Mutual Exclusion

Nir Shavit
Sub-ing For Nancy Lynch
Distributed Computing
Fall Term

Model Summary

- Multiple threads
- Sometimes called processes
- Multiple CPU's
- Sometimes called processors
- Single shared memory
- Objects live in memory
- Unpredictable asynchronous delays

Parallel Primality Testing

- Challenge
- Print primes from 1 to 10^{10}
- Given
- Ten-processor multiprocessor
- One thread per processor
- Goal
- Get ten-fold speedup (or close)

Load Balancing

- Split the work evenly
- Each thread tests range of 10^{9}

Issues

- Larger Num ranges have fewer primes
- Larger numbers harder to test
- Thread workloads
- Uneven
- Hard to predict
- Need dynamic load balancing

```
    Procedure for Thread i
int counter = new Counter(1);
void thread(int i) {
    int j = 0;
    while (j < 1010) {
        j = counter.inc();
        if (isPrime(j))
        print(j);
    }
}
```


Procedure for Thread i

What It Means

```
public class Counter {
    private long value;
    public long inc() {
    return value++;
}
temp = value;
value = value + 1
return temp;
Value...

FLP: Facts of Life for Processors


If we could only glue reads and writes...

\section*{Challenge}
```

public class Counter {
private long value;
public long inc() {
temp = value;
}
}
Make these steps atomic (indivisible)

```

\section*{An Aside: \(\mathrm{Java}^{\top \mathrm{M}}\)}
public class Counter \{
private long value;


\section*{Mutual Exclusion in Detail}
- Formal problem definitions
- Solutions for 2 threads
- Solutions for \(n\) threads
- Fair solutions

\section*{Warning}
- You will never use these protocols
- Get over it
- You had better understand them
- The same issues show up everywhere
- If you can't reason about these, you won't get far with "real" protocols ....
- Inherent costs

\section*{Why is Concurrent}

\section*{Programming so Hard?}
- Cooking an omelet is easy
- Cooking a five-course meal is hard
- Before we can talk about programs

\section*{Time}
- "Absolute, true and mathematical time, of itself and from its own nature, flows equably without relation to anything external." (I. Newton, 1689)
- "Time is Nature's way of making sure that everything doesn't happen all at once." (Anonymous, circa 1970)
- Describing time and concurrency

\section*{Events}
- An event \(a_{0}\) of thread \(A\) is
- Instantaneous
- No simultaneous events


\section*{Threads}
- A thread \(A\) is (formally) a sequence
\(a_{0}, a_{1}, \ldots\) of events
- "Trace" model
- Notation: \(a_{0} \rightarrow a_{1}\) indicates order


\section*{Example Thread Events}
- Assign to shared variable
- Assign to local variable
- Call method
- Return from called method
- Lots of other things ...

\section*{States}
- Thread State
- Program counter
- Local variables
- System state
- Object fields (shared variables)
- Union of thread states
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ States } \\
- Thread State \\
- Program counter \\
- Local variables \\
- System state \\
- Object fields (shared variables) \\
- Union of thread states \\
\\
\\
\end{tabular}

Threads are State Machines


\section*{Concurrency}
- Thread A

- Thread B



Intervals may be Disjoint


\section*{Precedence}

Interval \(A_{0}\) precedes interval \(B_{0}\)


\section*{Precedence Ordering}

- Remark: \(A_{0} \rightarrow B_{0}\) is just like saying
- \(2002 \rightarrow 2003\),
- Middle Ages \(\rightarrow\) Renaissance,
- Oh wait,
- what about this week vs this month?

\section*{Precedence Ordering}

- Never true that \(A \rightarrow A\)
- If \(A \rightarrow B\) then not true that \(B \rightarrow A\)
- If \(A \rightarrow B \& B \rightarrow C\) then \(A \rightarrow C\)
- Funny thing: \(A \rightarrow B \& B \rightarrow A\) might both be false!

\section*{Partial Orders}
(you may know this already)
- Irreflexive:
- Never true that \(A \rightarrow A\)
- Antisymmetric:
- If \(A \rightarrow B\) then not true that \(B \rightarrow A\)
- Transitive:
- If \(A \rightarrow B \& B \rightarrow C\) then \(A \rightarrow C\)

\section*{Repeated Events}
\[
\begin{gathered}
\text { while (mumble) \{ } \\
a_{0} ; a_{1} ;
\end{gathered}
\]

\section*{Synchronizaton}
```

public interface Lock {
public void lock();
public void unlock();
}

```

\section*{Total Orders}
(you may know this already)
- Also
- Irreflexive
- Antisymmetric
- Transitive
- Except that for every distinct \(a, b\),
- Either \(a \rightarrow b\) or \(b \rightarrow c\)
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{Repeated Events} \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Review: Atomic Increment}
```

public class Counter {
private long value;
public long inc() {
int temp = value;
value = value + 1;
return temp;
}
}

```

\section*{Synchronizaton}
public interface Lock \{
public void lock(); acquire lock
public void unlock();
\}

\section*{Synchronizaton}
public interface Lock \{


\section*{Synchronized Atomic Increment}
```

public class Counter {
private long value;
private Lock lock;
public long getAndlncrement() {
lock.lock();
int temp = value;
value = value + 1;
lock.unlock();
return temp;
}}

```

\section*{Synchronized Atomic \\ Increment}
```

```
public class Counter {
```

```
public class Counter {
    private long value;
    private long value;
    private Lock lock;
    private Lock lock;
    public long getAndlncrement() {
    public long getAndlncrement() {
    \mathrm{ lock.lock(); Acquire Lock}
    \mathrm{ lock.lock(); Acquire Lock}
        value = value + 1;
        value = value + 1;
    lock.unlock(): Release Lock
    lock.unlock(): Release Lock
        return temp;
        return temp;
    }}
```

 }}
    ```
unter \{
```


Synchronized Atomic Increment

```
public class Counter {
    private long value:
    private Lock lock;
    public long get Andlncrement() {
    lock.lock();
        int temp = value; Critical
        lock.unlock();;
        return temp:
    }}
```


Synchronized Atomic

 Increment```
public class Counter {
 private long value;
 private Lock lock;
 public long get Andlncrement() {
 lock.lock(); Acquire Lock
 Int temp = value;
 value = value + 1;
 lock.unlock();;
 return temp:
 }}
```


## Critical Sections

- Let $C S_{i}{ }^{k} \Leftrightarrow$ be thread ${ }^{\prime}$ 's $k$-th critical section


## Critical Sections

- Let $C S_{i}{ }^{k} \Leftrightarrow$ be thread i's $k$-th critical section
- And $C S_{j}{ }^{m} \Leftrightarrow$ be thread ${ }^{j}$ 's m-th critical section


## Critical Sections

- Let $C S_{i}{ }^{k} \Leftrightarrow$ be thread i's $k$-th critical section
- And $\mathrm{CS}_{\mathrm{j}}{ }^{m} \Leftrightarrow$ be j's $m$-th execution
- Then either



## Lockout-Free



- If thread A calls lock()
- It will eventually return
- Individual threads make progress
- Exercise:
- Map deadlock-Free vs lockout-free onto different models of Socialism


## Two-Thread Conventions

```
public class Thread {
 private int i;
 private int j'= 1-i;
 public void run() {
 "'
}
```


## Two-Thread Conventions



## Two-Thread Conventions

public class Thread \{
private int i;
private int $j^{\prime}=1-i$;
Method that does all the work

## LockOne

public class LockOne implements Lock \{
private bool fIag[2]; Set my flag
public void
flag[i] = true;
while (flag[j]) \{\}
\}

## LockOne

public class LockOne implements Lock \{
private bool flag[2]; Wait for other public void lock() flag to go false flaglil $=$ trife,
\}

## LockOne Satisfies Mutual Exclusion

- Suppose CS $_{A}$ concurrent with $C S_{B}$
- Before entering critical section
- write $_{A}(f l a g[A]=t r u e) \rightarrow \operatorname{read}_{A}(f l a g[B]==$ false) $\rightarrow$ CS $_{A}$
- write $_{B}(f l a g[B]=t r u e) \rightarrow \operatorname{read}_{B}(f l a g[A]==$ false) $\rightarrow \mathrm{CS}_{\mathrm{B}}$


## LockOne Satisfies Mutual Exclusion

- Implications:
$-\operatorname{read}_{A}(f l a g[B]==$ false $) \rightarrow$ write $_{B}(f l a g[B]=$ true $)$
$-\operatorname{read}_{B}(f l a g[A]==$ false $) \rightarrow$ write $_{A}($ flag $[B]=$ true $)$
- From the code
- write $_{A}(f l a g[A]=t r u e) \rightarrow \operatorname{read}_{A}(f l a g[B]==$ false $)$
- write $_{B}(f l a g[B]=$ true $) \rightarrow \operatorname{read}_{B}($ flag $[A]==$ false $)$

Implications:
$-\operatorname{read}_{A}\left(\right.$ flag $^{2}[B]==$ false $) \rightarrow$ write $_{B}($ flag $[B]=$ true $)$
$-\operatorname{read}_{B}(f l a g[A]==$ false $) \rightarrow$ write $_{A}(f l a g[B]=$ true $)$

## LockOne Satisfies Mutual Exclusion

- Implications:
$-\operatorname{read}_{A}(f l a g[B]==$ false $) \rightarrow$ write $_{B}(f l a g[B]=t r u e)$
$-\operatorname{read}_{B}(f l a g[A]==$ false $) \rightarrow$ write $_{A}(f \mid \operatorname{lag}[B]=t r u e)$
- From the code
- writ $A_{A}($ flag $[A]=$ true $) \rightarrow \operatorname{read}_{A}($ flag $[B]==$ false)
- write $_{B}($ flag $[B]=$ true $) \rightarrow \operatorname{read}_{B}($ flag $[A]==$ false $)$


## LockOne Satisfies Mutual Exclusion

- Implications:
- $\operatorname{read}_{A}(f l a g[B]==$ false $) \rightarrow$ write $_{B}($ flag $[B]=$ true $)$
$\rightarrow$ read $_{B}($ flag $[A]==$ false $) \rightarrow$ write $_{A}($ filag $[B]=$ true $)$
- From the code

- write $_{B}(f l a g[B]=$ true $) \rightarrow \operatorname{read}_{B}(f l a g[A]==$ false $)$


## LockOne Satisfies Mutual Exclusion

- Implications:
$-\operatorname{read}_{A}(f l a g[B]==$ false $) \rightarrow$ write $_{B}($ flag $[B]=$ true $)$
$\Rightarrow . . \rightarrow \operatorname{read}_{B}($ flag $[A]==$ false $) \rightarrow$ write $_{A}(\underline{f} \operatorname{lag}[B]=t r u e)$
- From the

- write $_{B}($ flag $[B]=$ true $) \rightarrow \operatorname{read}_{B}($ flag $[A]==$ false $)$ $\therefore$


## LockOne Satisfies Mutual Exclusion

- Implication
- $\operatorname{read}_{A}(f l a g[B]=$ false $) \rightarrow$ write $_{B}(f \mathrm{flg}[B]=$ true $)$
$\ldots \operatorname{rrad}_{B}(f l a g[A]==$ false $) \rightarrow$ write $_{A}(f \mid q g[B]=$ true $)$
- From the code.

- write $_{B}(f l a g[B]=t r u e) \rightarrow \operatorname{read}_{B}(f l a g[A]==$ false $)$
-...............................



## Deadlock Freedom

- LockOne Fails deadlock-freedom
- Concurrent execution can deadlock
$\begin{array}{ll}\text { flag[i] = true; } & \text { flag[j] = true; } \\ \text { while (flaglj])\{\} } & \text { while (flagli]) }\}\end{array}$
- Sequential executions OK


## LockTwo

```
public class LockTwo implements Lock {
 private int victim;
 public void lock()
 victim=i;
 }
 public void unlock() {}
}
```


## LockTwo


public void unlock() \{\}
\}

## LockTwo

public class Lock2 implements Lock \{
private int victim;
public voidlock() \{ Nothing to do
victim = i;
$\}^{w h i}$
public void unlock() \{\}
Satisfies mutual exclusion

- If thread i in CS
- Thenvictim ==
public void lockTwo() \{ victim $=\mathrm{i}$;
while (victim $==$ i) $\}$;
\}
- Never both 0 and 1
- Not deadlock free
- Sequential deadlocks
- Concurrent does not


## Peterson's Algorithm

```
public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim==i) {};
}
public void unlock() {
 flag[i] = false;
}
```


## Peterson's Algorithm

```
 Announce I'm
 interested
public void lec
 Tag[i] = true;
 victim = i;
 while (flag[j] && victim==i) {};
}
public void unlock() {
 flag[i] = false;
}
```


## Peterson's Algorithm



## Peterson's Algorithm



## Deadlock Free

```
public void lock() {
 while (flaglj] && victim== i) {};
```

- Thread blocked
- only at while loop
- only if other has the turn
- One or the other must have the turn


## The Filter Algorithm for $n$ Threads

There are $n-1$ "waiting rooms" called levels

- At each level
- At least one enters level
- At least one blocked if many try

- Only one thread makes it through


## Filter

class Filter implements Lock \{
int level[n]; |/ level | want to enter
int victim[n]; // stop me before I advance again
public void lock() \{
for (int $L=1$; $L<n$; $L++$ ) \{
level[i] $=\mathrm{L}$;
while (( ヨk ! = i) level[k] >= L) \&\&
victim[L] == i); || busy wait
\}\}
public void unlock() \{
level[i] $=0$
\}\}

## Filter

class Filter implements Lock \{
int level[n]; ll level I want to enter
int victim[n]; I/ stop me before l advance again
 vevel $[11=\mathrm{L} ;$
victim[ L$]=\mathrm{i} ;$

public void release(int i) \{ level[i] = 0; One level at a time
© 2003 Herlihy and Shavit

Filter
class Filter implements Lock \{
int level[n]; ll level I want to enter
int victim[n]; // stop me before l advance again public void acquire(int i) \{

ablic 0 da levellil =0: enter level L
\}\}

## Filter

```
class Filter implements Lock {
 int |evel[n]; || level | want to enter
 int victim[n]; || stop me before । advance again
 public void acquire(int i) {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 while ((actim[evel[k] >= L) &&
 }}
 public void release(int
 level[i] = 0:
 }}
 Give priority to anyone but me
```


## Filter

Wait as long as someone else is at same or higher level, and I'm designated victim
puolic vola acayperint 11
for (int $L=1 ; L<n ; L++$ ) \{

while ( $(\exists \mathrm{k}$ ! = i) level[k] >= L) \&\& victim[L] ==i); || busy wait
\}\}
public void release(int i) \{
level[i] = 0
\}\}

## Filter

class Filter implements Lock \{
int level[n]; l| level l want to enter
int victim[n]; /| stop me before l advance again
public void acquire(int i) \{
for (int $L=1 ; L<n ; L++$ ) $\{$
level[i] =
victim[L] $=1$;
while (( ヨk ! = i) level[k] >= L) \&\& victim[L] ==i); || busy wai

Thread enters level $L$ when it completes the loop

## Claim

- Start at level L=0
- At most $n$ - $L$ threads enter level $L$
- Mutual exclusion at level $L=n-1$



## Induction Hypothesis

- No more than $n-L+1$ at level L-1
- Induction step: by contradiction
- Assume all at level

L-1 enter level $L$ public void lock() !
 victim[L]
evel $\left[i_{1}=L_{i}\right.$
victim[L] $=1$;
$B$ is any other
while ( $(\exists \mathrm{k}!=\mathrm{i})$ level[k] $>=\mathrm{L})$
thread at level L
\}) (a victim[L] == i) \{\};

## Second Verse, Same as the First

(2) write $_{A}($ victim $[L]=A) \rightarrow \operatorname{read}_{A}($ level $[B])$

```
public void lock() { n; L++)
 Ievel[i] = L;
 ictim[L] = i.
 while ((\existsk != i) level[k] >= L)
 &&victim[L] == i) {}
 }}
```


## Third Observation

(3) write ${ }_{B}($ victim $[L]=B) \rightarrow$ write $_{A}($ victim $[L]=A)$

By Hypothesis, $A$ is the last thread to write vi ct i m[ L]

## Combining Observations

(1) write $_{B}$ (level[B]=L) $\rightarrow$
(3) write $_{B}($ victim $[L]=B) \rightarrow$ write $_{A}($ victim $[L]=A)$
(2)


So $A$ read level $[B]>=L$ and could not have entered level L-a contradiction

## $r$-Bounded Waiting

- Divide lock() method into 2 parts:
- Doorway interval:
- Written $D_{A}$
- always finishes in finite steps
- Waiting interval:
- Written W
- may take unbounded steps


## Fairness Again

- Filter Lock satisfies properties:
- No one starves (no lockout)
- But very weak fairness
- Not r-bounded for any r!
- That's pretty lame...


## $r$-Bounded Waiting

- For threads $A$ and $B$ :
- If $D_{A}{ }^{k} \rightarrow D_{B}{ }^{j}$
- A's $k$-th doorway precedes B's j-th doorway
- Then CS $_{A}{ }^{k} \rightarrow$ CS $_{B}{ }^{j+r}$
- A's k-th critical section precedes B's (j+r)-th critical section
- B cannot overtake A by more than $r$ times
- First-come-first-served means $r=0$.


## Bakery Algorithm

- Basic Idea
- Take a "number"
- Wait until lower numbers have been served
- Lexicographic order
- $(a, b)>(c, d)$
- If $a>c$, or $a=c$ and $b>d$


## Bakery Algorithm

class Bakery implements Lock \{
boolean flag[n]:
int label[n]:
public void lock() \{
flag[i] = true;
Iabel[i] = max(label[0], ..., label[n])+1;
while ( $\exists \mathrm{k}$ flag[k]
\&\& (label[i],i) > (label[k],k))
\}

## Bakery Algorithm

class Bakery implements Lock \{
boolean flag[n];
int label[n];
Doorway
public void lock()
flag[i] = true;
label[i] $=\max ($ label [0], ..., label[n]) +1 ;
while ( $\exists \mathrm{k}$ flag[k]
\&\& (label[i],i) >(label[k],k))
\}

## Bakery Algorithm

class Bakery implements Lock \{
boolean flag[n];
int label[n];
public void lock() \{ Waiting
flag[i] $=$ true;
label[i] $=\max (l a b e l[0], \ldots$, IabeN $n])+1$;
while ( $\exists \mathrm{k}$ flag[k]
\&\& (label[i],i) >(label[k],k))

## Bakery Algorithm

class Bakery implements Lock \{
boolean flag[n];
int label[n];
I'm interested
flag[i] = true;

while ( $\exists \mathrm{k}$ flag[k]
\&\& (label[i],i) >(label[k],k));
\}

## Bakery Algorithm



## Bakery Algorithm

class Bakery implements Lock \{
boolean flag[n];
int label[n].
Someone is interested
public void lock() \{
flag[i] = true;
|abel[i] = max 1 drel[0], ....| |abel[n]|+1;
while $\exists \mathrm{k}$ flag[k]

\}


## Bakery Algorithm

class Bakery implements Lock \{
boolean flag[n]; No longer
int label[n];


First-Come-First-Served

- If $D_{A} \rightarrow D_{B}$ then $A^{\prime} s$ label is earlier
- write $_{A}(\operatorname{label}[A]) \rightarrow$ $\operatorname{read}_{B}($ label $[A]) \rightarrow$ write $_{B}($ label $[B]) \rightarrow$ $\operatorname{read}_{B}(f \log [A])$
- So $B$ is locked out while flag[ $A$ ] is true
class Bakery implements Lock \{
boolean flag[n]
int Iabel[n]:
public void lock() \{
flag[i] = true:
label[i] = max(label[0],
..., label[n]) +1 ;
while ( $\exists \mathrm{k}$ flag[k]
(label[k],k));


## Mutual Exclusion

- Suppose A and B in CS together
- Suppose A has earlier label
- When B entered, it must have seen
- flag $[A]$ is false, or
- label[A]> label[B]

Class Bakery implements Lock \{ boolean flag[n]; int label[n];
public void lock() \{
flag[i] = true;
Iabel[i] = max(label[0],
..., label[n]) +1;
while ( $\exists \mathrm{k}$ flag[k]
$($ label $[k], k \&)) ;(l a b e l[i], i)>$

## Mutual Exclusion

- Labels are strictly increasing so
- B must have seen flag $[A]==$ false
- Labeling $_{B} \rightarrow \operatorname{read}_{B}($ flag $[A]) \rightarrow$ write $_{A}\left(\right.$ flag $\left.\left.^{2}\right]\right) \rightarrow$ Labeling $_{A}$
- Which contradicts the assumption that $A$ has an earlier label

```
class Locks implements Lock {
 boolean flag[n]:
 int label[n]:
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], ...,label[n]) +1;
 while (}\exists\textrm{k}\mathrm{ flag[k]
 && (label[i],i) > (label[k],k));
 }
(mplements Lock \{
oolean flagln];
int label[n];
public void lock() \{
label[i] = max(label[0], ..., label[n])+1;
while (\(\exists \mathrm{k}\) flag[k]
\&\& (label[i],i) >(label[k],k))
\}
```


## Bakery $\mathrm{Y} 2^{32} \mathrm{~K}$ Bug

## Does Overflow Actually Matter?

class Lock5 implements Lock \{
$\begin{array}{ll}\text { boolean flag[n]; } \\ \text { int label[n]; } & \text { FCFS breaks if }\end{array}$
int label[n]; label[i] overflows
public void lock(1)
label[i] max(label[0], ..., label[n])+1;
while ( $\exists \mathrm{k}$ flag[k]
\&\& (label[i],i) > (label[k],k)):
\}

- Yes
- y2K
- 18 January 2038 (Unix t i me_t rollover)
- 16-bit counters
- No
- 64-bit counters
- Maybe
- 32-bit counters


## Timestamps

- Label variable is really a timestamp
- Need ability to
- Read others' timestamps
- Compare them
- Generate a later timestamp
- Can we do this without overflow?


## Instead ..

- We construct a Sequential timestamping system
- Same basic idea
- But simpler
- Uses mutex to read \& write atomically
- No good for building locks
- But useful anyway


## Unbounded Counter Precedence

- Timestamping = move tokens on graph
- Atomically
- read others' tokens
- move mine
- Ignore tie-breaking for now



## Precedence Graphs



- Timestamps form directed graph
- Edge $x$ to $y$
- Means $x$ is later timestamp
- We say $x$ dominates $y$
$\qquad$

Unbounded Counter Precedence


## Graph

takes 2

Unbounded Counter Precedence Graph

takes 0 takes 1

Two-Thread Bounded Precedence Graph

© 2003 Herlihy and Shavit

## Two-Thread Bounded Precedence Graph



Two-Thread Bounded Precedence Graph T²


Three-Thread Bounded
Precedence Graph T3



## Deep Philosophical Question

- The Bakery Algorithm is
- Succinct,
- Elegant, and
- Fair.
- Q: So why isn't it practical?
- A: Well, you have to read $N$ distinct object fields


## Theorem

At least N multi-reader/singlewriter registers are needed to solve deadlock-free mutual exclusion.

## Upper Bound

- You need at least N MRSW registers
- Bakery algorithm
- Uses 2N MRSW registers
- So the bound is (pretty) tight
- But what if we use MRMW registers?
- Like the Filter algorithm?


## Let Prove:Theorem

Deadlock-free mutual exclusion for 3 threads requires at least 3 multireader multi-writer fields


Covering State


## Mutual Exclusion Fails



## Proof Strategy

- Proved: In a covering state, you need 3 distinct fields
- Claim: a covering state is reachable from any state where CS is empty


## Covering State for One Register <br> 

B has to write to some register to enter CS, so stop it just before


## Covering State



- Start with $B$ covering register $R_{B}$
- Run $A$ until it is about to write to uncovered $R_{A}$ - Are we done?

- A could have written to $R_{B}$
- CS no longer looks empty to some thread


## Covering State



- Run $B$ obliterating traces of $A$ in register $R_{B}$
- Run $B$ again until it is about to write to $R_{B}$
- Now we are done

- There is a covering state
- Where $k$ threads not in CS
- Cover $k$ distinct registers
- $k=N-1$ delivers proof


## Mutual Exclusion in Practice

- Shared FIFO queue
- Written in standard Java ${ }^{\text {TM }}$


## Lock-Based Queue

public class Queue \{
int head $=0$, tail $=0$;
Item[QSIZE] items;
public synchronized void eng(Item x) \{
while (this.tail-this.head $==$ QSIZE) this.wait();
this.items[this.tail ++ \% QSIZE] = $x$;
this.notifyAll();
\}
\}\}

## Lock-Based Queue

```
public class Queue {
 int head = 0, tail = 0;
 It em[QSIZE] it ems;
 public synchronized void enq(Item x) {
 while (this.tail-this.head == QSIZE)
 this.wait();
 this.items[this.tad ++ % QSIZE] = x;
 this.notifyAll();
 }
}}
Acquire lock on entry, release on exit
```


## Lock-Based Queue

```
public class Queue {
 int head = 0, tail = 0;
 Item[QSIZE] items;
 public synchronized void eng(ltem x) {
 while (this.tail-this.head == QSIZE)
 this.wait();
 this.items[this.tail+A% QSI Z2]= = %
 this.notifyAll();
 } If Queue is full, release lock,
 }}". sleep, try again
```


## Lock-Based Queue

```
public class Queue {
 int head = 0, tail = 0;
 It em[QSIZE] items;
 public synchronized void enq(Item x) {
 while (this.tail-this.head == QSIZE)
 this.wait().
 this.items[this.tail +t % QSIZE] = x;
 this.notifyAlll;
 }
}).. Append the item to the queue
```


## Lock-Based Queue

```
public class Queue {
 int head = 0, tail = 0;
 Item[QSIZE] items;
 public synchronized void enq(Item x) {
 while (this.tail-this.head == QSIZE)
 this.wait();
 this.items[this.tail ++ % QSIZE] = x;
 this.notifyAll();
}} .". Wake up sleeping dequeuers
```


## Observations

- Each method locks entire queue
- No concurrency between methods
- Is this really necessary?

No
And thereby hangs a tale ...

## Lock-Free Queue

```
public class LockFreeQueue {
 int head = 0, tail = 0;
 Object[QSIZE] items;
 public void eng(Item x) {
 while (tail-head == QSIZE) {};
 items[tail % QSIZE]= x; tail ++;
 }
 public ltem deq() {
 while (tail == head) {}
 Item item = items[head % QSIZE]; head+t;
 return item;
 }}

\section*{Lock-Free Queue}
```

public class LockFreeQueue {
int head = 0, tail = 0:
Item[QSIZE] it ems;
public void eng(ltem x) {
while (tail-head == QSIZE) {};
items[tail % QSIZE] \&; \sqrt{}{ail++;}
}
public Item deq() { Spin while
while (tail == head) {} queue is full
Item item = items[head % QSIZE];
head++; return item;
}}

```

\section*{Lock-Free Queue}
public class LockFreeQueue \{
int head \(=0\), tail \(=0\);
Item[QSIZE] items;
public void eng(Item x) \{ while (tail-head \(==\) QSIZE) \(\}\); tems[tail \% QSIZE] = \(\mathrm{Xi}_{\text {; }}\) tail +t;
public Item deq() \{ Put object in quue while (tail = head) \{\} Item item = items[head \% QSIZE]; head+t; return item;
\}\}
```

            Lock-Free Queue
    public class LockFreeQueue {
int head = 0, tail = 0;
Item[QSIZE] items;
public void enq(Item x) {
while (tail-head == QSIZE) {};
items[tail % QSIZE] = x; trail++;
}
public Item deq() { Increment tail
while (tail== head) {} counter
Item item = items[head % QSIZE];
head++; return item;
}}

```

\section*{Vive La Différence}
- The lock-based Queue
- Is coarse-grained synchronization
- Critical section is entire method
- The lock-free Queue
- Is fine-grained synchronization
- Critical section is single machine instruction

\section*{Critical Sections}
- Easy way to implement concurrent objects
- Take sequential object
- Make each method a critical section
- Like synchronized methods in Java \({ }^{T M}\)
- Problems
- Blocking
- No concurrency

\section*{Amdahl's Law}

\section*{Example}
- Ten processors
- \(60 \%\) concurrent, \(40 \%\) sequential

\section*{Example}
- Ten processors
- \(80 \%\) concurrent, \(20 \%\) sequential
- How close to 10 -fold speedup?
\[
\text { Speedup }=3.57=\frac{1}{1-0.8+\frac{0.8}{10}}
\]

\section*{Example}
- Ten processors
- \(90 \%\) concurrent, \(10 \%\) sequential

99\% concurrent, 01\% sequential
- How close to 10 -fold speedup?
\[
\text { Speedup=9.17= } \frac{1}{1-0.99+\frac{0.99}{10}}
\]

\section*{The Moral}
- Granularity matters
- Long critical sections vs atomic machine instructions
- Smaller the granularity, greater the speedup

\section*{Mutual Exclusion}

Nir Shavit
Multiprocessor Synchronization
Fall 2003```

