Foundations of Shared

Fundamentals

Memory
* What is the weakest form of
communication that supports mutual
exclusion?
* What is the weakest shared object
, . that allows shared-memory
Nir Shavit computation?
Subing for N. Lynch
Fall 2003
Alan Turing Turing Machine

+ First (and still the best!) mathematical
model of sequential computation

+ First o distinguish between what is and
is not computable

© 2003 Herlihy & Shavit

©)

O'\/

© 2003 Herlihy & Shavit 4

Turing Computability

+ Mathematical model of computation
* What is (and is not) computable
- Efficiency (mostly) irrelevant

© 2003 Herlihy & Shavit

Shared-Memory
Computability?

Q Shared Memory

+ Mathematical model of concurrent computation
+ What is (and is not) concurrently computable
+ Efficiency (mostly) irrelevant

© 2003 Herlihy & Shavit 6

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask
some basic questions ...

L

© 2003 Herlihy & Shavit

Foundations of Shared Memory

e d ol e ol (] E

What is the weakest useful form of
shared memory?

J

© 2003 Herlihy & Shavit

Foundations of Shared Memory

1 k
L.l C LE

What can it do?

e -l A -l

\ALL A . al

i
b

L R

© 2003 Herlihy & Shavit

Foundations of Shared Memory

-l A -l -l

N

1 A L1 C

(WWi

What can't it do?

:

<

=

© 2003 Herlihy & Shavit

Register

Holds a
(binary) value

11

© 2003 Herlihy & Shavit

Can be read

Register

C%?:

© 2003 Herlihy & Shavit

i

12

Register

Can be
written

© 2003 Herlihy & Shavit 13

Registers

public interface BooleanRegister {
public boolean read();
public void write(boolean v);

¥

public interface Register {
public int read(Q):
public void write(int v);

¥

© 2003 Herlihy & Shavit 14

Registers

ic interface BooleanRegiste
public boolean read();
public void write(boolean Vv);

Boolean (1-bit) flavor

© 2003 Herlihy & Shavit 15

Registers

Multi-value (M-bit) flavor

ic interTace Register
public int read();
public void write(int v);

© 2003 Herlihy & Shavit 16

Single-Writer/Single-Reader
Register

© 2003 Herlihy & Shavit 17

Single-Writer/Multi-Reader

Register #u

© 2003 Herlihy & Shavit 18

Multi-Writer/Multi-Reader
(o)

© 2003 Herlihy & Shavit 19

Jargon Watch

+ SRSW

- Single-reader single-writer
* MRSW

- Multi-reader single-writer
* MRMW

- Multi-reader multi-writer

© 2003 Herlihy & Shavit 20

Safe Register

OK if reads

and writes
don't overlap

@ © 2003 Herlihy & Shavit 21

Safe Register

Effects undefined
if reads and writes

ﬁ‘ ’ do overlap

@ © 2003 Herlihy & Shavit 22

Regular Register

< write(0) > < write(1) >
< read(1) > < read(0) >

+ Single Writer

+ Readers return:
- Old value if no overlap (safe)
- Old or new value if overlap

© 2003 Herlihy & Shavit 23

Regular or Not?

o > Cwre Zd@

—

© 2003 Herlihy & Shavit 24

Regular or Not?

< wr11'4(0) wr'lte(l) W

read(1) r'eacf(O)

<

Overlap: returns new value

R

© 2003 Herlihy & Shavit 25

Regular or Not?

/
< write(0) > < write(1) >

< > read(0)
Overlap: returns old ilue

© 2003 Herlihy & Shavit 26

Regular or Not?

< wrrl'e(O) wr'lfe(l) >

read(l) read(O)

S

© 2003 Herlihy & Shavit 27

Regular # Linearizable

< write(0) > < write(1)
=)
: | explain this! |

| write(1) already :
happened

© 2003 Herlihy & Shavit 28

Atomic Register

<vri1'e(1001> <wr'|1‘e(101 M
<‘ead(1001> <'ead(1010>

Linearizable to sequential safe
register

© 2003 Herlihy & Shavit 29

Atomic Register

RS

S

© 2003 Herlihy & Shavit 30

Register Space

MRMW

MRrSW M-valued

SRSW Boolean

Safe
Regular
Atomic

© 2003 Herlihy & Shavit 31

Register Names

public class SafeBoolMRSWRegister
implements BooleanRegister {
public boolean read(Q) { .. }

public void write(boolean xX) { .. }
3

3) © 2003 Herlihy & Shavit 32

Register Names

BoolMRSWRegister

property

3) © 2003 Herlihy & Shavit 33

Register Names

gBooMRSWRegister

property
Size matters

3) © 2003 Herlihy & Shavit 34

Register Names

Register

How many readers

property & writers?

Size matters

3) © 2003 Herlihy & Shavit 35

Weakest Register

Single writer @ Single reader
g
=
0 |1}

Safe Boolean register

© 2003 Herlihy & Shavit 36

Results

*+ From SRSW safe Boolean register
- All the other registers Foundations
- Mutual exclusion of the field
* But not everything!
- Consensus hierarch

The really cool stuff ...

@ © 2003 Herlihy & Shavit 37

Locking within Registers

* Not interesting to rely on mutual

exclusion in register constructions

+ We want registers to implement

mutual exclusion!

+ No fun to use mutual exclusion to

implement itself!

© 2003 Herlihy & Shavit 38

Wait-Free Implementations

Definition: An object implementation
is wait-free if every thread
completes a method in a finite
number of steps

No mutual exclusion
- Thread could halt in critical section
- Build mutual exclusion from registers

© 2003 Herlihy & Shavit 39

Road Map

+ SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean

* MRSW regular)

* MRSW atomic } omitted
* MRMW atomic

+ Atomic snapshot

© 2003 Herlihy & Shavit 40

Road Map

- SRSW safe Boolean ~
+ MRSW safe Boolean Next

© 2003 Herlihy & Shavit 41

Safe Boolean MRSW from
Safe Boolean SRSW

public class SafeBoolMRSWRegister
implements BooleanRegister {
private SafeBoolSRSWRegister[] r =
new SafeBoolSRSWRegister[N];
public void write(boolean x) {
for C(int j = 0; j < N; j+b)
rjl-write(x);
}
public boolean readQ {
int i = Thread.mylndexQ;

return r[i].readQ:
3

@ © 2003 Herlihy & Shavit 42

Safe Boolean MRSW from
Safe Boolean SRSW

private SafeBoolSRSWRegister[] r =
new SafeBoolSRSWRegister[N];

Each thread has own
safe SRSW register

@ © 2003 Herlihy & Shavit 43

Safe Boolean MRSW from
Safe Boolean SRSW

public void write(boolean x) {
for (int j = 0; j < N; j+H)
rij]-write(Q);

write' method

@ © 2003 Herlihy & Shavit 44

Safe Boolean MRSW from
Safe Boolean SRSW

for C(int j = 0; j < N; j+b)
rjl-write(x);

Wprite each
thread's register
one at a time

@ © 2003 Herlihy & Shavit 45

Safe Boolean MRSW from
Safe Boolean SRSW

read method

public boolean readQ {
int i = Thread.mylndexQ:
return r[i].readQ;

@ © 2003 Herlihy & Shavit 46

Safe Boolean MRSW from
Safe Boolean SRSW

int i = Thread.mylndexQ; Read my own
return r[i].readQ: r‘egis‘rer'

@ © 2003 Herlihy & Shavit 47

Road Map

+ SRSW safe Boolean
« MRSW safe Boolean

Questions?

© 2003 Herlihy & Shavit 48

Road Map

+ SRSW safe Boolean

+ MRSW safe Boolean ~ Next
ex

© 2003 Herlihy & Shavit 49

Regular Boolean MRSW from
Safe Boolean MRSW

public class RegBoolMRSWRegister
implements BooleanRegister {
private boolean old;
private SafeBoolMRSWRegister value;
public void write(boolean x) {
if (old I=x) {
value.write(X);
old = x;
B
public boolean readQ {
return value.readQ;

33

@ © 2003 Herlihy & Shavit 50

Regular Boolean MRSW from
Safe Boolean MRSW

private boolean old;

Last bit this thread wrote

(OK, we're cheating here on Java syntax)

@ © 2003 Herlihy & Shavit 51

Regular Boolean MRSW from
Safe Boolean MRSW

private SafeBoolMRSWRegister value;

Actual value

@ © 2003 Herlihy & Shavit 52

Regular Boolean MRSW from
Safe Boolean MRSW

.\.\ Is new value different

from last value I wrote?

@ © 2003 Herlihy & Shavit 53

Regular Boolean MRSW from
Safe Boolean MRSW

value.write(X);
old = x;

If so, change it

@ © 2003 Herlihy & Shavit 54

Regular Boolean MRSW from
Safe Boolean MRSW

Overlap? No Overlap?
*No problem
-either Boolean value works

public boolean readQ {
return value.readQ);

@ © 2003 Herlihy & Shavit 55

Road Map

+ SRSW safe Boolean
+ MRSW safe Boolean
* MRSW regular Boolean

Questions?

© 2003 Herlihy & Shavit 56

Road Map

+ SRSW safe Boolean
+ MRSW safe Boolean
* MRSW regular Boolean
J ™ Next

© 2003 Herlihy & Shavit 57

MRSW Regular M-valued from
MRSW Regular Boolean

public class RegMRSWRegister implements Register{
RegBooIMRSWRegister[M] bit;

Viewer discretion
advised

publi((sorry, tuition is non-refundable)
for S —
if (this.bit[i].readO)
return i;

B

) © 2003 Herlihy & Shavit 58

MRSW Regular M-valued from
MRSW Regular Boolean

public class RegMRSWRegister implements Register{
RegBooIMRSWRegister[M] bit;

public void write(int x) {
this.bit[x].write(true);
for (int i=x-1; i>=0; i--)
this.bit[i].write(false):
3

public int readQ {
for (int i=0; i < M; i++)
if (this.bit[i].readQ)
return i;

B

6] © 2003 Herlihy & Shavit 59

MRSW Regular M-valued from
MRSW Regular Boolean

RegBooIMRSWRegister[M] bit;

Unary representation:
bit[i] means value i

] © 2003 Herlihy & Shavit 60

10

MRSW Regular M-valued from
MRSW Regular Boolean

this.bit[x].-write(true):;

Set bit x

[©] © 2003 Herlihy & Shavit 61

MRSW Regular M-valued from
MRSW Regular Boolean

for (int i=x-1; >=0; i--)
this.bit[i].write(false);

Clear lower
bits

[©] © 2003 Herlihy & Shavit 62

MRSW Regular M-valued from
MRSW Regular Boolean

Writing M-Valued

Write b
Find & return
first bit set
Initially O .
01234567
for (int i=0; i < M; i++)
if Cthis.bit[i].-readQ)
return i;
[¢)] © 2003 Herlihy & Shavit 63 © 2003 Herlihy & Shavit 64
Writing M-Valued Road Map
Write b
+ SRSW safe Boolean
« MRSW safe Boolean
* MRSW regular Boolean
* MRSW regular
Questions?
© 2003 Herlihy & Shavit 65 © 2003 Herlihy & Shavit 66

11

Road Map

* SRSW safe Boolean
* MRSW safe Boolean
* MRSW regular Boolean
* MRSW regular my, Cemshcated-and-bering

+ MRSW atomic Of interest mostly to
specialists

© 2003 Herlihy & Shavit 67

Road Map

+ SRSW safe Boolean

+ MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular

+ MRSW atomic

- MRMW atomic & Next

© 2003 Herlihy & Shavit 68

Multi-writer Atomic from
Single-Writer Atomic

public class Labeledvalue {
public int label;
public int value;

public static LabeledValue
MIN_VALUE = new LabeledValue(0,0);

public Labeledvalue(int label, int value) {
this.label = label;
this.value = value;

3

@ © 2003 Herlihy & Shavit 69

Multi-writer Atomic from
Single-Writer Atomic

public int label;

counter incremented
on each write

@ © 2003 Herlihy & Shavit 70

Multi-writer Atomic from
Single-Writer Atomic

ublic int value;

actual value

@ © 2003 Herlihy & Shavit 71

Multi-writer Atomic from
Single-Writer Atomic

constructor

public Labeledvalue(int label, int value)
this.label = label;

this.value = value;

3

@ © 2003 Herlihy & Shavit 72

12

Multi-writer Atomic from
Single-Writer Atomic

public static Labeledvalue
MIN_VALUE = new Labeledvalue(0,0);

Smallest label ever

@ © 2003 Herlihy & Shavit

73

Writing Labeled Values

101111010100010

value

@ © 2003 Herlihy & Shavit 74

Multi-Writer Atomic from
Single-Writer Atomic

public class AtomicMRMWRegister {

private AtomicMRSWRegister[] r =
new AtomicMRSWRegister[n];

public AtomicMRMWRegister() {

for (int j = 0; j <n; j+t) {
r[i] = new AtomicMRSWRegister(Q);
r[j]-write(LabeledValue_MIN_VALUE);

@ © 2003 Herlihy & Shavit

75

Multi-Writer Atomic from
Single-Writer Atomic

new AtomicMRSWRegister[n];

[private AtomicMRSWRegister[] r =

One Single-Writer
Register per thread

@ © 2003 Herlihy & Shavit 76

Multi-Writer Atomic from
Single-Writer Atomic

Initialize all to min label

for (int j = 0; j <n; j+v) {
r[j1 = new AtomicMRSWRegister();
r[j]-write(LabeledValue_MIN_VALUE);

@ © 2003 Herlihy & Shavit

”

Multi-Writer Atomic from
Single-Writer Atomic

public void write(int value) {
int i = Thread.mylndexQ;

LabeledValue max = LabeledValue_MIN_VALUE;

for (int j = 0; j <n; j+) {
LabeledValue other = r[j]-read(Q;
if (other.label > max.label)
max = other;
r[i].write(new LabeledValue(max.label+1,

value));
33

@ © 2003 Herlihy & Shavit 78

13

Multi-Writer Atomic from
Single-Writer Atomic
Find highest label

abeledvalue other = r[j]-readQ;
if (other.label > max.label)
max = other;

@ © 2003 Herlihy & Shavit 79

Multi-Writer Atomic from
Single-Writer Atomic

Write new value with higher label

r[i].write(new Labeledvalue(max.label+1,
value));

@ © 2003 Herlihy & Shavit 80

Multi-Writer Atomic from
Single-Writer Atomic

int readQ {
LabeledValue max = LabeledvValue.MIN_VALUE;
for (int j =0; j <n; j+o) {
LabeledvValue other = r[j]-readQ:
if (other.label > max.label)
max = other;
}
return max.value;

}

@ © 2003 Herlihy & Shavit 81

Multi-Writer Atomic from
Single-Writer Atomic

LabeledValue other = r[j]-readQ:
if (other.label > max.label)
m

ax = other;

Find highest label

@ © 2003 Herlihy & Shavit 82

Multi-Writer Atomic from
Single-Writer Atomic

Return value with
highest label

return max.value;

@ © 2003 Herlihy & Shavit 83

Road Map

+ SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular

* MRSW atomic

* MRMW atomic Questions?

© 2003 Herlihy & Shavit 84

14

Road Map

* SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean

* MRSW regular

* MRSW atomic

* MRMW atomic : Next
+ Afomic snapshot

© 2003 Herlihy & Shavit 85

Atomic Snapshot

update
scan

© 2003 Herlihy & Shavit 86

Atomic Snapshot

* Array of SWMR atomic registers
* Take instantaneous snapshot of all
* Generalizes to MRMW registers ...

© 2003 Herlihy & Shavit 87

Snapshot Interface

public interface Snapshot {
public int update(int v);
public int[] scan(Q);

}

@ © 2003 Herlihy & Shavit 88

Snapshot Interface

Thread i writes v to its register

@Q update(int v);

@ © 2003 Herlihy & Shavit 89

Snapshot Interface

Instantaneous snapshot of all theads'
registers

public int[] scan(Q);

@ © 2003 Herlihy & Shavit 90

15

Atomic Snapshot

+ Collect
- Read values one at a time

* Problem
- Incompatible concurrent collects
- Result not linearizable

© 2003 Herlihy & Shavit 91

Clean Collects

* Clean Collect
- Collect during which nothing changed
- Can we make it happen?
- Can we detect it?

© 2003 Herlihy & Shavit 92

Simple Snapshot

* Put increasing labels on each entry
* Collect twice

If both agree,
- We're done “_I

. 1§
+ Otherwise, 1 =
. T 1

- Try again 1 = [

FEl | B |

18 | 18 |

12 2 |

© 2003 Herlihy & Shavit) 03

Simple Snapshot: Update

public class SimpleSnapshot implements Snapshot {
private AtomicMRSWRegister[] register;

public void update(int value) {
int i = Thread.mylndexQ:
LabeledValue oldValue = register[i].readQ:
Labeledvalue newvalue =
new Labeledvalue(oldvalue. label+1, value);
register[i].-write(newvalue);

}

) © 2003 Herlihy & Shavit 94

Simple Snapshot: Update

private AtomicMRSWRegister[] register;

One single-writer register per thread

6] © 2003 Herlihy & Shavit 95

Simple Snapshot: Update

Labeledvalue newvalue =
new Labeledvalue(oldvalue.label+1, value);

Wereite each time with higher label

] © 2003 Herlihy & Shavit 96

16

Simple Snapshot: Collect

private LabeledValue[] collect() {
LabeledvValue[] copy =
new Labeledvaluel[n];
for (int J =0; j < n; j+v)
copy[i] = this.register[j]-readQ;
return copy;

}

[©] © 2003 Herlihy & Shavit 97

Simple Snapshot

for (in
copylj

J=0; 3 <n; j+d)
= thi

s.register[j]-readQ;

tjJ =
1=th

Just read each register into array

[©] © 2003 Herlihy & Shavit 98

Simple Snapshot: Scan

public int[] scanQ {
Labeledvalue[] oldCopy, newCopy;
oldCopy = collectQ);
collect: while (true) {
newCopy = collect(Q;
if (lequals(oldCopy, newCopy)) {
oldCopy = newCopy;
continue collect;
3}
return getValues(newCopy);
133

) © 2003 Herlihy & Shavit 99

Simple Snapshot: Scan

Collect once

) © 2003 Herlihy & Shavit 100

Simple Snapshot: Scan

Collect once

@Copy = col Iect(f———

@WCOW = collectQ;— Collect twice

6] © 2003 Herlihy & Shavit 101

Simple Snapshot: Scan

Collect once

@Copy = col Iect(f———

newCopy = collect(Q;

Collect twice

oldCopy = newCopy;
continue collect;

On mismatch,
try again

] © 2003 Herlihy & Shavit 102

17

Simple Snapshot: Scan

Collect once
@Copy = collect(r—’

[newCopy = collectOQ; Collect twice

On match, return

return getValues(newCopy); values

[©] © 2003 Herlihy & Shavit 103

Simple Snapshot

* Linearizable
+ Update is wait-free
- No unbounded loops
* But Scan can starve
- If interrupted by concurrent update

© 2003 Herlihy & Shavit 104

Wait-Free Snapshot

* Add a scan before every update

* Write resulting snapshot together
with update value

» If scan is continuously interrupted by
updates, scan can take the update's
snapshot

© 2003 Herlihy & Shavit 105

Wait-free Snapshot

If A's scan observes that B moved
twice, then B completed an update
while A’s scan was in progress

Collect Collect Collect
[26 | [26 | [26 |
24 z b 4 ‘
12 12 12 |
o Update
. >

© 2003 Herlihy & Shavit 106

Wait-free Snapshot

Collect Collect Collect

v |

© 2003 Herlihy & Shavit 107

Wait-free Snapshot

Collect Collect Collect

© 2003 Herlihy & Shavit 108

18

Wait-free Snapshot Once is not Enough

Collect Collect Collect Collect Collect
A <) A
26 2 26 2
24 24 z
12 12 12 12
Update
B

: g
A can steal result of B's scan

Can A steal result of B's scan?

- | | ———

© 2003 Herlihy & Shavit 109 © 2003 Herlihy & Shavit 110

Once is hot Enough Wait-free

- < -
==

12 12

T T

have had clean collect

No Some thread must

© 2003 Herlihy & Shavit 111 © 2003 Herlihy & Shavit 112

Wait-Free Snapshot Label Wait-Free Snapshot Label

public class SnapValue {
public int label;
public int value;
public int[] snhap;

3

ublic int label;

Counter incremented
with each snapshot

@ © 2003 Herlihy & Shavit 113 @ © 2003 Herlihy & Shavit 114

Wait-Free Snapshot Label

public int value;

Actual value

@ © 2003 Herlihy & Shavit 115

Wait-Free Snapshot Label

public int[] snap;

most recent snapshot

@ © 2003 Herlihy & Shavit 116

Wait-Free Snapshot Label

101111010100010{1100..00

label Last

value Shapshot

@3) © 2003 Herlihy & Shavit 117

Wait-free Snapshot

public void update(int value) {
int i = Thread.mylndexQ);
int[] shap = this.scan(Q);
SnapValue oldvalue = r[i]-readQ;
SnapValue newValue =
new SnapValue(oldValue.label+1,
value, shap);
r[i]-write(newvalue);

}

@ © 2003 Herlihy & Shavit 118

Wait-free Snapshot

Take scan
int[] snap = thigj;;;:i§§§i

@ © 2003 Herlihy & Shavit 119

Wait-free Snapshot

Take scan
int[] snap = thigj;;;:i§§§i

napValue newvValue =
new SnapValue(oldValue.label+1,

value, shap);

Label value with scan

@ © 2003 Herlihy & Shavit 120

20

Wait-free Snapshot

public int[] scanQ {

SnapValue[] oldCopy, newCopy;

boolean[] moved = new boolean[n]:

oldCopy = collect(Q;

collect: while (true) {

newCopy = collect(Q);

for (int j = 0; j <n; j++) {

if (oldCopy[j]-1abel != newCopy[j]-label) {

3

return getValues(newCopy);
33
@ © 2003 Herlihy & Shavit 121

Wait-free Snapshot

boolean[] moved = new boolean[n]:

Keep track of who moved

@ © 2003 Herlihy & Shavit 122

Mismatch Detected

if (oldCopy[j]-label != newCopy[j]-label) {

if (moved[i]) { // second move
return oldCopy[j]-snap;
3} else {

moved[j] = true;
oldCopy = newCopy;
continue collect;

Mismatch Detected

1T (moved[J1) {
return oldCopy[j]-snap;

If thread moved twice,

pay just steal its snapshot
return getValues(hewCopy):;
333
@ © 2003 Herlihy & Shavit 123 @ © 2003 Herlihy & Shavit 124
Mismatch Detected Observations

moved[j] = true; Remember that
oldCopy = newCopy; thread moved
continue collect;

@ © 2003 Herlihy & Shavit 125

+ Uses unbounded counters
- can be replaced with 2 bits
+ Assumes SWMR registers
- for labels
- Can be extended to MRMW

© 2003 Herlihy & Shavit 126

21

Grand Challenge
* Snapshot means

- Write any one array element
- Read multiple array elements

© 2003 Herlihy & Shavit

127

Grand Challenge

What about

atomic writes to
multiple

locations?

Writes to
Oand 1

Write many and

Werites to SnaPShOT

1 and 2

© 2003 Herlihy & Shavit 128

22

