Universality of Consensus

BROWN

Maurice Herlihy
CS176
Fall 2003

Turing Computability g

* A mathematical model of computation
+ Complexity irrelevant to real machines
* Computable = Computable on a T-Machine

ey
2J0 BROWN © 2003 Herlihy and Shavit 2
'GH

Shared-Memory
Computability?

Shared Memory #

+ A model of concurrent computation
+ Complexity irrelevant to real machines
+ Wait-free/Lock-free computable = 2?22?

ey
2J0 BROWN © 2003 Herlihy and Shavit
'GH

Asynchronous Computability

™

Universal
Object Shared Memory

* A model of concurrent computation
+ Complexity irrelevant to real machines
* Wait-free/Lock-free computable = 22?2

EH BROWN © 2003 Herlihy and Shavit 4
g

Theorem: Universality

+ Consensus is universal
* From n-thread consensus build a
- Wait-free
- Linearizable
- n-threaded implementation
- Of any sequentially specified object

e
EHS“\ BROWN © 2003 Herlihy and Shavit 5
K

Proof Outline

+ Constrruct a universal object
- From n-consensus objects
- And atomic registers

* Object implements any sequentially
specified object canonically

e
EHS“\ BROWN © 2003 Herlihy and Shavit
K

Like a Turing Machine

* This construction
- Not intended to be practical
- But enlightening
+ Correctness, not efficiency
- Why does it work? (Asks the scientist)

- How does it work? (Asks the engineer)
- Would you like fries with that? (Asks the liberal arts major)

e
EH% BROWN © 2003 Herlihy and Shavit
K

Universal Construction

* Object implemented as a
- List of method calls

* Method call
- Find end of list
- Atomically append your call

o
2 BROWN © 2003 Herlihy and Shavit 8
'GH

Naive Idea

* Use consensus object to store
pointer to cell with current state
* Each thread creates new cell
- computes outcome,

- and tries to switch pointer to its
outcome

* Unfortunately not...

- consensus objects can be used once only

o
2 BROWN © 2003 Herlihy and Shavit
'GH

Basic Idea: Linked-List
Representation

C|1®|O

-»[enq opleng ®pleng)

e
EH% BROWN © 2003 Herlihy and Shavit 10
K

Basic Idea

* Use one-time consensus object as
next pointer

* Challenges
- How to avoid starvation?
- What if a thread stops in the middle?

e
EH% BROWN © 2003 Herlihy and Shavit
K

Stylized Sequential Objects

* Object itself is immutable
- State never changes

* Method call produces
- New copy of object in new state
- Return value (or exception)

e
EH% BROWN © 2003 Herlihy and Shavit 12
K

Stylized Sequential Objects

* Invocation
- Method name
- Arguments
* Response
- Copy of modified object
- Return value
+ Assume methods are deterministic
- Only one response (can relax restriction)

.
pr‘ BROWN © 2003 Herlihy and Shavit 13
K

Invocation

public class Invoc {
public String method;
public object[] args;
}

.
pr‘ BROWN © 2003 Herlihy and Shavit 14
K

Invocation

public class Invoc
pubTic[String method

Method name

.
pr‘ BROWN © 2003 Herlihy and Shavit 15

Invocation

public class Invoc {
public String method;
public|object[] args;

Arguments

.
pr‘ BROWN © 2003 Herlihy and Shavit 1

Response

public class Response {
public Seqobject object;
public object value;
H

.
pr‘ BROWN © 2003 Herlihy and Shavit 7

Respo nse

New object state

.
pr‘ BROWN © 2003 Herlihy and Shavit 18

Response

esponse {

public class R
public Se }
public |Object

value;

}
Return value
)
gﬁ BROWN © 2003 Herlihy and Shavit 19
i

Sequential Objects

public class Seqobject {
public Response apply(Invoc invoc) {

ey
2J0 BROWN © 2003 Herlihy and Shavit 20
'GH

Sequential Objects

public class Segobject {
public[Response apply(Invoc invoc) |{

133

Applies method invocation,
returns new state and result

e
o] © 2003 Herlihy and Shavit

BJg BROWN
e

Basic Data Structures

public class cell {
int seq;

Invoc invoc;
Response response;
consensus next;

}

e
o] © 2003 Herlihy and Shavit

28 BROWN
e

22

Basic Data Structures

public class cell {
Sequence number: zero

TS LT while in pla
Response response; play
SeqObject next;

=
& © 2003 Herlihy and Shavit 23

BJg BROWN
e

Basic Data Structures

public class cell {
int seq;

Invoc invoc;
Response\rejponse;
consensus \geXt;

}

Method name & args

e
o] © 2003 Herlihy and Shavit

28 BROWN
e

24

Basic Data Structures

public class cell {
int seq;
Invoc jnvoc;
Response response;
consensus naxt;

}

New object state & return value

ey
2J0 BROWN © 2003 Herlihy and Shavit 25
'GH

Basic Data Structures

public class cell {
int seq;

Invoc invoc;
Response response;

Consensus next;

Consensus object that
indicates next cell in list

ey
2J0 BROWN © 2003 Herlihy and Shavit 26
'GH

Cell Constructor

public cell(Invoc invoc) {

this.seq = 0;
this.invoc = invoc;
this.response = null;
this.next = new consensus();
e
gﬁ BROWN © 2003 Herlihy and Shavit 27
o]

Cell Constructor

public cell(Invoc invoc) {
this.seq 0;

voc;
null;
new consensus();

}
Sequence number zero means
call still incomplete
gﬁf BROWN © 2003 Herlihy and Shavit 28

Cell Constructor

public cell(Invoc invoc) {
this. 0;

Record method name & args

e
EHS“\ BROWN © 2003 Herlihy and Shavit 2
K

Cell Constructor

public cell(Invoc invoc) {
this.seq 0;

this.invoc invoc;
i espon 1 A

Winning thread decides

e
EHS“\ BROWN © 2003 Herlihy and Shavit 30
K

Cells are Comparable

class Cell implements
java.util.Comparable {
int compareto(cCell other) {
if (this.seq > acCell.seq)
return 1;
else if (aCell.seq > this.seq)
return -1
else
return 0;
H

=
BROWN © 2003 Herlihy and Shavit 31
EH

Cells are Comparable

c1

in P er) {
if (this.seq % adell.seq)
return 1;
else if (acCell.Neq > this.seq)
Standard interface for class whose
objects are totally ordered

LUl v,

1}

lx ROWN © 2003 Herlihy and Shavit 32

Cells are Comparable

c1ass Ce11 imp1ements

return 1

else if (acCell)seq > this.seq)
return -1
Returns +1 if I'm greater, -1 if I'm
1 lesser, and O otherwise

&

EH BROWN © 2003 Herlihy and Shavit 33

Later is Greater

class Cell implements
java.util.Comparable {

int compareTo(Cell other) {

1f (this.seq > acCell.seq)

return 1;

return -1
I'm greater if my sequence number
is higher

&

EH BROWN © 2003 Herlihy and Shavit 34

Cells are Comparable

clas And vice- versa .

java.uui1.comparan
int compareTo(Cell
if (this.seq > acCefll.s
return 1;
else if (aCell.seq > this.seq)
return -1
else
return 0;

1}

&

EH BROWN © 2003 Herlihy and Shavit 35

Utility method

class Cell implements Comparable {

static Cell max(cCell[] array) {
cell max = array[0];

for (int i=0; i<array.length; i++)
if (max.compareTo(array[i]) < 0)

max = array[i];
return max;
}
}

&

EH BROWN © 2003 Herlihy and Shavit 36

Utility method

class Cell implements Comparable {

;tatic cell max(cell1[] array) {
cell max = array[0];

for (int i=0; i<array.length; i++)

I if (max.compareTo(array[i]) < 0)

max = array[il;
return max; /

}

H Find latest cell in array

)

"

B3 BROWN
o

e

© 2003 Herlihy and Shavit

Universal Ob ject

public class Universal {
private cell[] announce;

}
If this thread does not succeed,
another thread will help out
gﬁﬁ BROWN © 2003 Herlihy and Shavit

Universal Ob ject

public class Universal {
private cell[] announce;
private cell[] head;

)

"

B3 BROWN
o

e

© 2003 Herlihy and Shavit

38

Universal Ob ject

public class Universal {
private cell[] announce;
private cell[] head;

Find the end of the list

)

)

sy
545 BROWN © 2003 Herlihy and Shavit
&

40

Mniver‘sal Object
AN

[N\
¢

cell

Consensus

anchor Object

O T

Highest Seq
Num
head (0[2[2]3]1]1]a4tT2

Cell that i
announce [\ | l l | l

wants to
P
Hﬂ BROWN
5

append

© 2003 Herlihy and Shavit 41

Thread A

Allocates cell to represent call
Stores (pointer to) cell in announce
- If A doesn't execute it

- Another thread will

+ Looks for thread near end of list

- By scanning head array

- Choosing cell with largest sequence num

)

)

o
SJ2 BROWN
o

© 2003 Herlihy and Shavit 42

Helping

* "Announcing” my intention
- Guarantees progress
- Even if the scheduler hates me

- My method call will complete
* Makes protocol wait-free
* Otherwise starvation possible

e
2 srown © 2003 Herlihy and Shavit
5

A Cry For Help

public class Universal {
public object apply(Invoc invoc) {
int i = Thread.myIndex();
this.announce[1] = new Cell(invoc);
for (int j = 0; j < N; j++)
this.head[i] =

max (this.head[i], this.head[j]);

44

e
2 srown ® 2003 Herlihy and Shavit
5

A Cry For Help

public class Universal {

Thread.myIndex();
this.announce[1] = new Cell(invoc);
=07 N B

) =
this.head[1] =
max (this.head[1]
Announce my intention to

append cell to list

ri's .head[j]);

e
2 srown © 2003 Herlihy and Shavit
5

Where does it End?

+ Need to find end of list
- Can't start from anchor
- Starvation for slow threads

+ Each thread records last cell seen
If all collect from that array
- Some thread has last cell

46

e
2 srown ® 2003 Herlihy and Shavit
5

Assume the Position

public class Universal {
public object apply(Invoc invoc) {

int i = Thread.myIndex();

this.announce[1] = new Cell(invoc);

this._head[i] = max(this.head);

e
2 srown © 2003 Herlihy and Shavit
5

Assume the Position

public class Universal {
public object apply(Invoc invoc) {

int i = Thread.myIndex();

this.announce[1] = new Cell(invoc);

this._head[1] = max(this.head);

Look for end of list

e
2 srown ® 2003 Herlihy and Shavit 48
5

Are We Done Yet?

* Non-zero sequence number indicates
success

* Thread keeps appending cells
* Until its own cell is done

&

2 srown © 2003 Herlihy and Shavit 43
5

Keep on Keeping on

while (this.announce[i].seq == 0) {
cell before, help, prefer;
before = this.head[i];
help = announce[(before.seq+1) % n]l;
if (help.seq == 0)

prefer = help;
else

prefer = this.announce[i1];

Keep on Keeping on

while (this.announce[i].seq == 0) }{

Ce efore, [heTp, prefer;

.head[1];

ce[(before.seq+1l) % n];

—— 0)

1p;

Keep trying until my cell gets a
sequence number

&

2 srown © 2003 Herlihy and Shavit 51
5

}
/fguj BROWN © 2003 Herlihy and Shavit 50
Keep on Keeping on
while (this.announce[i].seq == 0) {

Cell before, hel prefer;

if (help.seq =
prefer = help
else

} pre Possible end of list

&

2 srown ® 2003 Herlihy and Shavit 5
5

Altruism

* Choose a thread to “help”
* If that thread needs help
- Try to append its cell
- Otherwise append your own
* Worst case
- Everyone tries to help same pitiful loser
- Someone succeeds

P

2 srown © 2003 Herlihy and Shavit 53
5

Help!

* Last cell in list has sequence number k
* All threads check ...

- Whether thread k+1 mod n wants help

- If so, try to append her cell first

&

2 srown ® 2003 Herlihy and Shavit 54
5

Help!

+ All threads try to help k+1 (mod n)
* First time after k+1 announces

- Some may see announcement

- Some may not
* “"Many are cold but few are frozen"

&

2 srown © 2003 Herlihy and Shavit 55
5

Help!

* First time after k+1 announces
- No guarantees

* After n more cells appended
- Everyone sees that k+1 wants help
- Everyone tries to append that cell
- Someone succeeds

&

2 srown ® 2003 Herlihy and Shavit 56
5

Lemma

- After A announces cell

* No more than n other calls
- Can start and finish
- Without appending A's cell

&

2 srown © 2003 Herlihy and Shavit 57
5

Max head
+1 = N+4

Helping

O3] -

So all see

and help
4
lo]2[%}3]1]1]
___vepne]
‘——5’ announce
/fguj BROWN © 2003 Herlihy and Shavit 58

Pull Together

while (this.announce[i].seq == 0) {
cell before, help, prefer;
before = this.head[1];
help = announce[(before.seq+1) % n]l;
if (help.seq == 0)

prefer = help;
else

prefer = this.announce[i1];

&

2 srown © 2003 Herlihy and Shavit 59
5

Pull Together

while (this.announce[i].seq == 0) {
cell before, help, prefer;

D
hel
5

prefer = this.annoypce[i]

Pick another thread to help

&

2 srown ® 2003 Herlihy and Shavit 60
5

10

Pull Together

while (4 Help if help required, but
cell be otherwise it's all about me
before = this.head[i];

if (help.
prefer

else

prefer = this.announceli];

seq == 0)
= help;

Quality is Job 1.1

while (this.announce[i].seq == 0) {

before.next.propose(prefer);

cell after = before.next.decide();

Seqobject oldobject =
before.response.object;

Response response =
oldobject.apply(after.invoc);

after.nextState.propose(response);

after.response =
(Response)after.nextState.decide();

)

P

EFN‘ BROWN © 2003 Herlihy and Shavit

)

g

62

}m
@ BROWN © 2003 Herlihy and Shavit 61
Quality is Job 1.1
while (this.announce[i].seq == 0) {

Eefore.next.propose(prefer);
cell after = before.next.decide();

Propose my favorite, then find out
who actually won

————— e e e S

Finishing the Job

+ Once we have linked in a cell

* Make sure remaining fields are filled
in before moving on

* New object state in response field

5
)

EFN‘ BROWN © 2003 Herlihy and Shavit
5

64

o ...}
L‘E BROWN © 2003 Herlihy and Shavit 63
Quality is Job 1.1
while (this.announce[i].seq == 0) {

before.next.propose(prefer);

cell after = before.next.decide();
Seqobject oldobject =
before.response.object;
after.response =
oldobject.apply(after.invoc);
after.seq = before.seq + 1;
this.head[1] = after;

}

)

4

EFN‘ BROWN © 2003 Herlihy and Shavit
5

Quality is Job 1.1

while (this.announce[i].seq == 0) {

before.next.propose(prefer);

cell after = before.next.decide();
Seqobject oldobject =
before.response.object;

oldobject.applyXaffer.invoc);
after.can — hafandNean 1+ 1

this.he Get object's prior state
}
é'inj BROWN © 2003 Herlihy and Shavit

66

11

Quality is Job 1.1

while (this.announce[i].seq == 0) {
Apply method and
fill in response

Lelnl arwer = wvel

ie(prefer);
Ve next.decide();
Seqobject oldobje

after.response =
oldobject.apply(a

fter.invoc);
this.head[1] = after;
}

)

P

EFN‘ BROWN © 2003 Herlihy and Shavit 67
5

)

Quality is Job 1.1

while (this.announce[i].seq == 0) {
Fill in sequence R
number ie(prefer);

e alnbi' = uc.u.'e.next.dec‘ide();

Seqobject oldobject =

2 BROWN © 2003 Herlihy and Shavit 68

Quality is Job 1.1

while (this.annou Note: Multiple threads
could fill in these fields

before.next.prop. 2. 2. 2.,

cell after = before.next cide();
Seqobject oldobject =
Ject;

after.response =
oldobject.apply(after.invoc);

after.seq = before.seq + 1;

this.head[1] = after;

}

)

4

EFN‘ BROWN © 2003 Herlihy and Shavit 69
5

Quality is Job 1.1

while (this.announce[1i Why is such

i;efore .next.propose(p. _dl'l.p,h,cahon oK?
cell after = before.next cide();
Seqobject oldobject

after.response =
oldobject.apply(after.invoc);

after.seq = before.seq + 1;

this.head[7] = after;

}

)

4

EFN‘ BROWN © 2003 Herlihy and Shavit 70
5

Quality is Job 1.1

while (this.announce[i].seq == 0) {

before.next.propose(prefer);
cell after = before.next.decide();
seqobject oldobiect =

before.respc Advance my end of list
after.response =
oldobject.apply
a = ore,
this.head[1] = after;

.invoc);
+ 1;

5
)

EFN‘ BROWN © 2003 Herlihy and Shavit 71
5

Asynchronous Computability
‘ i

Universal
Object

Wait-free/Lock-free computable

Threads with methods that solve n-

consensus
@ BROWN © 2003 Herlihy and Shavit)

12

GetAndSet is not Universal

public class RMWRegister {
private int value;
public boolean getAndsSet(int update)
{
int prior = this.value;
this.value = update;
return prior;
}
}

e
EH% BROWN (1) © 2003 Herlihy and Shavit 7
K

GetAndSet is not Universal

public class RMWRegister {
private int value;
pubTlic |boolean getAndSet(int update)
{
int prior = this.value;
this.value = update;
return prior;

} Consensus number 2
}
g'aﬁ BROWN (1) ® 2003 H¢r|i|1y and Shavit 74

GetAndSet is not Universal

public class RMWRegister {
private int value;
public |boolean getAndset(int update)
{
int prior = this.value;
this.value = update;
return prior;

} Not universal for > 3 threads
gﬁuj BROWN (1) © 2003 Herlihy and Shavit 75

CompareAndSet is Universal

public class RMWRegister {
private int value;
public boolean
compareAndset(int expected,
int update) {
int prior = this.value;
if (this.value == expected) {
this.value = update;
return true;
}
return false;

1}

o
aJa BROWN (1) © 2003 Herlihy and Shavit
'GH

76

CompareAndSet is Universal

public class RMWRegister {
private int value;

public boolean
compareAndset(int expected,

int update)

int prior = this.
if (this.value == Rxpecfed) {
this.value = updata;

return true;
}

;'}et“r" false consensus number

e
EH% BROWN (1) © 2003 Herlihy and Shavit
K

CompareAndSet is Universal

public class RMWRegister {
private int value;
public boolean

compareAndset(int expected,
int update)
int pYior =/this.value;

if (tRis.vylue == expected) {
update;

Universal for any number of threads

e
EH% BROWN (1) © 2003 Herlihy and Shavit
K

78

13

Practical Implications

* Any architecture that does not
provide a universal primitive has
inherent limitations

* You cannot avoid locking for
concurrent data structures ...

2

BJ3 BROWN © 2003 Herlihy and Shavit 79

&

Older Architectures

+ IBM 360

- testAndSet (getAndSet)
* NYU UltraComputer

- getAndAdd
* Neither universal

- Except for 2 threads

2

Newer Architectures

 Intel x86, Itanium, SPARC
- compareAndSet
* Alpha AXP, PowerPC
- Load-locked/store-conditional
+ All universal
- For any number of threads
+ Trend is clear ...

2

EH BROWN © 2003 Herlihy and Shavit 80
Till Now: Correctness
+ Models

- Accurate (we never lied to you)
- But idealized (so we forgot to mention a few things)

* Protocols

- Elegant
- Important
- But ndive
{gﬁ; BROWN © 2003 Herlihy and Shavit 82
-

EH BROWN © 2003 Herlihy and Shavit 81
Next Time: Performance
+ Models

- More compliccﬂ'ed (not the same as complex!)

- Still focus on pr‘inciples (not soon obsolete)
* Protocols

- Elegan‘r (in their fashion)

- Impor“l’an‘l’ (why else would we pay attention?)

- And realistic (your mileage may vary)

2

BJ3 BROWN © 2003 Herlihy and Shavit 83

&

Comments on Universality

Maurice: I removed non-determinism from the

Code but there are still redundent fields in each cell.
Please fix code. Also, from comments and

questions we need to think of a better way to define

The max function of the seq numbers in the nodes since

It confused several students who came up

with counter examples simply because they missed the fact
That the max is on the seq numbers...

2

28 BROWN

&

14

