
© 2003 Herlihy and Shavit

1

Mutual Exclusion

Nir Shavit
Sub-ing For Nancy Lynch
Distributed Computing

Fall Term

© 2003 Herlihy and Shavit 2

Sequential Computation

memory

object object

thread

© 2003 Herlihy and Shavit 3

Concurrent Computation

memory

object object

th
re

ad
s

© 2003 Herlihy and Shavit 4

Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really long)

© 2003 Herlihy and Shavit 5

Model Summary

• Multiple threads
– Sometimes called processes

• Multiple CPU’s
– Sometimes called processors

• Single shared memory
• Objects live in memory
• Unpredictable asynchronous delays

© 2003 Herlihy and Shavit 6

Parallel Primality Testing

• Challenge
– Print primes from 1 to 1010

• Given
– Ten-processor multiprocessor
– One thread per processor

• Goal
– Get ten-fold speedup (or close)

© 2003 Herlihy and Shavit

2

© 2003 Herlihy and Shavit 7

Load Balancing

• Split the work evenly
• Each thread tests range of 109

…

…9102 •9101 1010

1P 1P 10P

© 2003 Herlihy and Shavit 8

Procedure for Thread i

void run(int i) {
for (j = i*109+1, j < (i+1)*109; j++) {

if (isPrime(j))
print(j);

}
}

© 2003 Herlihy and Shavit 9

Issues

• Larger Num ranges have fewer primes
• Larger numbers harder to test
• Thread workloads

– Uneven
– Hard to predict

• Need dynamic load balancing
rejecte

d

© 2003 Herlihy and Shavit 10

Shared Counter

each thread
takes a number

17

18

19

© 2003 Herlihy and Shavit 11

Procedure for Thread i
int counter = new Counter(1);

void thread(int i) {
int j = 0;
while (j < 1010) {

j = counter.inc();
if (isPrime(j))

print(j);
}

}

© 2003 Herlihy and Shavit 12

Procedure for Thread i
int counter = new Counter(1);

void thread(int i) {
int j = 0;
while (j < 1010) {

j = counter.inc();
if (isPrime(j))

print(j);
}

}

Shared counter object

Increment & return
each new value

Stop when every
value taken

© 2003 Herlihy and Shavit

3

© 2003 Herlihy and Shavit 13

Counter Implementation

public class Counter {
private long value;

public long inc() {
return value++;

}
} OK for uniprocessor,

not for multiprocessor

© 2003 Herlihy and Shavit 14

What It Means

public class Counter {
private long value;

public long inc() {
return value++;

}
} temp = value;

value = value + 1;
return temp;

© 2003 Herlihy and Shavit 15

Uh-Oh
Value…

read 1

read 1

write 2
read 2

write 3

write 2

2 3 2

time

© 2003 Herlihy and Shavit 16

FLP: Facts of Life for Processors

If we could only glue reads and writes…

read

write read

write

© 2003 Herlihy and Shavit 17

Challenge

public class Counter {
private long value;

public long inc() {
temp = value;
value = temp + 1;
return temp;

}
}

Make these steps
atomic (indivisible)

© 2003 Herlihy and Shavit 18

An Aside: Java™

public class Counter {
private long value;

public long inc() {
synchronized {

temp = value;
value = temp + 1;
}

return temp;
}

}

Critical section

Synchronized block

© 2003 Herlihy and Shavit

4

© 2003 Herlihy and Shavit 19

Mutual Exclusion in Detail

• Formal problem definitions
• Solutions for 2 threads
• Solutions for n threads
• Fair solutions
• Inherent costs

© 2003 Herlihy and Shavit 20

Warning

• You will never use these protocols
– Get over it

• You had better understand them
– The same issues show up everywhere
– If you can’t reason about these, you

won’t get far with “real” protocols ….

© 2003 Herlihy and Shavit 21

Why is Concurrent
Programming so Hard?

• Cooking an omelet is easy
• Cooking a five-course meal is hard
• Before we can talk about programs

– Need a language
– Describing time and concurrency

© 2003 Herlihy and Shavit 22

• “Absolute, true and mathematical time, of
itself and from its own nature, flows
equably without relation to anything
external.” (I. Newton, 1689)

• “Time is Nature’s way of making sure that
everything doesn’t happen all at once.”
(Anonymous, circa 1970)

Time

time

© 2003 Herlihy and Shavit 23

time

• An event a0 of thread A is
– Instantaneous
– No simultaneous events

a0

Events

© 2003 Herlihy and Shavit 24

time

• A thread A is (formally) a sequence
a0, a1, ... of events
– “Trace” model
– Notation: a0 a1 indicates order

a0

Threads

a1 a2 …

© 2003 Herlihy and Shavit

5

© 2003 Herlihy and Shavit 25

• Assign to shared variable
• Assign to local variable
• Call method
• Return from called method
• Lots of other things …

Example Thread Events

© 2003 Herlihy and Shavit 26

Threads are State Machines

Events are
transitions

a0

a1a2

a3

© 2003 Herlihy and Shavit 27

States

• Thread State
– Program counter
– Local variables

• System state
– Object fields (shared variables)
– Union of thread states

© 2003 Herlihy and Shavit 28

time

time

• Thread A

• Thread B

Concurrency

© 2003 Herlihy and Shavit 29

time

Interleavings

• Events of two or more threads
– Interleaved
– Not necessarily independent (why?)

© 2003 Herlihy and Shavit 30

time

• An interval A0 =(a0,a1) is
– Time between events a0 and a1

a0 a1

Intervals

A0

© 2003 Herlihy and Shavit

6

© 2003 Herlihy and Shavit 31

time

Intervals may Overlap

a0 a1A0

b0 b1B0

© 2003 Herlihy and Shavit 32

time

Intervals may be Disjoint

a0 a1A0

b0 b1B0

© 2003 Herlihy and Shavit 33

time

Precedence

a0 a1A0

b0 b1B0

Interval A0 precedes interval B0

© 2003 Herlihy and Shavit 34

Precedence

• Notation: A0 B0

• Formally,
– End event of A0 before start event of B0
– Also called “happens before”

© 2003 Herlihy and Shavit 35

Precedence Ordering

• Remark: A0 B0 is just like saying
– 2002 2003,
– Middle Ages Renaissance,

• Oh wait,
– what about this week vs this month?

© 2003 Herlihy and Shavit 36

Precedence Ordering

• Never true that A A
• If A B then not true that B A
• If A B & B c then A C
• Funny thing: A B & B A might both

be false!

© 2003 Herlihy and Shavit

7

© 2003 Herlihy and Shavit 37

Partial Orders
(you may know this already)

• Irreflexive:
– Never true that A A

• Antisymmetric:
– If A B then not true that B A

• Transitive:
– If A B & B C then A C

© 2003 Herlihy and Shavit 38

Total Orders
(you may know this already)

• Also
– Irreflexive
– Antisymmetric
– Transitive

• Except that for every distinct a, b,
– Either a b or b c

© 2003 Herlihy and Shavit 39

Repeated Events
while (mumble) {

a0; a1;

}

a0
k

k-th occurrence
of event a0

A0
k

k-th occurrence of
interval A0 =(a0,a1)

© 2003 Herlihy and Shavit 40

Review: Atomic Increment
public class Counter {

private long value;

public long inc() {
int temp = value;
value = value + 1;
return temp;

}
}

© 2003 Herlihy and Shavit 41

Review: Atomic Increment
public class Counter {

private long value;

public long inc() {
int temp = value;
value = value + 1;
return temp;

}
}

Allow only one
thread at a time

© 2003 Herlihy and Shavit 42

Synchronizaton

public interface Lock {

public void lock();

public void unlock();
}

© 2003 Herlihy and Shavit

8

© 2003 Herlihy and Shavit 43

Synchronizaton

public interface Lock {

public void lock();

public void unlock();
}

acquire lock

© 2003 Herlihy and Shavit 44

Synchronizaton

public interface Lock {

public void lock();

public void unlock();
}

release lock

acquire lock

© 2003 Herlihy and Shavit 45

Synchronized Atomic
Increment

public class Counter {
private long value;
private Lock lock;

public long getAndIncrement() {
lock.lock();
int temp = value;
value = value + 1;

lock.unlock();
return temp;

}}

© 2003 Herlihy and Shavit 46

Synchronized Atomic
Increment

public class Counter {
private long value;
private Lock lock;

public long getAndIncrement() {
lock.lock();
int temp = value;
value = value + 1;

lock.unlock();;
return temp;

}}

Acquire Lock

© 2003 Herlihy and Shavit 47

Synchronized Atomic
Increment

public class Counter {
private long value;
private Lock lock;

public long getAndIncrement() {
lock.lock();
int temp = value;
value = value + 1;

lock.unlock();;
return temp;

}}

Acquire Lock

Release Lock

© 2003 Herlihy and Shavit 48

Synchronized Atomic
Increment

public class Counter {
private long value;
private Lock lock;

public long getAndIncrement() {
lock.lock();
int temp = value;
value = value + 1;

lock.unlock();;
return temp;

}}

Critical
section

© 2003 Herlihy and Shavit

9

© 2003 Herlihy and Shavit 49

Critical Sections
• Let CSi

k be thread i’s k-th critical
section

© 2003 Herlihy and Shavit 50

Critical Sections
• Let CSi

k be thread i’s k-th critical
section

• And CSj
m be thread j’s m-th critical

section

© 2003 Herlihy and Shavit 51

Critical Sections
• Let CSi

k be thread i’s k-th critical
section

• And CSj
m be j’s m-th execution

• Then either
– or

CSi
k CSj

m
CSj

m CSi
k

© 2003 Herlihy and Shavit 52

Deadlock-Free

• If thread A calls lock()
– And never returns
– Then other threads must complete lock()

and unlock() calls infinitely often
• System as a whole makes progress

– Even if individuals starve

© 2003 Herlihy and Shavit 53

Lockout-Free

• If thread A calls lock()
– It will eventually return

• Individual threads make progress
• Exercise:

– Map deadlock-Free vs lockout-free onto different
models of Socialism

© 2003 Herlihy and Shavit 54

Two-Thread vs n-Thread
Solutions

• Two-thread solutions first
– Illustrate most basic ideas
– Fits on one slide

• Notation watch: for 2-threads
– Variable i is my thread
– Variable j is other thread

© 2003 Herlihy and Shavit

10

© 2003 Herlihy and Shavit 55

public class Thread {
private int i;
private int j = 1-i;

public void run() {
…
}

}

Two-Thread Conventions

© 2003 Herlihy and Shavit 56

public class Thread {
private int i;
private int j = 1-i;

public void run() {
…
}

}

Two-Thread Conventions

ID for this
thread

© 2003 Herlihy and Shavit 57

public class Thread {
private int i;
private int j = 1-i;

public void run() {
…
}

}

Two-Thread Conventions

ID for this
thread

ID for other
thread

© 2003 Herlihy and Shavit 58

public class Thread {
private int i;
private int j = 1-i;

public void run() {
…
}

}

Two-Thread Conventions

Henceforth: i is current
thread, j is other thread.

© 2003 Herlihy and Shavit 59

public class Thread {
private int i;
private int j = 1-i;

public void run() {
…
}

}

Two-Thread Conventions

Method that does all the work

© 2003 Herlihy and Shavit 60

LockOne
public class LockOne implements Lock {

private bool flag[2];
public void lock() {
flag[i] = true;
while (flag[j]) {}

}

© 2003 Herlihy and Shavit

11

© 2003 Herlihy and Shavit 61

LockOne
public class LockOne implements Lock {

private bool flag[2];
public void lock() {
flag[i] = true;
while (flag[j]) {}

}

Set my flag

© 2003 Herlihy and Shavit 62

LockOne
public class LockOne implements Lock {

private bool flag[2];
public void lock() {
flag[i] = true;
while (flag[j]) {}

}

Wait for other
flag to go false

© 2003 Herlihy and Shavit 63

• Suppose CSA concurrent with CSB
• Before entering critical section

– writeA(flag[A]=true) readA(flag[B]==false)
CSA

– writeB(flag[B]=true) readB(flag[A]==false)
CSB

• Implications:
– readA(flag[B]==false) writeB(flag[B]=true)
– readB(flag[A]==false) writeA(flag[B]=true)

LockOne Satisfies Mutual
Exclusion

© 2003 Herlihy and Shavit 64

• Implications:
– readA(flag[B]==false) writeB(flag[B]=true)
– readB(flag[A]==false) writeA(flag[B]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)
– writeB(flag[B]=true) readB(flag[A]==false)

LockOne Satisfies Mutual
Exclusion

© 2003 Herlihy and Shavit 65

• Implications:
– readA(flag[B]==false) writeB(flag[B]=true)
– readB(flag[A]==false) writeA(flag[B]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)
– writeB(flag[B]=true) readB(flag[A]==false)

LockOne Satisfies Mutual
Exclusion

© 2003 Herlihy and Shavit 66

• Implications:
– readA(flag[B]==false) writeB(flag[B]=true)
– readB(flag[A]==false) writeA(flag[B]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)
– writeB(flag[B]=true) readB(flag[A]==false)

LockOne Satisfies Mutual
Exclusion

© 2003 Herlihy and Shavit

12

© 2003 Herlihy and Shavit 67

• Implications:
– readA(flag[B]==false) writeB(flag[B]=true)
– readB(flag[A]==false) writeA(flag[B]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)
– writeB(flag[B]=true) readB(flag[A]==false)

LockOne Satisfies Mutual
Exclusion

© 2003 Herlihy and Shavit 68

• Implications:
– readA(flag[B]==false) writeB(flag[B]=true)
– readB(flag[A]==false) writeA(flag[B]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)
– writeB(flag[B]=true) readB(flag[A]==false)

LockOne Satisfies Mutual
Exclusion

© 2003 Herlihy and Shavit 69

• Implications:
– readA(flag[B]==false) writeB(flag[B]=true)
– readB(flag[A]==false) writeA(flag[B]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)
– writeB(flag[B]=true) readB(flag[A]==false)

LockOne Satisfies Mutual
Exclusion

© 2003 Herlihy and Shavit 70

Cycle!

© 2003 Herlihy and Shavit 71

Deadlock Freedom

• LockOne Fails deadlock-freedom
– Concurrent execution can deadlock

– Sequential executions OK

flag[i] = true; flag[j] = true;
while (flag[j]){} while (flag[i]){}

© 2003 Herlihy and Shavit 72

LockTwo
public class LockTwo implements Lock {
private int victim;
public void lock() {
victim = i;
while (victim == i) {};

}

public void unlock() {}
}

© 2003 Herlihy and Shavit

13

© 2003 Herlihy and Shavit 73

LockTwo
public class LockTwo implements Lock {
private int victim;
public void lock() {
victim = i;
while (victim == i) {};

}

public void unlock() {}
}

Let other go
first

© 2003 Herlihy and Shavit 74

LockTwo
public class LockTwo implements Lock {
private int victim;
public void lock() {
victim = i;
while (victim == i) {};

}

public void unlock() {}
}

Wait for
permission

© 2003 Herlihy and Shavit 75

LockTwo
public class Lock2 implements Lock {
private int victim;
public void lock() {
victim = i;
while (victim == i) {};

}

public void unlock() {}
}

Nothing to do

© 2003 Herlihy and Shavit 76

public void lockTwo() {
victim = i;
while (victim == i) {};

}

LockTwo Claims

• Satisfies mutual
exclusion
– If thread i in CS
– Then victim == j
– Never both 0 and 1

• Not deadlock free
– Sequential deadlocks
– Concurrent does not

© 2003 Herlihy and Shavit 77

Peterson’s Algorithm

public void lock() {
flag[i] = true;
victim = i;
while (flag[j] && victim==i) {};

}
public void unlock() {
flag[i] = false;

}

© 2003 Herlihy and Shavit 78

Peterson’s Algorithm

public void lock() {
flag[i] = true;
victim = i;
while (flag[j] && victim==i) {};

}
public void unlock() {
flag[i] = false;

}

Announce I’m
interested

© 2003 Herlihy and Shavit

14

© 2003 Herlihy and Shavit 79

Peterson’s Algorithm

public void lock() {
flag[i] = true;
victim = i;
while (flag[j] && victim==i) {};

}
public void unlock() {
flag[i] = false;

}

Announce I’m
interested

Defer to other

© 2003 Herlihy and Shavit 80

Peterson’s Algorithm

public void lock() {
flag[i] = true;
victim = i;
while (flag[j] && victim==i) {};

}
public void unlock() {
flag[i] = false;

}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victim

© 2003 Herlihy and Shavit 81

Peterson’s Algorithm

public void lock() {
flag[i] = true;
victim = i;
while (flag[j] && victim==i) {};
}

public void unlock() {
flag[i] = false;

}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victimNo longer
interested

© 2003 Herlihy and Shavit 82

public void lock() {
flag[i] = true;
victim = i;
while (flag[j] && victim == i) {};

Mutual Exclusion

• If thread 1 in
critical section,
– flag[1]=true,
– victim = 0

• If thread 0 in
critical section,
– flag[0]=true,
– victim = 1

Cannot both be true

© 2003 Herlihy and Shavit 83

Deadlock Free

• Thread blocked
– only at while loop
– only if other has the turn

• One or the other must have the turn

public void lock() {
…
while (flag[j] && victim == i) {};

}

© 2003 Herlihy and Shavit 84

Lockout Free

• Thread i blocked
only if j repeatedly
re-enters so that

flag[j] == true and
victim == i

• When j re-enters
– it sets victim to j.
– So i gets in

public void lock() {
flag[i] = true;
victim = i;
while (flag[j] && victim == i) {};

}

public void unlock() {
flag[i] = false;

}

© 2003 Herlihy and Shavit

15

© 2003 Herlihy and Shavit 85

The Filter Algorithm for n
Threads

There are n-1 “waiting rooms” called
levels

• At each level
– At least one enters level
– At least one blocked if

many try
• Only one thread makes it through

ncs

cs

© 2003 Herlihy and Shavit 86

Filter
class Filter implements Lock {

int level[n]; // level I want to enter
int victim[n]; // stop me before I advance again
public void lock() {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while ((∃ k != i) level[k] >= L) &&
victim[L] == i); // busy wait

}}
public void unlock() {
level[i] = 0;

}}

© 2003 Herlihy and Shavit 87

class Filter implements Lock {
int level[n]; // level I want to enter
int victim[n]; // stop me before I advance again
public void acquire(int i) {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while ((∃ k != i) level[k] >= L) &&
victim[L] == i); // busy wait

}}
public void release(int i) {
level[i] = 0;

}}

Filter

One level at a time

© 2003 Herlihy and Shavit 88

class Filter implements Lock {
int level[n]; // level I want to enter
int victim[n]; // stop me before I advance again
public void acquire(int i) {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while ((∃ k != i) level[k] >= L) &&
victim[L] == i); // busy wait

}}
public void release(int i) {
level[i] = 0;

}}

Filter

Announce
intention to
enter level L

© 2003 Herlihy and Shavit 89

class Filter implements Lock {
int level[n]; // level I want to enter
int victim[n]; // stop me before I advance again
public void acquire(int i) {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while ((∃ k != i) level[k] >= L) &&
victim[L] == i); // busy wait

}}
public void release(int i) {
level[i] = 0;

}}

Filter

Give priority to
anyone but me

© 2003 Herlihy and Shavit 90

class Filter implements Lock {
int level[n]; // level I want to enter
int victim[n]; // stop me before I advance again
public void acquire(int i) {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while ((∃ k != i) level[k] >= L) &&
victim[L] == i); // busy wait

}}
public void release(int i) {
level[i] = 0;

}}

Filter
Wait as long as someone else is at same or

higher level, and I’m designated victim

© 2003 Herlihy and Shavit

16

© 2003 Herlihy and Shavit 91

class Filter implements Lock {
int level[n]; // level I want to enter
int victim[n]; // stop me before I advance again
public void acquire(int i) {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while ((∃ k != i) level[k] >= L) &&
victim[L] == i); // busy wait

}}
public void release(int i) {
level[i] = 0;

}}

Filter

Thread enters level L when it completes
the loop

© 2003 Herlihy and Shavit 92

Claim
• Start at level L=0
• At most n-L threads enter level L
• Mutual exclusion at level L=n-1

ncs

cs L=n-1

L=1

L=n-2

L=0

© 2003 Herlihy and Shavit 93

public void lock() {
for (int L = 1; L < n; L++) {
level[i] = L;
victim[L] = i;

while ((∃ k != i) level[k] >= L)
&& victim[L] == i) {};

}}

Induction Hypothesis

• Assume all at level
L-1 enter level L

• A last to write
victim[L]

• B is any other
thread at level L

• No more than n-L+1 at level L-1
• Induction step: by contradiction

© 2003 Herlihy and Shavit 94

First Observation

(1) writeB(level[B]=L) writeB(victim[L]=B)

public void lock() {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while ((∃ k != i) level[k] >= L)
&& victim[L] == i) {};

}}

Use the code, Luke!

© 2003 Herlihy and Shavit 95

Second Verse,
Same as the First

(2) writeA(victim[L]=A) readA(level[B])

public void lock() {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while ((∃ k != i) level[k] >= L)
&& victim[L] == i) {};

}}

© 2003 Herlihy and Shavit 96

Third Observation

By Hypothesis, A is the last
thread to write victim[L]

(3) writeB(victim[L]=B) writeA(victim[L]=A)

© 2003 Herlihy and Shavit

17

© 2003 Herlihy and Shavit 97

Combining Observations

(1) writeB(level[B]=L) writeB(victim[L]=B)
(3) writeB(victim[L]=B) writeA(victim[L]=A)
(2) writeA(victim[L]=A) readA(level[B])

So A read level[B]>=L and could
not have entered level L – a
contradiction

© 2003 Herlihy and Shavit 98

r-Bounded Waiting

• Want stronger fairness guarantees
• Thread not “overtaken” too much
• Need to adjust definitions ….

© 2003 Herlihy and Shavit 99

r-Bounded Waiting

• Divide lock() method into 2 parts:
– Doorway interval:

• Written DA

• always finishes in finite steps
– Waiting interval:

• Written WA

• may take unbounded steps

© 2003 Herlihy and Shavit 100

• For threads A and B:
– If DA

k DB
j

• A’s k-th doorway precedes B’s j-th doorway
– Then CSA

k CSB
j+r

• A’s k-th critical section precedes B’s (j+r)-th
critical section

• B cannot overtake A by more than r times

• First-come-first-served means r = 0.

r-Bounded Waiting

© 2003 Herlihy and Shavit 101

Fairness Again

• Filter Lock satisfies properties:
– No one starves (no lockout)
– But very weak fairness

• Not r-bounded for any r!
• That’s pretty lame…

© 2003 Herlihy and Shavit 102

Bakery Algorithm

• Basic Idea
– Take a “number”
– Wait until lower numbers have been

served
• Lexicographic order

– (a,b) > (c,d)
• If a > c, or a = c and b > d

© 2003 Herlihy and Shavit

18

© 2003 Herlihy and Shavit 103

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n])+1;

while (∃k flag[k]
&& (label[i],i) > (label[k],k));

}

© 2003 Herlihy and Shavit 104

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n])+1;

while (∃k flag[k]
&& (label[i],i) > (label[k],k));

}

Doorway

© 2003 Herlihy and Shavit 105

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n])+1;

while (∃k flag[k]
&& (label[i],i) > (label[k],k));

}

Waiting

© 2003 Herlihy and Shavit 106

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n])+1;

while (∃k flag[k]
&& (label[i],i) > (label[k],k));

}

I’m interested

© 2003 Herlihy and Shavit 107

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n])+1;

while (∃k flag[k]
&& (label[i],i) > (label[k],k));

}

Take increasing
label

© 2003 Herlihy and Shavit 108

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n])+1;

while (∃k flag[k]
&& (label[i],i) > (label[k],k));

}

Someone is
interested

© 2003 Herlihy and Shavit

19

© 2003 Herlihy and Shavit 109

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n])+1;

while (∃k flag[k]
&& (label[i],i) > (label[k],k));

}

Someone is
interested

With higher label

© 2003 Herlihy and Shavit 110

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];
int label[n];

…

public void unlock() {
flag[i] = false;

}
}

© 2003 Herlihy and Shavit 111

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];
int label[n];

…

public void unlock() {
flag[i] = false;

}
}

No longer
interested

© 2003 Herlihy and Shavit 112

No Deadlock

• There is always one thread with
earliest label

• Ties are impossible (why?)

© 2003 Herlihy and Shavit 113

First-Come-First-Served

• If DA DBthen A’s
label is earlier
– writeA(label[A])

readB(label[A])
writeB(label[B])
readB(flag[A])

• So B is locked out
while flag[A] is
true

class Bakery implements Lock {
boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0],

…,label[n])+1;

while (∃k flag[k]
&& (label[i],i) >

(label[k],k));
}

© 2003 Herlihy and Shavit 114

Mutual Exclusion

• Suppose A and B in
CS together

• Suppose A has
earlier label

• When B entered, it
must have seen
– flag[A] is false, or
– label[A] > label[B]

class Bakery implements Lock {
boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0],

…,label[n])+1;

while (∃k flag[k]
&& (label[i],i) >

(label[k],k));
}

© 2003 Herlihy and Shavit

20

© 2003 Herlihy and Shavit 115

Mutual Exclusion

• Labels are strictly increasing so
• B must have seen flag[A] == false
• LabelingB readB(flag[A])

writeA(flag[A]) LabelingA

• Which contradicts the assumption
that A has an earlier label

© 2003 Herlihy and Shavit 116

Bakery Y232K Bug
class Lock5 implements Lock {

boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n])+1;

while (∃k flag[k]
&& (label[i],i) > (label[k],k));

}

© 2003 Herlihy and Shavit 117

Bakery Y232K Bug
class Lock5 implements Lock {

boolean flag[n];
int label[n];

public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n])+1;

while (∃k flag[k]
&& (label[i],i) > (label[k],k));

}

FCFS breaks if
label[i] overflows

© 2003 Herlihy and Shavit 118

Does Overflow Actually
Matter?

• Yes
– Y2K
– 18 January 2038 (Unix time_t rollover)
– 16-bit counters

• No
– 64-bit counters

• Maybe
– 32-bit counters

© 2003 Herlihy and Shavit 119

Timestamps

• Label variable is really a timestamp
• Need ability to

– Read others’ timestamps
– Compare them
– Generate a later timestamp

• Can we do this without overflow?

© 2003 Herlihy and Shavit 120

• One can construct a
– Wait-free (no mutual exclusion)
– Concurrent
– Timestamping system
– That never overflows

The Good News

This part is hard

Bad

© 2003 Herlihy and Shavit

21

© 2003 Herlihy and Shavit 121

Instead …

• We construct a Sequential
timestamping system
– Same basic idea
– But simpler

• Uses mutex to read & write
atomically

• No good for building locks
– But useful anyway

© 2003 Herlihy and Shavit 122

Precedence Graphs

0 1 2 3
• Timestamps form directed graph
• Edge x to y

– Means x is later timestamp
– We say x dominates y

© 2003 Herlihy and Shavit 123

Unbounded Counter Precedence
Graph

0 1 2 3
• Timestamping = move tokens on graph
• Atomically

– read others’ tokens
– move mine

• Ignore tie-breaking for now

© 2003 Herlihy and Shavit 124

Unbounded Counter Precedence
Graph

0 1 2 3

takes 0 takes 1

© 2003 Herlihy and Shavit 125

Unbounded Counter Precedence
Graph

0 1 3

takes 0 takes 1 takes 2

and so on …

2

© 2003 Herlihy and Shavit 126

Two-Thread Bounded
Precedence Graph

0

12

© 2003 Herlihy and Shavit

22

© 2003 Herlihy and Shavit 127

Two-Thread Bounded
Precedence Graph

0

12

© 2003 Herlihy and Shavit 128

Two-Thread Bounded
Precedence Graph T2

0

12

and so on …

© 2003 Herlihy and Shavit 129

Three-Thread Bounded
Precedence Graph?

12

03
Not clear what

to do if one
thread gets

stuck

© 2003 Herlihy and Shavit 130

Graph Composition

0

12

0

12

Replace each vertex with a
copy of the graph

T3=T2*T2

© 2003 Herlihy and Shavit 131

Three-Thread Bounded
Precedence Graph T3

2
0

12
1
0

12

0
0

12

20 21 02<<

© 2003 Herlihy and Shavit 132

Three-Thread Bounded
Precedence Graph T3

2
0

12
1

0

12

0
0

12

© 2003 Herlihy and Shavit

23

© 2003 Herlihy and Shavit 133

In General
Tk = T2 * Tk-1 K threads need

3k nodes

© 2003 Herlihy and Shavit 134

Deep Philosophical Question

• The Bakery Algorithm is
– Succinct,
– Elegant, and
– Fair.

• Q: So why isn’t it practical?
• A: Well, you have to read N distinct

object fields

© 2003 Herlihy and Shavit 135

Theorem

At least N multi-reader/single-
writer registers are needed to
solve deadlock-free mutual
exclusion.

© 2003 Herlihy and Shavit 136

Proof
Each thread must write to some register

Can’t tell whether A is in critical section

write

CS CS CS

write

A B C

© 2003 Herlihy and Shavit 137

Upper Bound

• You need at least N MRSW registers
• Bakery algorithm

– Uses 2N MRSW registers
• So the bound is (pretty) tight
• But what if we use MRMW registers?

– Like the Filter algorithm?

© 2003 Herlihy and Shavit 138

Bad News Theorem

At least N multi-reader/multi-
writer registers are needed to
solve deadlock-free mutual
exclusion.

© 2003 Herlihy and Shavit

24

© 2003 Herlihy and Shavit 139

Let Prove:Theorem

Deadlock-free mutual exclusion for 3
threads requires at least 3 multi-
reader multi-writer fields

© 2003 Herlihy and Shavit 140

Covering State

• All registers about to be written
• CS looks empty to all threads

Write(RB)

B

Write(RC)

C

Write(RA)

A

© 2003 Herlihy and Shavit 141

Proof: Assume

Write(RB)

B

Write(RC)

CA

Only N-1 registers

© 2003 Herlihy and Shavit 142

Solo Execution

Write(RB)

B

Write(RC)

CA

Writes to all registers,
enters CS CS

© 2003 Herlihy and Shavit 143

Covering State

Write(RB)

B

Write(RC)

CA

Other threads obliterate
evidence that A entered CS CS

© 2003 Herlihy and Shavit 144

Mutual Exclusion Fails

Write(RB)

B

Write(RC)

CA

CS CS
CS looks empty, so

another thread
gets in

© 2003 Herlihy and Shavit

25

© 2003 Herlihy and Shavit 145

Proof Strategy

• Proved: In a covering state, you need
3 distinct fields

• Claim: a covering state is reachable
from any state where CS is empty

© 2003 Herlihy and Shavit 146

Covering State for One
Register

Write(RB)

B

B has to write to some register to
enter CS, so stop it just before

© 2003 Herlihy and Shavit 147

• If we run B through CS 3 times, B must
return twice to some register, say RB

Covering State

Write(RB)

B

Write(RA)

A

© 2003 Herlihy and Shavit 148

Covering State

• Start with B covering register RB
• Run A until it is about to write to uncovered RA
• Are we done?

Write(RB)

B

Write(RA)

A

© 2003 Herlihy and Shavit 149

Covering State

• A could have written to RB
• CS no longer looks empty to some thread

Write(RB)

B

Write(RA)

A

© 2003 Herlihy and Shavit 150

Covering State

• Run B obliterating traces of A in register RB
• Run B again until it is about to write to RB
• Now we are done

Write(RB)

B

Write(RA)

A

© 2003 Herlihy and Shavit

26

© 2003 Herlihy and Shavit 151

Inductively We Can Show

• There is a covering state
– Where k threads not in CS
– Cover k distinct registers
– k=N-1 delivers proof

Write(RB)

B

Write(RC)

C

Write(RA)

A

© 2003 Herlihy and Shavit 152

Mutual Exclusion in Practice

• Shared FIFO queue
• Written in standard Java™

© 2003 Herlihy and Shavit 153

Mutual Exclusion in Practice

• Shared FIFO queue
• Written in standard Java™

© 2003 Herlihy and Shavit 154

Lock-Based Queue
public class Queue {
int head = 0, tail = 0;
Item[QSIZE] items;
public synchronized void enq(Item x) {
while (this.tail–this.head == QSIZE)
this.wait();

this.items[this.tail++ % QSIZE] = x;
this.notifyAll();
}
…

}}

© 2003 Herlihy and Shavit 155

Lock-Based Queue
public class Queue {
int head = 0, tail = 0;
Item[QSIZE] items;
public synchronized void enq(Item x) {
while (this.tail–this.head == QSIZE)
this.wait();

this.items[this.tail++ % QSIZE] = x;
this.notifyAll();
}
…

}}

Acquire lock on entry,
release on exit

© 2003 Herlihy and Shavit 156

Lock-Based Queue
public class Queue {
int head = 0, tail = 0;
Item[QSIZE] items;
public synchronized void enq(Item x) {
while (this.tail–this.head == QSIZE)
this.wait();

this.items[this.tail++ % QSIZE] = x;
this.notifyAll();
}
…

}}

If Queue is full, release lock,
sleep, try again

© 2003 Herlihy and Shavit

27

© 2003 Herlihy and Shavit 157

Lock-Based Queue
public class Queue {
int head = 0, tail = 0;
Item[QSIZE] items;
public synchronized void enq(Item x) {
while (this.tail–this.head == QSIZE)
this.wait();

this.items[this.tail++ % QSIZE] = x;
this.notifyAll();
}
…

}}
Append the item to the queue

© 2003 Herlihy and Shavit 158

Lock-Based Queue
public class Queue {
int head = 0, tail = 0;
Item[QSIZE] items;
public synchronized void enq(Item x) {
while (this.tail–this.head == QSIZE)
this.wait();

this.items[this.tail++ % QSIZE] = x;
this.notifyAll();
}
…

}}
Wake up sleeping dequeuers

© 2003 Herlihy and Shavit 159

Observations

• Each method locks entire queue
• No concurrency between methods
• Is this really necessary?

No
And thereby hangs a tale …

© 2003 Herlihy and Shavit 160

Lock-Free Queue

• Imagine two threads
– One enqueues only
– One dequeues only

• Do they need mutual exclusion?

© 2003 Herlihy and Shavit 161

Lock-Free Queue
public class LockFreeQueue {

int head = 0, tail = 0;
Object[QSIZE] items;

public void enq(Item x) {
while (tail-head == QSIZE) {};
items[tail % QSIZE] = x; tail++;

}
public Item deq() {

while (tail == head) {}
Item item = items[head % QSIZE]; head++;
return item;

}}

© 2003 Herlihy and Shavit 162

Lock-Free Queue
public class LockFreeQueue {
int head = 0, tail = 0;
Item[QSIZE] items;
public void enq(Item x) {
while (tail-head == QSIZE) {};
items[tail % QSIZE] = x; tail++;
}

public Item deq() {
while (tail == head) {}
Item item = items[head % QSIZE];
head++; return item;

}}

© 2003 Herlihy and Shavit

28

© 2003 Herlihy and Shavit 163

Lock-Free Queue
public class LockFreeQueue {
int head = 0, tail = 0;
Item[QSIZE] items;
public void enq(Item x) {
while (tail-head == QSIZE) {};
items[tail % QSIZE] = x; tail++;
}

public Item deq() {
while (tail == head) {}
Item item = items[head % QSIZE];
head++; return item;

}}

Spin while
queue is full

© 2003 Herlihy and Shavit 164

Lock-Free Queue
public class LockFreeQueue {
int head = 0, tail = 0;
Item[QSIZE] items;
public void enq(Item x) {
while (tail-head == QSIZE) {};
items[tail % QSIZE] = x; tail++;
}

public Item deq() {
while (tail == head) {}
Item item = items[head % QSIZE];
head++; return item;

}}

Put object in quue

© 2003 Herlihy and Shavit 165

Lock-Free Queue
public class LockFreeQueue {
int head = 0, tail = 0;
Item[QSIZE] items;
public void enq(Item x) {
while (tail-head == QSIZE) {};
items[tail % QSIZE] = x; tail++;
}

public Item deq() {
while (tail == head) {}
Item item = items[head % QSIZE];
head++; return item;

}}

Increment tail
counter

© 2003 Herlihy and Shavit 166

Vive La Différence

• The lock-based Queue
– Is coarse-grained synchronization
– Critical section is entire method

• The lock-free Queue
– Is fine-grained synchronization
– Critical section is single machine

instruction

© 2003 Herlihy and Shavit 167

Critical Sections

• Easy way to implement concurrent
objects
– Take sequential object
– Make each method a critical section

• Like synchronized methods in Java™
• Problems

– Blocking
– No concurrency

© 2003 Herlihy and Shavit 168

Amdahl’s Law

n
cc1

1

+−
Speedup=

Parallel
fraction

Number of
processors

Sequential
fraction

© 2003 Herlihy and Shavit

29

© 2003 Herlihy and Shavit 169

Example

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?

10
6.06.01

1

+−
Speedup=2.17=

© 2003 Herlihy and Shavit 170

Example

• Ten processors
• 80% concurrent, 20% sequential
• How close to 10-fold speedup?

10
8.08.01

1

+−
Speedup=3.57=

© 2003 Herlihy and Shavit 171

Example

• Ten processors
• 90% concurrent, 10% sequential
• How close to 10-fold speedup?

10
9.09.01

1

+−
Speedup=5.26=

© 2003 Herlihy and Shavit 172

Example

• Ten processors
• 99% concurrent, 01% sequential
• How close to 10-fold speedup?

10
99.099.01

1

+−
Speedup=9.17=

© 2003 Herlihy and Shavit 173

The Moral

• Granularity matters
– Long critical sections vs atomic machine

instructions
– Smaller the granularity, greater the

speedup

Mutual Exclusion

Nir Shavit
Multiprocessor Synchronization

Fall 2003

