibility between decision problems, and showed that the
algorithm implements this reducibility. The reducibility is tai-
lored to the simulation algorithm; it should not be used as a
general notion of reducibility between decision problems. An
important moral of this work is that one must be careful in ap-
plying the simulation algorithm– it does not work for all pairs
of problems, but only for those that satisfy the reducibility.
Nevertheless, we have shown that the simulation algorithm
is a powerful tool for obtaining possibility and impossibility
results.

Similarly, we have presented a specification of what it
means for one shared memory system to simulate another, in
a fault-tolerant manner. Again, this specification is intended
to capture the type of simulation that is studied in this paper.
We have given a full and detailed description of a version of
the simulation algorithm for snapshot memory systems. We
have proved that this algorithm satisfies the requirements of a
fault-tolerant simulation.

We have also shown how to extend this basic snapshot
memory simulation algorithm to read/write shared memory,
and hence, have shown that it is useful for proving properties
of these systems as well. We have first presented the snapshot
algorithm and then the read/write variant due to the fact that in
the snapshot model, the proof is more modular, and the whole
presentation clearer.
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We have presented several applications of the simulation
algorithm to a class of problems that satisfy the reducibility, in-
cluding consensus and set agreement, defined by convergence
tasks [16]. The applications extend results about a system with
some number of processes andf failures, to a system with any
number of processes and the same number of failures. Further
applications are described in [7].

Some possible variations on the simulation algorithm of
this paper are: (a) Allow each processi ofQ to simulate only
a (statically determined) subset of the processes ofP ′ rather
than all the processes ofP ′. (b) Allow more complicated rules
for determining the simulated inputs ofP ′ and the actual out-
puts ofQ; these rules can includef -fault-tolerant distributed
protocols among the processes ofQ.

We hope that one of the greatest contributions of this paper
will be in laying the foundation for the development of an inter-
esting variety of extensions to the simulation algorithm. One
extension is proposed in [6,7], and later formalized (following
our techniques) in [10,25], where the processes ofQ simulate
a systemP ′ that has access to set agreement variables. Other
variants of the simulation, for consensus problems in systems
with access to general shared objects appear in [9] and in [21].

Reducibilities between problems have proved to be useful
elsewhere in computer science (e.g., in recursive function the-
ory and complexity theory of sequential algorithms), for clas-
sifying problems according to their solvability and computa-
tional complexity. One would expect that reducibilities would
also be useful in distributed computing theory, for example, for
classifying decision problems according to their solvability in
fault-prone asynchronous systems. Our reducibility appears
somewhat too specially tailored to the simulation algorithm
presented to serve as a useful general notion. Further research
is needed to determine the limitations of this reducibility and
to define a more general-purpose notion.

Stronger notions of reducibility (or fault-tolerant simu-
lation) might include a closer, “step-by-step” correspondence
between the execution of the simulating systemP and the sim-
ulated systemP ′. Such a stronger notion seems to be needed
to obtain results [7] relating the topological structure of the
executions ofP andP ′. These results seem to indicate that
the simulation plays an interesting role in the newly emerging
topology approach to distributed computing (e.g. [7,18,15]).
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