
Butler Lampson ABCDs of Paxos: PODC 2001 1

The ABCDs of Paxos
Consensus: a set of processes decide on an input value

Main application: Replicated state machines

Paxos asynchronous consensus algorithm

AP Abstract Paxos: generic, non-local version

CP Classic Paxos: stopping failures, compare-and-swap
 1989: Lamport, Liskov and Oki

DP Disk Paxos: stopping failures, read-write
 1999: Gafni and Lamport

BP Byzantine Paxos: arbitrary failures
 1999: Castro and Liskov

The paper and slides are at research.microsoft.com/lampson

Butler Lampson ABCDs of Paxos: PODC 2001 2

Replicated State Machines
Lamport 1978: Time, clocks and the ordering of events …

Cast your problem as a deterministic state machine

Takes client input requests for state transitions, called steps

Performs the steps

Returns the output to the client.

Make n copies or ‘replicas’ of the state machine.

Use consensus to feed all the replicas the same inputs.

Steps must be deterministic, local to replica, atomic (use transactions)

Recover by replaying the steps (like transactions)

Even a read needs a step, unless the result is “as of step n”.

Butler Lampson ABCDs of Paxos: PODC 2001 3

Applications of RSM
Reliable, available data storage system

Airplane flight control

Reflexive applications:

Changing quorums of the consensus algorithm

Issuing a lease:

A lock on part of the state that times out, hence is fault tolerant

Leaseholder can work on its state without consensus

Like any lock, a lease can have modes or be hierarchical

Butler Lampson ABCDs of Paxos: PODC 2001 4

The Idea of Paxos
A sequence of views; get a decision quorum in one of them.

Each view v chooses an anchored value cv, equal to any earlier decision.

If a quorum accepts the choice, decision!

Decision is irrevocable, may be invisible, but is any later view’s choice.
Choice is changeable, must be visible if there was a decision

a

a
a

 c

a
a

a

a
a

Closea
Input;

Accepta Finisha;

ra

cv

 rv
a OUTPUT INPUT

a

a
a

Choose
STEPa

 c

Anchor
Start; Actions

Transmit

Processes a a

a
a

normal operation view change

Butler Lampson ABCDs of Paxos: PODC 2001 5

Design Methodology

• Communicate only stable predicates: once true always true

• Structure the program as a set of atomic actions

• Make actions as non-deterministic as possible: weakest guards

Allows more freedom for the implementation
Makes it clear what is essential

• Separate safety, liveness, and performance

Safety first, then strengthen guards for liveness and scheduling

• Abstraction functions and simulation proofs

Butler Lampson ABCDs of Paxos: PODC 2001 6

Notation
Subscripts and superscripts for function arguments: rv

a for r(v, a)

State functions used like variables

Actions described like this:

Name Guard State change

Closev cv = nil ∧ x ∈ anchorv →cv := x

Butler Lampson ABCDs of Paxos: PODC 2001 7

Failure Model
A set M of processes (machines)

A faulty process can send arbitrary messages: F m

A stopped process does nothing: S m

A failed process is faulty or stopped. State freezes after failure.

Limits on failure:
ZF = set of sets of processes that can all be faulty
ZS = set of sets of processes that can all be stopped
ZFS = set of sets of processes that can all be failed

Examples:

Fail-stop: n processes, ZF={}, ZS=ZFS=any set of size < (n+1)/2

Byzantine: n processes, ZF = ZS=ZFS=any set of size < (n+1)/3

Intel-Microsoft: nI + nM processes, ZF=any subset of one side

Butler Lampson ABCDs of Paxos: PODC 2001 8

Quorums and Predicates

Quorum set Q: set of sets of processes; q in ⇒ any superset in.

State predicate g. Predicate on processes G, so Gm is a predicate.
A stable predicate once true remains true.

Q#G: A predicate G appears to hold in quorum Q, {m | Gm ∨ Fm} ∈ Q
Shorthand: Q[rv

*=x] for Q#(λ m | rv
m = x).

A good quorum is not all faulty: Q~F = {q | q ∉ ZF}

Q1 and Q2 exclusive: Q1 quorum for G ⇒ no Q2 quorum for its negation.

Means q1 ∩ q2 ∈ Q~F for any q1 and q2. Example: size > (n + f)/2

Lift local rv
a=x ⇒ ~(rv

a=out) to global Q1[rv
*=x] ⇒ ~Q2[rv

*=out]

Q+: ensures Q even after failures: q+ – zFS ∈ Q for any q+, zFS

A live quorum has Q+ ≠ {}

Butler Lampson ABCDs of Paxos: PODC 2001 9

Specification for Consensus
type X = ... values to decide on
var d : (X ∪ {nil}) := nil Decision
 input : set X := {}

Name Guard State change
Input(x) input := input ∪ {x}
Decision: X d ≠ nil →ret d

Decide d = nil ∧ x ∈ input →d := x

Butler Lampson ABCDs of Paxos: PODC 2001 10

The Idea of Paxos
A sequence of views; get a decision quorum in one of them.

Each view v chooses an anchored value cv: equals any earlier decision.

If a quorum accepts the choice, decision!

Decision is irrevocable, may be invisible, but is any later view’s choice.
Choice is changeable, must be visible to Anchor if there was a decision.

a

a
a

 c

a
a

a

a
a

Closea
Input;

Accepta Finisha;

ra

cv

 rv
a OUTPUT INPUT

a

a
a

Choose
STEPa

 c

Anchor
Start; Actions

Transmit

Processes a a

a
a

normal operation view change

Butler Lampson ABCDs of Paxos: PODC 2001 11

Abstract Paxos—AP: State
 State
Non-local Agents’ State functions View is
 rv d
cv 1: rv

1
 d 1 Qdec[rv

*=x] x x decided

input 2: rv

2
 d 2
 Qout[rv

*=out] out nil out
activev 3: rv

3
 d 3
 else nil nil open

Qdec and Qout exclusive

var = const is stable for all these except input, and x ∈ input is stable.

Butler Lampson ABCDs of Paxos: PODC 2001 12

AP: Data Flow
 to later views

ru
a=nil

Closev x∈anchorv
Choosev cv

Acceptv rv=cv
Finishv da=rv

 ru
a:=out cv:=x rv

a:=cv da:=rv
 for u < v

Client
INPUT(x)

 x∈input

a

a
a

 c

a
a

a

a
a

Closea
Input;

Accepta Finisha;

ra

cv

 rv
a

OUTPUT INPUT

a

a
a

Choose
STEP

a

 c

Anchor
Start; Actions

Transmit

Processes a a

a
a

normal operation view change

view change

Butler Lampson ABCDs of Paxos: PODC 2001 13

Example

 cv rv

a rv
b rv

c
 cv rv

a rv
b rv

c

View 1

View 2

View 3

7 7 out out

8 out 8 out

9 out out 9

8 8 out out

9 9 out 9

9 out out 9

input ∩
anchor4

= {7, 8, 9} seeing a, b, c
⊇{8} seeing a, b
⊇{9} seeing a, c or b, c

 {9} no matter what
 quorum we see

Two runs of AP with
agents a, b, c,
two agents in a quorum,
input = {7, 8, 9}

Butler Lampson ABCDs of Paxos: PODC 2001 14

Anchoring
invariant rv = x ∧ ru = x' ⇒ x = x' all results agree

= ∀ x', u | rv = x ∧ ru = x' ⇒ x = x'
= rv = x ⇒ (∀ u < v, x' ≠ x | ~ Qdec[ru

*=x'])
⇐ rv = x ⇒ (∀ u < v | Qout[ru

*∈{x,out}])

assume u<v
ru

a ∈ {x, out}
⇒ ~(ru

a = x')

sfunc anchorv
= {x | (∀ u < v | Qout[ru

*∈{x,out}])}

= {x | (∀ w | v0 = w < u ⇒ Qout[rw
*∈{x,out}])}

∩ {x | Qout[ru
*∈{x,out}]}

∩ {x | (∀ w | u0 < w < v ⇒ Qout[rw
*∈{x,out}])}

= anchoru

= X if outu,v

= anchoru ∩ {x | Qout[ru
*∈{x,out}]}) if outu,v

⊇ if outv0,v then X elseif outu,v ∧ ru
a = x then {x} else {}

 where outu,v = (∀ w | u < w < v ⇒ rw = out)

Butler Lampson ABCDs of Paxos: PODC 2001 15

 to later viewsx

ru
a=nil

Closev x∈anchorv
Choosev cv

Acceptv rv=cv
Finishv da=rv

 ru
a:=out cv:=x rv

a:=cv d a:=rv
 for u < v

AP: Algorithm
Startv u<v too slow →activev := true
Closev

a activev →for all u < v do
 if ru

a = nil
 then ru

a := out

post u<v
⇒ ru

a ≠ nil

 anchorv = anchoru ∩ {x | Qout[ru
*∈{x,out}]}) if outu,v

Anchorv anchorv ≠ {} →no state change

Choosev cv
a = nil

∧ x ∈ input ∩ anchorv
→cv := x

Acceptva rv
a = nil

∧ cv ≠ nil
→rv

a := cv; Closev
a

Finishv
a rv ∈X →da := rv

Butler Lampson ABCDs of Paxos: PODC 2001 16

AP: Liveness

Choosev must see an element of input ∩ anchorv.

Recall anchorv
= anchoru ∩ {x | Qout[ru

*∈{x,out}]} if outu,v

⊇ if outv0,v then X elseif outu,v ∧ ru
a = x then {x} else {}

After Closev
a, an OK agent a has ru

a ≠ nil for all u < v.

So if Qout is live, we see either u < v is out, or ru
a = x for some OK a.

But ru
a = cu ∈ input ∩ anchoru

If we know a is OK, then ru
a is what we want

With faults (in BP), we might not know.
But if anchoru is visible, that is enough.

Still not live if new views start too fast.

Butler Lampson ABCDs of Paxos: PODC 2001 17

Optimizations
Fixed-size agent state:

rw
a= don’t know xlast

a out nil
 | | |
view v0 vXlast

a vlast
a

Successive steps:

Because anchorv doesn’t depend on input, can compute it for lots of
steps at once.

This is called a view change

One view change is enough for any number of steps

Can batch steps, with one Paxos/batch.

Can run steps in parallel, subject to external consistency.

Butler Lampson ABCDs of Paxos: PODC 2001 18

Disk Paxos—DP
The goal—Replace the conditional writes in Close and Accept with
simple writes.

Acceptva rv
a = nil ∧ cv ≠ nil →rv

a := cv; Closev
a

The idea—Replace rv
a with rxv

a and rov
a.

Acceptva cv ≠ nil →rxv
a := cv; Closev

a

Closev
a activev →for all u < v do rou

a:= out

Proof: Keep rv
a as a history variable. Abstract it to AP’s rv

a.
This invariant makes it work (sometimes with an extra view).

rxv
a = ??∧ rov

a = ⇒ rv
a

nil nil = nil
nil out = out
x nil = x
x out ≠ nil

Butler Lampson ABCDs of Paxos: PODC 2001 19

Communication
A process has knowledge T of stable non-local facts

g@m = (Tm ⇒ g)

We transmit these facts (note that transmitter k may be failed):

Transmitk,m(g) g@k ∨ Fk →Tm := Tm ∧ (g@k ∨ Fk) post (g@k ∨ Fk)@m

A faulty k can transmit anything:

A fact known to a Q~F

+ quorum is henceforth known to a Q~F quorum
of OK agents, and therefore eventually known to everyone.

Broadcastm(g) Q~F
+[g@*] ∧ OKm →Tm := Tm ∧ g post g@m

Implement Transmitk,m by sending messages. It’s fair if k is OK.
This works because the facts are stable.

Butler Lampson ABCDs of Paxos: PODC 2001 20

Classic Paxos—CP
The goal—Tolerate stopped processes

The idea—Agents are the same as in AP. Use a primary process to:
Implement Choose
Compute an estimate rev of rv
Relay facts among the agents
Do all the scheduling.

So the primary sends activev to agents to enable Closev, collects ra,
computes anchor, gets inputs, does Choose, sends cp to agents, col-
lects ra again to compute rev, and sends d.
Choosep activep ∧ cp = nil

∧ x ∈ inputp ∩ anchorp
→cp := x

Must have only one cp per view. Get this with

At most one primary per view, and
Primary chooses at most once per view

Butler Lampson ABCDs of Paxos: PODC 2001 21

AP and CP

a

a
a

 c

a
a

a

a
a

Closea
Input;

Accepta Finisha
ra

cv

 rv
a OUTPUT INPUT

a

a
a

Choose
STEPa ;

 c

Anchor
Start;

Actions

Transmit

Processes
a a

a
a

AP

Actions

Transmit

Processes

Messages

CP

p

ici

a
a

a

a
a

Closea Accepta Finishp ;

activev

ra

cp rv

a INPUT

1→n* n*→1 1→n*

1→1

1→1

a

a
a

a

a
a

Acceptp
STEP p

ici

Anchorp Closep

a

p p p

Finisha;
STEP a

1→n*
rev

p

Choosep ;
Startp ;

n*→1

Inputp ;

a

a
a

a

a
a

p

OUTPUT

Primary: Relay Choose cv Estimate rv

Butler Lampson ABCDs of Paxos: PODC 2001 22

Byzantine Paxos—BP
The goal—Tolerate faulty processes

The idea—To ensure one cv, a self-exclusive quorum Qch chooses it

Still have a primary to propose cv; an OK agent only chooses this

Primary’s proposal should be anchored and input at agents
A faulty primary can stop its view from deciding

Every agent needs an estimate cev
a of cv and an estimate rev

a of rv

Invariant: The estimates either are nil or equal the true values.

Every agent also needs its own inputa

abstract cv = if Qch[cv
*=x] then x else nil

sfunc cev
a = if (Qch[cv

*=x])@a then x else nil

 anchorv
a = anchoru ∩ {x | Qout[ru*∈{x,out}]@a} if outu,v

a
 anchorv

p = {x | Q~F
+[x∈anchorv

*]@p}

Butler Lampson ABCDs of Paxos: PODC 2001 23

CP and BP

Actions

Transmit

Processes

Messages

CP

p

 ci

a
a

a

a
a

Closea Accepta Finish p ;

activev
 ra

cp rv

a INPUT

1→n* n*→1 1→n*

1→1

1→1

a

a
a

a

a
a

Acceptp
STEPp

ci

Anchorp Closep

a

p p p

Finisha;
STEPa

1→n*
rev

p

Choosep ;
Startp ;

n*→1

Inputp ;

a

a
a

a

a
a

p

OUTPUT

Actions

Transmit

Processes

Messages

BP

a

a
a

 c

a
a

a

a
a

Closea
Inputa,p;

Choosea Accept a Finisha;
ra, ca

cv

p cv
a

rv

a
OUTPUT INPUT

n→n 1→n* n*→n n→n ng→1

1→n

a

a
a

a

a
a

Choosep
STEPa

 c

a

a
a

a

p

a

a
a

p

n*→1

anchorv
a

Starta ;
Anchora

Anchorp

Butler Lampson ABCDs of Paxos: PODC 2001 24

Liveness of BP

Choose must see an element of input ∩ anchorv.

Recall anchorv ⊇ anchoru ∩ {x | Qout[ru
*∈{x,out}]}

After Closev
a, an OK agent a has ru

a ≠ nil for all u < v.

So if Qout is live, we see either u < v is out, or ru
a = x for some OK a.

But ru
a = cu ∈ input ∩ anchoru

Unfortunately, we don’t know whether a is OK.

But we do have Qch[cu
*=x], hence Qch[(x ∈ anchoru)@a]

So if Qch is live, x ∈ anchoru is broadcast, which is enough.

So either we eventually see all previous views out,
or we see x ∈ anchoru and all views between u and v out.

A faulty client can wreck a view by not sending input to all agents.

Butler Lampson ABCDs of Paxos: PODC 2001 25

Conclusion
Paxos is a practical protocol for fault-tolerant asynchronous consensus.

Paxos is efficient in replicated state machines, which are the best
mechanism for most fault-tolerant systems.

Paxos works in a sequence of views,

Each view chooses a value and then seeks a decision quorum.

A later view chooses any possible earlier decision

Abstract Paxos chooses a consensus value non-locally, and then de-
cides by local actions of the agents.

The agents are read-modify-write memories.

Disk Paxos generalizes this to read-write memories.

Classic Paxos uses a primary process to choose.

Byzantine Paxos uses a primary to propose, a quorum to choose.

