The ABCDs of Paxos

Consensus. a set of processes decide on an input value
Main application: Replicated state machines
Pax0s asynchronous consensus algorithm

AP Abstract Paxos. generic, non-local version

CP Classic Paxos. stopping failures, compare-and-swap
1989: Lamport, Liskov and OKki

DP Disk Paxos: stopping failures, read-write
1999: Gafni and Lamport

BP Byzantine Paxos: arbitrary failures
1999: Castro and Liskov

The paper and dlides are at resear ch.microsoft.convlampson

Replicated State Machines

Lamport 1978: Time, clocks and the ordering of events ...

Cast your problem as a deterministic state machine
Takes client input requests for state transitions, called steps
Performs the steps
Returns the output to the client.

Make n copiesor ‘replicas of the state machine.

Use consensus to feed all the replicas the same inputs.

Steps must be deterministic, local to replica, atomic (use transactions)
Recover by replaying the steps (like transactions)
Even aread needs a step, unlessthe result is“as of step n”.

Applications of RSM

Reliable, available data storage system
Airplane flight control

Reflexive applications:

Changing quorums of the consensus algorithm

Issuing alease:
A lock on part of the state that times out, hence is fault tolerant
L easehol der can work on its state without consensus

Like any lock, alease can have modes or be hierarchical

The |l dea of Paxos

A sequence of views, get a decision guorum in one of them.
Each view v chooses an anchored value c,, equal to any earlier decision.
If a quorum accepts the choice, decision!

ISirrevocable, may beinvisible, but is any later view’s choice.
Choice Is changeable, must be visibleif there was a

C C
X . f‘
Processes a a eea a ag
s R | v ar e s e gt
a a a a a
Actions Sart! Input;
Close® Anchor Choose Accept® ;
STEP®
] a a
Transmit r INPUT Gy My

| view change 1 normal operation |

Design M ethodology

Communicate only stable predicates. once true always true
Structure the program as a set of atomic actions
Make actions as hon-deterministic as possible: weakest guards

Allows more freedom for the implementation
Makes it clear what is essential

Separate safety, liveness, and performance

Safety first, then strengthen guards for liveness and scheduling

Abstraction functions and simulation proofs

Notation

Subscripts and superscripts for function arguments: r,® for r(v, a)
State functions used like variables
Actions described like this:

Name Guard State change

Close, c,=nil Ux1 anchor, ® ¢, := X

Failure M odel

A set M of processes (machines)
A faulty process can send arbitrary messages: F™
A stopped process does nothing: S™
A failed process isfaulty or stopped. State freezes after failure.

Limits on failure:
Zr = set of sets of processes that can all be faulty
Zs = set of sets of processes that can all be stopped
Zrs= Set of sets of processes that can all befailed

Examples:
Fail-stop: n processes, Zr={}, Z&=Zrs=any s&t of size < (n+1)/2
Byzantine: n processes, Zr = Zs&=Zrs=any set of size < (n+1)/3

Intel -Microsoft: n, + ny processes, Z-=any subset of one side

Quorums and Predicates

Quorum set Q: set of sets of processes; gin b any superset in.

State predicate g. Predicate on processes G, so G™ is a predicate.
A stable predicate once true remains true.

Q#G: A predicate G appearsto hold in quorum Q, {m|G"UF™ 1T Q
Shorthand: Q[r, =x] for Q#(m|r,™ = x).

A good quorumisnot al faulty: Q.= {q | gl Zg}
Q, and Q, exclusive: Q, quorum for G P no Q, quorum for its negation.
Meansg; C a1 Qg for any g; and g,. Example: size > (n + f)/2
Lift local r,°=x b ~(r,’=out) to global Q[r, =x] b ~Q,[r, =out]
Q": ensures Q even after failures: " —zs1 Qforany q°, zs

A live quorumhas Q" * {}

Specification for Consensus

type X =... values to decide on
var d : (XE {nil}) :=nil Decision
input : set X:={}

Name Guard State change
| nput(x) input ;= input E {x}
Decision: X d1 nil ®retd

Decide d=nil U x1 input ®d :=x

The ldea of Paxos

A sequence of views, get a decision quorum in one of them.
Each view v chooses an anchored value ¢,: equals any earlier decision.
If a quorum accepts the choice, decision!

Isirrevocable, may beinvisible, but isany later view’s choice.
Choice Ischangeable, must be visibleto Anchor if there was a

C C
X . f‘
Processes a a ea a ag
s R | v ar e s e gt
a a a a a
Actions Sart! Input;
Close® Anchor Choose Accept® ;
STEP®
] a a
Transmit r INPUT Gy My

| view change 1 normal operation |

10

Abstract Paxos—AP: State

State
Non-local Agents State functions ~ View is
rv d
Cy 1:
Quecl v =X] X X decided
Input 2. @
Qoulrv =0ut] out nil out
active, 3: @
else nil nil open

Quec aNd Q. eXClusive

var = const is stable for all these except input, and x I input is stable.

11

AP: Data Flow

view change
.. Cl ose\,\ Choosg, Acc t\ Finish
r.o=nil » XI anchor, < » Cy Dy, rv==c, S di=r,
r.2:=out Cyi=X i=c, /‘ d%=r,
foru<v
. INPUT(X) ..
Client ()> Xl input —
[d
Processes a a ‘“aa a ag
a4 a RSV A T LA J-W
a a a a a
Actions Sart; Input;
Close® Anchor Choose Accept® Finish?;
STEP®
Transmit INPUT G, ry" OUTPUT

| view change| | normal operation |

12

Example

Cy
Viewl |7 7 out out
View2 |8
View3 |9 out out 9

out

out out 9

inpot C ={7,8,9} seeinga, b, c
anchor, |E{8}
E{9} seeinga, corb, C

{9} no matter what
guorum we see

Two runs of AP with
agents a, b, c,
two agents in a quorum,
input = {7, 8, 9}

13

Anchoring

invariant r,=xUr,=x b x=x all results agree
=" x,u|r,=xUr,=x/p x=x assume u<v
= r,=xb (" u<v,x?t Md&[ruxle]l) rua ! {X Ou}?
0 1 =xP (" u<v|QudrT {xout}]) (=X
sfunc anchor,
= {x](" u<v] Qoulru T {x,0ut}])}
= {xX](" wlvo=w<uP QuulrwT {xo0ut}])} = anchor,
C {x Qout:fu*[{x,out}]}
C{x|(" wju <w<vbP Quurw! {xout}])} = Xif out,,
anchor, C {x | Quu[r.T {x,0ut}]}) if out,,

mp |l

if out,,, then X elseif out,, Ur*=xthen {x} else{}

whereout,, = (" wlju<w<vp ry,= out)

14

AP: Algorithm

Start, u<v too slow ® active, ;= true
Close? active < ®forallu<vdo postu<v
if r,2= nil P r,2% nil

thenr,®:= out
anchor, = anchor, C {x | Quu[ry1 {x,0ut}]}) if out,,

Anchor, anchor,?! {} ® no state change

Choose, cvi‘hl\ ® ¢, = X
Ux I input C anchor,

Accept,” _r, = nil ®r," :=c, Close,
UC\/1 nII ’.."A
Finish2® r,1 X ®d* :=r,
.. Clo Choo Accept Finish
r,2=nil se\,& anchor,, Se";cv <P = 'y di=r,
r,:=out L Cy:=X r,.=c, e d%=r,

foru<v

15

AP: Liveness

Choose, must see an element of input C anchor
Recall anchor,

= anchor, C {x | QuuryT {x0ut}]} If outy,
E if out,,, then X elseif out,, Ur,*=xthen {x} else{}

After Closg,?, an OK agent ahasr,! nil foral u< v.

So if Qg islive, we see either u < visout, or r,2 = x for someOK a.
Butr,2=c,| input C anchor,

If we know ais OK, thenr % iswhat we want

With faults (in BP), we might not know.
But if anchor, isvisible, that is enough.

Still not live if new views start too fast.

16

Optimizations

Fixed-size agent state;

r.= «—— don't know—Xx.q+— Out—s «—— nNil —
view Vv VX{ag Viag
Successive steps.

Because anchor, doesn’t depend on input, can compute it for lots of
steps at once.

Thisiscalled aview change
One view change is enough for any number of steps

Can batch steps, with one Paxos/batch.
Can run steps in parallel, subject to external consistency.

17

Disk Paxos—DP

The goal—Replace the conditional writes in Close and Accept with
simple writes.

Accept,” r2=nilUcg? nil ®r,*:=c,; Close?
The idea—Replacer,” with rx,* and ro,”.
Accept,” ¢, nil ® rx,* := ¢, Close,2

Close® active, ® for all u< vdoro, = out

Proof: Keep r,* as a history variable. Abstract it to AP’ sr,°.
Thisinvariant makes it work (sometimes with an extraview).

a

%"= U ro"= b Iy

nil nil = nil
nil out = out
X nil = X
X out 1 nil

Communication

A process has knowledge T of stable non-local facts
gem= (T"p g)
We transmit these facts (note that transmitter k may be failed):

Transmit*™(g) gek UF" ® T":= T" U (gek UF) post (gak U F)em
A can transmit anything:

A fact knownto aQ-¢" quorum is henceforth known to a Q_r quorum
of OK agents, and therefore eventually known to everyone.

Broadcast™(g) Q'[g@*]Uok™®T":=T"Ug post gem

Implement Transmit“™ by sending messages. It'sfair if kis OK.
This works because the facts are stable.

19

Classic Paxos—CP

The goal—Tolerate stopped processes

Theidea—Agents arethe same asin AP. Use aprimary process to:
|mplement Choose

Compute an estimatere, of r,,

facts among the agents
Do all the scheduling.
So the primary active, to agents to enable Close,, re,
computes anchor, inputs, does Choose, c” to agents,
r* again to compute re,, and d.
Choose” active® Uc® = nil ® c:= X

Ux1 input® C anchorP®

Must have only one c” per view. Get this with
At most one primary per view, and

Primary chooses at most once per view

20

AP and CP
AP

a a ': a RN oveo, a LT oo, a ::‘
Processes A" a Va w™, ey @ e A e
a a a o8 a R a
. gart; | nput, STEPa,
Actions Close® Anchor Choose Accept® Finish®
Transmit r INPUT Cv r OUTPUT
CP c \ C
P P p—>p P
a a a a a a
Processes a a a a a a
a a a a a a
: Sart®] Input®; STEPP STEP?
Actions Close] Anchoy® Choose’; Accept® Finish”; Finish®;
Transmit activey [r® /INPUT P 2 |oUuTPUT reP
Messages 1®n{ n*®@1 [1®1 1®n* nN*®1| 1®1 1®n*

Choose c, Estimater,

21

Byzantine Paxos—BP

The goa—Tolerate faulty processes
Theidea—To ensure one c,, a self-exclusive quorum Q., chooses it
Still have a primary to propose c,; an OK agent only chooses this

Primary’s proposal should be anchored and input at agents
A faulty primary can stop its view from deciding

Every agent needs an estimate ce,® of ¢, and an estimate re,* of r,
Invariant: The estimates elither are nil or equal the true values.
Every agent also needs its own input®

abstract ¢, =if Qu[c, =X] thenx esenil
sfunc cel=if (Qu[c, =X])@a thenx elsenil

anchor,® = anchor, C {x | Quur,*T {x,out}]@a} if out,,’
anchor,” = {x | Q_'[xI anchor,]@p}

22

CP and BP

CP c
p p\p—>p

P
a a a a a
Processes a a a a a a
a a a a a a
. Start®; Input’; STEPP STEP?
Actions Close® AnchorP Choose: Accept® , Finish?,
Transmit active, r® INPUT P ri° OUTPUT reF
M essages 1®n* n*®@1 [1®1 1®n* n*®1 [1®1 1®n*
BP
P P
Processes 5 a a a a a a
a a a a a a a
a a a a a a a
. Sart?; |nput®"; STEP?
Actions cjose* Anchor® Choose™ Accept® Finish?;
Trangmit [.C anchor2 iNneuT ¢ ¢’ 7 output
M essages n®n n®1 [I®n| 1®n* n*®n n®n N®1

23

Liveness of BP

Choose must see an element of input C anchor,.
Recall anchor, E anchor, C {x | Quu[r.1 {x,0ut}]}

After Close,%, an OK agent ahasr,*? nil for all u< v.
Soif Qg islive, we see either u < visout, or r,* = x for some OK a.

Butr,2=c,l input C anchor,
Unfortunately, we don’t know whether ais OK.
But we do have Q.[c, =X], hence Q.[(xT anchor,)@a]

Soif Qg islive, x1 anchor, is broadcast, which is enough.

So either we eventually see all previous views out,
or wesee x| anchor, and all views between u and v out.

A faulty client can wreck a view by not sending input to all agents.

24

Conclusion

Paxos is a practical protocol for fault-tolerant asynchronous consensus.

Paxos is efficient in replicated state machines, which are the best
mechanism for most fault-tolerant systems.

Paxos works in a sequence of views,
Each view chooses a value and then seeks a decision quorum.
A later view chooses any possible earlier decision

Abstract Paxos chooses a consensus value non-locally, and then de-
cides by local actions of the agents.

The agents are read-modify-write memories.
Disk Paxos generalizes this to read-write memories.
Classic Paxos uses a primary process to choose.
Byzantine Paxos uses a primary to propose, a guorum to choose.

25

