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The ABCDs of Paxos 
Consensus: a set of processes decide on an input value 

Main application: Replicated state machines 

Paxos asynchronous consensus algorithm 

AP Abstract Paxos: generic, non-local version 

 
CP Classic Paxos: stopping failures, compare-and-swap 
  1989: Lamport, Liskov and Oki 

DP Disk Paxos: stopping failures, read-write 
  1999: Gafni and Lamport 

BP Byzantine Paxos: arbitrary failures 
  1999: Castro and Liskov 

 

The paper and slides are at research.microsoft.com/lampson 
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Replicated State Machines 
Lamport 1978: Time, clocks and the ordering of events … 

Cast your problem as a deterministic state machine  

Takes client input requests for state transitions, called steps 

Performs the steps 

Returns the output to the client.  

Make n copies or ‘replicas’ of the state machine. 

Use consensus to feed all the replicas the same inputs. 

 

Steps must be deterministic, local to replica, atomic (use transactions) 

Recover by replaying the steps (like transactions) 

Even a read needs a step, unless the result is “as of step n”. 
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Applications of RSM 
Reliable, available data storage system 

Airplane flight control 

 

Reflexive applications:  

Changing quorums of the consensus algorithm 

Issuing a lease:  

A lock on part of the state that times out, hence is fault tolerant 

Leaseholder can work on its state without consensus 

Like any lock, a lease can have modes or be hierarchical 
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The Idea of Paxos 
A sequence of views; get a decision quorum in one of them. 

Each view v chooses an anchored value cv, equal to any earlier decision. 

If a quorum accepts the choice, decision! 

Decision is irrevocable, may  be invisible, but is any later view’s choice. 
Choice    is changeable, must be visible if there was a decision 
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Design Methodology 

• Communicate only stable predicates: once true always true 

• Structure the program as a set of atomic actions 

• Make actions as non-deterministic as possible: weakest guards 

Allows more freedom for the implementation 
Makes it clear what is essential 

• Separate safety, liveness, and performance 

Safety first, then strengthen guards for liveness and scheduling 

• Abstraction functions and simulation proofs 
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Notation 
Subscripts and superscripts for function arguments: rv

a for r(v, a) 

State functions used like variables 

Actions described like this: 

Name Guard     State change 

Closev cv = nil ∧ x ∈ anchorv →cv := x 
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Failure Model 
A set M of processes (machines) 

A faulty process can send arbitrary messages: F m 

A stopped process does nothing: S m 

A failed process is faulty or stopped. State freezes after failure. 

Limits on failure: 
ZF = set of sets of processes that can all be faulty 
ZS = set of sets of processes that can all be stopped 
ZFS = set of sets of processes that can all be failed 

Examples: 

Fail-stop: n processes,   ZF={}, ZS=ZFS=any set of size < (n+1)/2 

Byzantine: n processes, ZF    =   ZS=ZFS=any set of size < (n+1)/3 

Intel-Microsoft: nI + nM processes, ZF=any subset of one side 
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Quorums and Predicates 

Quorum set Q: set of sets of processes; q in ⇒ any superset in. 

State predicate g. Predicate on processes G, so Gm is a predicate. 
A stable predicate once true remains true. 

Q#G: A predicate G appears to hold in quorum Q, {m | Gm ∨ Fm} ∈ Q 
Shorthand: Q[rv

*=x] for Q#(λ m | rv
m = x). 

 
A good quorum is not all faulty: Q~F = {q | q ∉ ZF} 

Q1 and Q2 exclusive: Q1 quorum for G ⇒ no Q2 quorum for its negation. 

Means q1 ∩ q2 ∈ Q~F for any q1 and q2. Example: size > (n + f )/2 

Lift local rv
a=x ⇒ ~(rv

a=out) to global Q1[rv
*=x] ⇒ ~Q2[rv

*=out] 

Q+: ensures Q even after failures: q+ – zFS ∈ Q for any q+, zFS 

A live quorum has Q+ ≠ {} 
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Specification for Consensus 
type  X = ... values to decide on 
var d : (X ∪ {nil})  := nil Decision 
 input : set X := {} 
  
Name Guard    State change 
Input(x)      input := input  ∪ {x} 
Decision: X d ≠ nil  →ret d 
   
Decide d = nil ∧  x ∈ input →d := x 
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The Idea of Paxos 
A sequence of views; get a decision quorum in one of them. 

Each view v chooses an anchored value cv: equals any earlier decision. 

If a quorum accepts the choice, decision! 

Decision is irrevocable, may  be invisible, but is any later view’s choice. 
Choice    is changeable, must be visible to Anchor if there was a decision. 
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Abstract Paxos—AP: State 
 State 
Non-local Agents’  State functions View is 
   rv d 
cv 1: rv

1  
  d 1 Qdec[rv

*=x]  x x decided 
 
input 2: rv

2  
  d 2 
   Qout[rv

*=out]  out nil out 
activev 3: rv

3  
  d 3  
  else nil nil open 

Qdec and Qout exclusive 

var = const is stable for all these except input, and x ∈ input is stable. 
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AP: Data Flow 
 to later views 
 

ru
a=nil 

Closev x∈anchorv 
Choosev cv 

Acceptv rv=cv 
Finishv da=rv 

 ru
a:=out  cv:=x  rv

a:=cv   da:=rv 
 for u < v     
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Example 
 
   cv      rv

a        rv
b      rv

c
  cv     rv

a        rv
b      rv

c
 

View 1 

View 2 

View 3     

7      7         out      out 

8      out      8         out 

9      out      out      9   

8       8        out     out 

9       9        out     9 

9       out     out     9 

input ∩  
anchor4 

= {7, 8, 9} seeing a, b, c 
⊇{8}          seeing a, b  
⊇{9}          seeing a, c or b, c 

  {9} no matter what  
        quorum we see 

 

Two runs of AP with  
agents a, b, c, 
two agents in a quorum, 
input  = {7, 8, 9} 
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Anchoring 
invariant  rv = x ∧ ru = x' ⇒ x = x' all results agree 

= ∀ x', u | rv = x ∧ ru = x' ⇒ x = x'  
= rv = x ⇒ (∀ u < v, x' ≠ x | ~ Qdec[ru

*=x']) 
⇐ rv = x ⇒ (∀ u < v | Qout[ru

*∈{x,out}])  

assume u<v 
ru

a ∈ {x, out}  
⇒ ~(ru

a = x') 

sfunc anchorv   
=     {x | (∀ u < v |                  Qout[ru

*∈{x,out}])}  

=     {x | (∀ w | v0 = w < u ⇒ Qout[rw
*∈{x,out}])} 

∩ {x |                                  Qout[ru
*∈{x,out}]} 

∩ {x | (∀ w | u0 < w < v ⇒ Qout[rw
*∈{x,out}])} 

= anchoru 

 
= X if outu,v 

= anchoru ∩ {x | Qout[ru
*∈{x,out}]}) if outu,v  

⊇ if outv0,v then X elseif outu,v ∧ ru
a = x then {x} else {}  

      where outu,v = (∀ w | u < w < v ⇒ rw = out) 
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 to later viewsx 

ru
a=nil 

Closev x∈anchorv 
Choosev cv 

Acceptv rv=cv 
Finishv da=rv 

 ru
a:=out  cv:=x   rv

a:=cv   d a:=rv 
 for u < v     
 

AP: Algorithm 
Startv u<v too slow →activev := true  
Closev

a activev  →for all u < v do 
       if  ru

a = nil  
       then ru

a := out  

post u<v 
⇒ ru

a ≠ nil 

  anchorv = anchoru ∩ {x  |  Qout[ru
*∈{x,out}]}) if outu,v 

Anchorv anchorv ≠ {} →no state change  

Choosev    cv
a = nil  

∧ x ∈ input ∩ anchorv 
→cv := x  

Acceptva    rv
a = nil  

∧ cv ≠ nil 
→rv

a := cv; Closev
a  

Finishv
a    rv ∈X →da  := rv  



Butler Lampson ABCDs of Paxos: PODC 2001  16 

AP: Liveness 

Choosev must see an element of input ∩ anchorv. 

Recall anchorv 
= anchoru ∩ {x  |  Qout[ru

*∈{x,out}]} if outu,v 

⊇ if outv0,v then X elseif outu,v ∧ ru
a = x then {x} else {}  

After Closev
a, an OK agent a has ru

a ≠ nil for all u < v. 

So if Qout is live, we see either u < v is out, or ru
a = x for some OK a. 

But ru
a = cu ∈ input ∩ anchoru 

If we know a is OK, then ru
a is what we want 

With faults (in BP), we might not know.  
But if anchoru is visible, that is enough. 

 

Still not live if new views start too fast. 
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Optimizations 
Fixed-size agent state: 

rw
a=  don’t know xlast

a out  nil 
 |  |  | 
view v0  vXlast

a vlast
a 

 
Successive steps: 

Because anchorv doesn’t depend on input, can compute it for lots of 
steps at once. 

This is called a view change 

One view change is enough for any number of steps 

Can batch steps, with one Paxos/batch. 

Can run steps in parallel, subject to external consistency. 
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Disk Paxos—DP 
The goal—Replace the conditional writes in Close and Accept with 
simple writes. 

Acceptva  rv
a = nil ∧ cv ≠ nil →rv

a := cv; Closev
a  

The idea—Replace rv
a with rxv

a and rov
a. 

Acceptva cv ≠ nil →rxv
a := cv; Closev

a  

Closev
a activev  →for all u < v do rou

a:= out   

Proof: Keep rv
a as a history variable. Abstract it to AP’s rv

a. 
This invariant makes it work (sometimes with an extra view). 

rxv
a = ??∧ rov

a = ⇒ rv
a  

nil  nil  = nil 
nil  out  = out 
x  nil  = x 
x  out  ≠ nil 
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Communication 
A process has knowledge T of stable non-local facts 

g@m = (Tm ⇒ g) 

We transmit these facts (note that transmitter k may be failed): 

Transmitk,m(g) g@k ∨ Fk     →Tm := Tm ∧ (g@k ∨ Fk) post (g@k ∨ Fk)@m 
 
A faulty k can transmit anything: 
 
A fact known to a Q~F

+ quorum is henceforth known to a Q~F quorum 
of OK agents, and therefore eventually known to everyone. 

Broadcastm(g) Q~F
+[g@*] ∧ OKm →Tm := Tm ∧ g post g@m 

 

Implement Transmitk,m by sending messages. It’s fair if k is OK. 
This works because the facts are stable. 
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Classic Paxos—CP 
The goal—Tolerate stopped processes 

The idea—Agents are the same as in AP. Use a primary process to: 
Implement Choose 
Compute an estimate rev of rv 
Relay facts among the agents 
Do all the scheduling. 

So the primary sends activev to agents to enable Closev, collects ra, 
computes anchor, gets inputs, does Choose, sends cp to agents, col-
lects ra again to compute rev, and sends d. 
Choosep     activep ∧ cp = nil  

∧ x ∈ inputp ∩ anchorp 
→cp := x  

 
Must have only one cp per view. Get this with 

At most one primary per view, and 
Primary chooses at most once per view 



Butler Lampson ABCDs of Paxos: PODC 2001  21 

AP and CP 
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Byzantine Paxos—BP 
The goal—Tolerate faulty processes 

The idea—To ensure one cv, a self-exclusive quorum Qch chooses it 

Still have a primary to propose cv; an OK agent only chooses this 

Primary’s proposal should be anchored and input at agents 
A faulty primary can stop its view from deciding 

Every agent needs an estimate cev
a of cv and an estimate rev

a of rv 

Invariant: The estimates either are nil or equal the true values. 

Every agent also needs its own inputa 

abstract cv    = if    Qch[cv
*=x]  then x else nil 

sfunc cev
a = if (Qch[cv

*=x])@a  then x else nil 

 anchorv
a = anchoru ∩ {x | Qout[ru*∈{x,out}]@a}  if outu,v

a 
 anchorv

p = {x | Q~F
+[x∈anchorv

*]@p}  
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CP and BP 
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Liveness of BP 

Choose must see an element of input ∩ anchorv. 

Recall  anchorv ⊇ anchoru ∩ {x  |  Qout[ru
*∈{x,out}]} 

After Closev
a, an OK agent a has ru

a ≠ nil for all u < v. 

So if Qout is live, we see either u < v is out, or ru
a = x for some OK a. 

But ru
a = cu ∈ input ∩ anchoru 

Unfortunately, we don’t know whether a is OK.  

But we do have Qch[cu
*=x], hence Qch[(x ∈ anchoru)@a] 

So if Qch is live, x ∈ anchoru is broadcast, which is enough. 

So either we eventually see all previous views out,  
or we see x ∈ anchoru and all views between u and v out. 
 
A faulty client can wreck a view by not sending input to all agents. 
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Conclusion 
Paxos is a practical protocol for fault-tolerant asynchronous consensus. 

Paxos is efficient in replicated state machines, which are the best 
mechanism for most fault-tolerant systems. 

Paxos works in a sequence of views,  

Each view chooses a value and then seeks a decision quorum. 

A later view chooses any possible earlier decision 

Abstract Paxos chooses a consensus value non-locally, and then de-
cides by local actions of the agents. 

The agents are read-modify-write memories. 

Disk Paxos generalizes this to read-write memories. 

Classic Paxos uses a primary process to choose. 

Byzantine Paxos uses a primary to propose, a quorum to choose. 


