
1

Concurrent Objects and
Linearizability

Nir Shavit
Subing for N. Lynch

Fall 2003
© 2003 Herlihy and Shavit 2

Concurrent Computaton

memory

object object

© 2003 Herlihy and Shavit 3

Objectivism

• What is a concurrent object?
– How do we describe one?
– How do we implement one?
– How do we tell if we’re right?

© 2003 Herlihy and Shavit 4

FIFO Queue: Enqueue Method

q.enq()

© 2003 Herlihy and Shavit 5

FIFO Queue: Dequeue Method

q.deq()/

© 2003 Herlihy and Shavit 6

Sequential Objects

• Each object has a state
– Usually given by a set of fields
– Queue example: sequence of items

• Each object has a set of methods
– Only way to manipulate state
– Queue example: enq and deq methods

2

© 2003 Herlihy and Shavit 7

Sequential Specifications
• If (precondition)

– the object is in such-and-such a state
– before you call the method,

• Then (postcondition)
– the method will return a particular value
– or throw a particular exception.

• and (postcondition, con’t)
– the object will be in some other state
– when the method returns,

© 2003 Herlihy and Shavit 8

Pre and PostConditions for
Dequeue

• Precondition:
– Queue is non-empty

• Postcondition:
– Returns first item in queue

• Postcondition:
– Removes first item in queue

• You got a problem with that?

© 2003 Herlihy and Shavit 9

Pre and PostConditions for
Dequeue

• Precondition:
– Queue is empty

• Postcondition:
– Throws Empty exception

• Postcondition:
– Queue state unchanged

© 2003 Herlihy and Shavit 10

Why Sequential Specifications
Totally Rock

• Documentation size linear in number
of methods
– Each method described in isolation

• Interactions among methods captured
by side-effects on object state
– State meaningful between method calls

© 2003 Herlihy and Shavit 11

Why Sequential Specifications
Totally Rock (con’t)

• Can add new methods (by subclassing)
– Without changing descriptions of old

methods
• These properties are so familiar, we

don’t think about them
– But perhaps we should …

© 2003 Herlihy and Shavit 12

Methods Take Time

time

Method call

invocation
12:00

q.enq(...)

time

void

response
12:01

3

© 2003 Herlihy and Shavit 13

Sequential vs Concurrent

• Sequential
– Methods take time? Who knew?

• Concurrent
– Method call is not an event
– Method call is an interval.

© 2003 Herlihy and Shavit 14

time

Concurrent Methods Take
Overlapping Time

time

Method call Method call

Method call

© 2003 Herlihy and Shavit 15

Sequential vs Concurrent

• Sequential:
– Object needs meaningful state only

between method calls
• Concurrent

– Because method calls overlap, object
might never be between method calls

© 2003 Herlihy and Shavit 16

Sequential vs Concurrent

• Sequential:
– Each method described in isolation

• Concurrent
– Must characterize all possible

interactions with concurrent calls
• What if two enqs overlap?
• Two deqs? enq and deq? …

© 2003 Herlihy and Shavit 17

Sequential vs Concurrent

• Sequential:
– Can add new methods without affecting

older methods
• Concurrent:

– Everything can potentially interact with
everything else Panic!

© 2003 Herlihy and Shavit 18

The High-Order Bit

• What does it mean for a concurrent
object to be correct?

• What is a concurrent FIFO queue?
– FIFO means strict temporal order
– Um, like, that’s why they call it “FIFO?”
– Concurrent means ambiguous temporal

order

4

© 2003 Herlihy and Shavit 19

Linearizability Manifesto

• Each method should
– “take effect”
– Instantaneously
– Between invocation and response events

• Any such concurrent object is
– Linearizable™

© 2003 Herlihy and Shavit 20

Comments on Manifesto

• Common Sense, not Science
• Scientific justification:

– Facilitates reasoning
– Nice mathematical properties

• Common-sense justification
– Preserves real-time order
– Matches my intuition (sorry about yours)

© 2003 Herlihy and Shavit 21

More Comments on Manifesto

• Proposed in 1990
– Since then accepted almost anywhere
– Don’t leave home without it …

• Not universally adopted
– Usually for good, but specialized reasons
– But most feel need to justify why not

© 2003 Herlihy and Shavit 22

Reasoning

• People are
– OK with sequential reasoning
– Challenged by concurrent reasoning

• Air traffic control
• Toddler room in day-care center

• Most concurrent models
– Propose some kind of equivalence
– Make concurrent problems sequential
– Except they sometimes do it wrong …

© 2003 Herlihy and Shavit 23

Concurrent Specifications

• Naïve approach: world of pain
– We must specify unspeakable number of

possible multi-way interactions
• Linearizability: same as it ever was

– Methods still described by pre- and
postconditions

© 2003 Herlihy and Shavit 24

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

linearizableq.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)

5

© 2003 Herlihy and Shavit 25

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

not linearizableq.enq(x)

q.enq(y)

(5) © 2003 Herlihy and Shavit 26

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

linearizable

time

(4)

© 2003 Herlihy and Shavit 27

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

(8) © 2003 Herlihy and Shavit 28

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

(8)

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci

© 2003 Herlihy and Shavit 29

Example

timetime

(8)

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci

© 2003 Herlihy and Shavit 30

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça multiple orders OK

6

© 2003 Herlihy and Shavit 31

Read/Write Variable Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)
write(1) already

happened

write(2)

not linearizable

(4) © 2003 Herlihy and Shavit 32

Read/Write Variable Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

not linearizable

(4)

© 2003 Herlihy and Shavit 33

Read/Write Variable Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

linearizable

(4) © 2003 Herlihy and Shavit 34

Read/Write Variable Example

time

read(1)write(0)

write(1)

write(2)

time

read(2)write(1)

write(2)

linearizable

(2)

© 2003 Herlihy and Shavit 35

Formal Model

• Define precisely what we mean
– Ambiguity is bad when intuition is weak

• Allow reasoning
– Formal
– But mostly informal

• In the long run, actually more important
• Ask me why!

© 2003 Herlihy and Shavit 36

Split Method Calls into Two
Events

• Invocation
– method name & args
– q.enq(x)

• Response
– result or exception
– q.enq(x) returns void
– q.deq() returns x
– q.deq() throws empty

7

© 2003 Herlihy and Shavit 37

Invocation Notation

A q.enq(x)

thread

object

method

arguments
(4) © 2003 Herlihy and Shavit 38

Response Notation

A q: void

thread

object

result

(2)

© 2003 Herlihy and Shavit 39

Response Notation (cont)

A q: empty()

thread

object

exception

(2) © 2003 Herlihy and Shavit 40

History

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

Sequence of
invocations and

responses

H =

© 2003 Herlihy and Shavit 41

Definition

• Invocation & response match if

A q.enq(3)

A q:void

Thread
names agree

Object names
agree

Method call

(1) © 2003 Herlihy and Shavit 42

Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

8

© 2003 Herlihy and Shavit 43

Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|q =

© 2003 Herlihy and Shavit 44

Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

© 2003 Herlihy and Shavit 45

Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|B =

© 2003 Herlihy and Shavit 46

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

An invocation is
pending if it has no
matching respnse

H =

© 2003 Herlihy and Shavit 47

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

May or may not
have taken effect

H =

© 2003 Herlihy and Shavit 48

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

discard pending
invocations

H =Complete(H) =

9

© 2003 Herlihy and Shavit 49

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Final pending
invocation OK

(4) © 2003 Herlihy and Shavit 50

Well-Formed Histories

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

© 2003 Herlihy and Shavit 51

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H|B=
B p.enq(4)
B p:void
B q.deq()
B q:3

A q.enq(3)
A q:void

H|A=

Per-thread
projections sequential

© 2003 Herlihy and Shavit 52

Equivalent Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

Threads see the same
thing in both

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

G=

H|A = G|A
H|B = G|B

© 2003 Herlihy and Shavit 53

Sequential Specifications

• A sequential specification is some way
of telling whether a
– Single-thread, single-object history
– Is legal

• My favorite way is using
– Pre and post-conditions
– But plenty of other techniques exist …

© 2003 Herlihy and Shavit 54

Legal Histories

• A sequential (multi-object) history H
is legal if
– For every object x
– H|x is in the sequential spec for x

10

© 2003 Herlihy and Shavit 55

Method Call

A q.enq(3)
B p.enq(4)
B p.void
B q.deq()
A q:void
B q:3

Interval between
invocation and

response events

Method call

(1) © 2003 Herlihy and Shavit 56

Precedence

A q.enq(3)
B p.enq(4)
B p.void
A q:void
B q.deq()
B q:3

A method call precedes
another if response

event precedes
invocation event

Method call Method call

(1)

© 2003 Herlihy and Shavit 57

Non-Precedence

A q.enq(3)
B p.enq(4)
B p.void
B q.deq()
A q:void
B q:3

Some method calls
overlap one another

Method call

Method call

(1) © 2003 Herlihy and Shavit 58

Notation

• Given
– History H
– method executions m0 and m1 in H

• We say m0 H m1, if
– m0 precedes m1

• Relation m0 H m1 is a
– Partial order
– Total order if H is sequential

m0 m1

© 2003 Herlihy and Shavit 59

Linearizability

• History H is linearizable if it can be
extended to G by
– Appending zero or more responses to

pending invocations
– Discarding other pending invocations

• So that G is equivalent to
– Legal sequential history S
– where G ⊂ S

© 2003 Herlihy and Shavit 60

Remarks

• Some pending invocations
– Took effect, so keep them
– Discard the rest

• Condition G ⊂ S
– Means that S respects “real-time order”

of G

11

© 2003 Herlihy and Shavit 61

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Example

© 2003 Herlihy and Shavit 62

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

Example

Complete this
pending

invocation

© 2003 Herlihy and Shavit 63

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

Example

discard this one

© 2003 Herlihy and Shavit 64

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

© 2003 Herlihy and Shavit 65

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

© 2003 Herlihy and Shavit 66

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

Equivalent sequential history

12

© 2003 Herlihy and Shavit 67

Concurrency

• How much concurrency does
linearizability allow?

• When must a method invocation
block?

© 2003 Herlihy and Shavit 68

Concurrency

• Focus on total methods
– Defined in every state

• Example:
– deq() that throws Empty exception
– Versus deq() that waits …

• Why?
– Otherwise, blocking unrelated to

synchronization

© 2003 Herlihy and Shavit 69

Concurrency

• Question: When does linearizability
require a method invocation to block?

• Answer: never.
• Linearizability is non-blocking

© 2003 Herlihy and Shavit 70

Non-Blocking Theorem
If method invocation

A q.inv(…)

is pending in history H, then there
exists a response
A q:res(…)

such that
H + A q:res(…)

is linearizable

© 2003 Herlihy and Shavit 71

Proof

• Pick linearization S of H
• If S already contains

– Invocation A q.inv(…) and response,
– Then we are done.

• Otherwise, pick a response such that
– S + A q.inv(…) + A q:res(…)

– Possible because object is total.

© 2003 Herlihy and Shavit 72

Locality Theorem

• History H is linearizable if and only if
– For every object x
– H|x is linearizable

• We care about objects only!
– (Materialism anyone?)

13

© 2003 Herlihy and Shavit 73

Why Does Locality Matter?

• Modularity
• Can prove linearizability of objects in

isolation
• Can compose independently-

implemented objects

© 2003 Herlihy and Shavit 74

Reasoning About Linearizability
public class Queue {

int head = 0, tail = 0;
Object[QSIZE] items;

public synchronized void enq(Object x) {
while (this.tail–this.head == QUEUE_SIZE)
this.wait();

this.items[tail++ % QUEUE_SIZE] = x;
this.notifyAll();

}
…

}}

(2)

© 2003 Herlihy and Shavit 75

Reasoning About Linearizability
public class Queue {

int head = 0, tail = 0;
Object[QSIZE] items;

public synchronized void enq(Object x) {
while (this.tail–this.head == QUEUE_SIZE)
this.wait();

this.items[tail++ % QUEUE_SIZE] = x;
this.notifyAll();

}
…

}}

Linearization order is
order lock acquired

(2) © 2003 Herlihy and Shavit 76

Reasoning About Linearizability
public class Queue {

int head = 0, tail = 0;
Object[QSIZE] items;

public synchronized void enq(Object x) {
while (this.tail–this.head == QUEUE_SIZE)
this.wait();

this.items[tail++ % QUEUE_SIZE] = x;
this.notifyAll();

}
…

}}

Linearization order is
order lock acquired

Except not exactly because lock
can be released & reacquired …

(2)

© 2003 Herlihy and Shavit 77

Now for something completely
different

• Let’s try the same thing without
mutual exclusion

• For simplicity, only two threads
please

© 2003 Herlihy and Shavit 78

More Reasoning
public class LockFreeQueue {

int head = 0, tail = 0;
Item[QSIZE] items;

public void enq(Item x) {
while (tail-head == QSIZE); // busy-wait
items[tail % QSIZE] = x; tail++;

}
public Item deq() {

while (tail == head); // busy-wait
Item item = items[head % QSIZE]; head++;
return item;

}}

14

© 2003 Herlihy and Shavit 79

More Reasoning
public class LockFreeQueue {

int head = 0, tail = 0;
Item[QSIZE] items;

public void enq(Item x) {
while (tail-head == QSIZE); // busy-wait
items[tail % QSIZE] = x; tail++;

}
public Item deq() {

while (tail == head); // busy-wait
Item item = items[head % QSIZE]; head++;
return item;

}}

Linearization order is
order head and tail

fields modified

© 2003 Herlihy and Shavit 80

Strategy

• Identify one atomic step where
method “happens”
– Critical section
– Machine instruction

• Doesn’t always work
– In theory
– Usually works in practice

© 2003 Herlihy and Shavit 81

Alternative: Sequential
Consistency

• History equivalent to some sequential
history

• No need to preserve real-time order
• Often used to describe

multiprocessor memory architectures

© 2003 Herlihy and Shavit 82

Theorem

Sequential Consistency is not a
local property

© 2003 Herlihy and Shavit 83

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

History H

time

© 2003 Herlihy and Shavit 84

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

15

© 2003 Herlihy and Shavit 85

H|q Sequentially Consistent

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

© 2003 Herlihy and Shavit 86

Ordering imposed by p

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

© 2003 Herlihy and Shavit 87

Ordering imposed by q

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

© 2003 Herlihy and Shavit 88

Combining Orderings

time

q.enq(x)

q.enq(y) q.deq(x)

p.enq(x) p.deq(y)

p.enq(y)

time

© 2003 Herlihy and Shavit 89

Not Sequentially Consistent

time

q.enq(x)

q.enq(y) q.deq(x)

p.enq(x) p.deq(y)

p.enq(y)

time

© 2003 Herlihy and Shavit 90

Serializability

• A transaction is a finite sequence of
method calls

• It is serializable if
– transactions appear to execute serially

• Strictly serializable if
– order is compatible with real-time

• Used in databases

16

© 2003 Herlihy and Shavit 91

Serializability is Blocking

x.read(0)

y.read(0) x.write(1)

y.write(1)

deadlock

© 2003 Herlihy and Shavit 92

Serializability not Local

• Cannot mix, say
– Two-phase locking
– Timestamp synchronization

• May serialize transactions at
different objects in opposite orders

© 2003 Herlihy and Shavit 93

Comparison

• Serializability appropriate for
– Fault-tolerance
– Multi-step transactions

• Linearizability appropriate for
– Single objects
– Multiprocessor synchronization

© 2003 Herlihy and Shavit 94

Critical Sections

• Easy way to implement linearizability
– Take sequential object
– Make each method a critical section

• Like synchronized methods in Java™
• Problems

– Blocking
– No concurrency

© 2003 Herlihy and Shavit 95

Summary

• Linearizability
– Operation takes effect instantaneously

between invocation and response
• Uses sequential specification

– No O(n2) interactions

© 2003 Herlihy and Shavit 96

Summary

• Non-Blocking
– Never required to pause method call

• Locality
– Can verify linearizability per object
– Can compose correctly

• Granularity matters

17

© 2003 Herlihy and Shavit 97

Fact

• Any partial order
– Never required to pause method call

• Locality
– Can verify linearizability per object
– Can compose correctly

• Granularity matters

