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Turing Computability g

* A mathematical model of computation
+ Complexity irrelevant to real machines
* Computable = Computable on a T-Machine
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Shared-Memory
Computability?

Shared Memory #

+ A model of concurrent computation
+ Complexity irrelevant to real machines
+ Wait-free/Lock-free computable = 2?22?
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Asynchronous Computability

™

Universal
Object Shared Memory

* A model of concurrent computation
+ Complexity irrelevant to real machines
* Wait-free/Lock-free computable = 22?2

EH BROWN © 2003 Herlihy and Shavit 4
g

Theorem: Universality

+ Consensus is universal
* From n-thread consensus build a
- Wait-free
- Linearizable
- n-threaded implementation
- Of any sequentially specified object
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Proof Outline

+ Constrruct a universal object
- From n-consensus objects
- And atomic registers

* Object implements any sequentially
specified object canonically
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Like a Turing Machine

* This construction
- Not intended to be practical
- But enlightening
+ Correctness, not efficiency
- Why does it work? (Asks the scientist)

- How does it work? (Asks the engineer)
- Would you like fries with that? (Asks the liberal arts major)
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Universal Construction

* Object implemented as a
- List of method calls

* Method call
- Find end of list
- Atomically append your call

o
2 BROWN © 2003 Herlihy and Shavit 8
'GH

Naive Idea

* Use consensus object to store
pointer to cell with current state
* Each thread creates new cell
- computes outcome,

- and tries to switch pointer to its
outcome

* Unfortunately not...

- consensus objects can be used once only
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Basic Idea: Linked-List
Representation

C|1®|O
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Basic Idea

* Use one-time consensus object as
next pointer

* Challenges
- How to avoid starvation?
- What if a thread stops in the middle?
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Stylized Sequential Objects

* Object itself is immutable
- State never changes

* Method call produces
- New copy of object in new state
- Return value (or exception)
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Stylized Sequential Objects

* Invocation
- Method name
- Arguments
* Response
- Copy of modified object
- Return value
+ Assume methods are deterministic
- Only one response (can relax restriction)

.
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Invocation

public class Invoc {
public String method;
public object[] args;
}

.
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Invocation

public class Invoc
pubTic[String method

Method name

.
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Invocation

public class Invoc {
public String method;
public|object[] args;

Arguments

.
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Response

public class Response {
public Seqobject object;
public object value;
H

.
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Respo nse

New object state

.
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Response

esponse {

public class R
public Se }
public |Object

value;

}
Return value
)
gﬁ BROWN © 2003 Herlihy and Shavit 19
i

Sequential Objects

public class Seqobject {
public Response apply(Invoc invoc) {
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Sequential Objects

public class Segobject {
public[Response apply(Invoc invoc) |{

133

Applies method invocation,
returns new state and result
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Basic Data Structures

public class cell {
int seq;

Invoc invoc;
Response response;
consensus next;

}
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Basic Data Structures

public class cell {
Sequence number: zero

TS LT while in pla
Response response; play
SeqObject next;

=
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Basic Data Structures

public class cell {
int seq;

Invoc invoc;
Response\rejponse;
consensus \geXt;

}

Method name & args
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Basic Data Structures

public class cell {
int seq;
Invoc jnvoc;
Response response;
consensus naxt;

}

New object state & return value
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Basic Data Structures

public class cell {
int seq;

Invoc invoc;
Response response;

Consensus next;

Consensus object that
indicates next cell in list
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Cell Constructor

public cell(Invoc invoc) {

this.seq = 0;
this.invoc = invoc;
this.response = null;
this.next = new consensus();
e
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Cell Constructor

public cell(Invoc invoc) {
this.seq 0;

voc;
null;
new consensus();

}
Sequence number zero means
call still incomplete
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Cell Constructor

public cell(Invoc invoc) {
this. 0;

Record method name & args
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Cell Constructor

public cell(Invoc invoc) {
this.seq 0;

this.invoc invoc;
i espon 1 A

Winning thread decides
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Cells are Comparable

class Cell implements
java.util.Comparable {
int compareto(cCell other) {
if (this.seq > acCell.seq)
return 1;
else if (aCell.seq > this.seq)
return -1
else
return 0;
H
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Cells are Comparable

c1

in P er) {
if (this.seq % adell.seq)
return 1;
else if (acCell.Neq > this.seq)
Standard interface for class whose
objects are totally ordered

LUl v,

1}
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Cells are Comparable

c1ass Ce11 imp1ements

return 1

else if (acCell)seq > this.seq)
return -1
Returns +1 if I'm greater, -1 if I'm
1 lesser, and O otherwise

&
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Later is Greater

class Cell implements
java.util.Comparable {

int compareTo(Cell other) {

1f (this.seq > acCell.seq)

return 1;

return -1
I'm greater if my sequence number
is higher

&
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Cells are Comparable

clas And vice- versa .

java.uui1.comparan
int compareTo(Cell
if (this.seq > acCefll.s
return 1;
else if (aCell.seq > this.seq)
return -1
else
return 0;

1}

&
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Utility method

class Cell implements Comparable {

static Cell max(cCell[] array) {
cell max = array[0];

for (int i=0; i<array.length; i++)
if (max.compareTo(array[i]) < 0)

max = array[i];
return max;
}
}

&
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Utility method

class Cell implements Comparable {

;tatic cell max(cell1[] array) {
cell max = array[0];

for (int i=0; i<array.length; i++)

I if (max.compareTo(array[i]) < 0)

max = array[il;
return max; /

}

H Find latest cell in array

)
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Universal Ob ject

public class Universal {
private cell[] announce;

}
If this thread does not succeed,
another thread will help out
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Universal Ob ject

public class Universal {
private cell[] announce;
private cell[] head;

)
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Universal Ob ject

public class Universal {
private cell[] announce;
private cell[] head;

Find the end of the list

)

)
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Mniver‘sal Object
AN

[ N\
¢

cell

Consensus

anchor Object

O T

Highest Seq
Num
head (0[2[2]3]1]1]a4tT2

Cell that i
announce [ \ | l l | l

wants to
P
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Thread A

Allocates cell to represent call
Stores (pointer to) cell in announce
- If A doesn't execute it

- Another thread will

+ Looks for thread near end of list

- By scanning head array

- Choosing cell with largest sequence num

)

)
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Helping

* "Announcing” my intention
- Guarantees progress
- Even if the scheduler hates me

- My method call will complete
* Makes protocol wait-free
* Otherwise starvation possible
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A Cry For Help

public class Universal {
public object apply(Invoc invoc) {
int i = Thread.myIndex();
this.announce[1] = new Cell(invoc);
for (int j = 0; j < N; j++)
this.head[i] =

max (this.head[i], this.head[j]);

44
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A Cry For Help

public class Universal {

Thread.myIndex();
this.announce[1] = new Cell(invoc);
=07 N B

) =
this.head[1] =
max (this.head[1]
Announce my intention to

append cell to list

ri's .head[j]);

e
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Where does it End?

+ Need to find end of list
- Can't start from anchor
- Starvation for slow threads

+ Each thread records last cell seen
If all collect from that array
- Some thread has last cell

46
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Assume the Position

public class Universal {
public object apply(Invoc invoc) {

int i = Thread.myIndex();

this.announce[1] = new Cell(invoc);

this._head[i] = max(this.head);
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Assume the Position

public class Universal {
public object apply(Invoc invoc) {

int i = Thread.myIndex();

this.announce[1] = new Cell(invoc);

this._head[1] = max(this.head);

Look for end of list

e
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Are We Done Yet?

* Non-zero sequence number indicates
success

* Thread keeps appending cells
* Until its own cell is done

&
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Keep on Keeping on

while (this.announce[i].seq == 0) {
cell before, help, prefer;
before = this.head[i];
help = announce[(before.seq+1) % n]l;
if (help.seq == 0)

prefer = help;
else

prefer = this.announce[i1];

Keep on Keeping on

while (this.announce[i].seq == 0) }{

Ce efore, [heTp, prefer;

.head[1];

ce[ (before.seq+1l) % n];

—— 0)

1p;

Keep trying until my cell gets a
sequence number

&

2 srown © 2003 Herlihy and Shavit 51
5

}
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Keep on Keeping on
while (this.announce[i].seq == 0) {

Cell before, hel prefer;

if (help.seq =
prefer = help
else

} pre Possible end of list

&
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Altruism

* Choose a thread to “help”
* If that thread needs help
- Try to append its cell
- Otherwise append your own
* Worst case
- Everyone tries to help same pitiful loser
- Someone succeeds

P
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Help!

* Last cell in list has sequence number k
* All threads check ...

- Whether thread k+1 mod n wants help

- If so, try to append her cell first
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Help!

+ All threads try to help k+1 (mod n)
* First time after k+1 announces

- Some may see announcement

- Some may not
* “"Many are cold but few are frozen"

&
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Help!

* First time after k+1 announces
- No guarantees

* After n more cells appended
- Everyone sees that k+1 wants help
- Everyone tries to append that cell
- Someone succeeds
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Lemma

- After A announces cell

* No more than n other calls
- Can start and finish
- Without appending A's cell
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Max head
+1 = N+4

Helping

O3] -

So all see

and help
4
lo]2[%}3]1]1]
___vepne ]
‘——5’ announce
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Pull Together

while (this.announce[i].seq == 0) {
cell before, help, prefer;
before = this.head[1];
help = announce[(before.seq+1) % n]l;
if (help.seq == 0)

prefer = help;
else

prefer = this.announce[i1];

&
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Pull Together

while (this.announce[i].seq == 0) {
cell before, help, prefer;

D
hel
5

prefer = this.annoypce[i]

Pick another thread to help

&
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Pull Together

while (4 Help if help required, but
cell be otherwise it's all about me
before = this.head[i];

if (help.
prefer

else

prefer = this.announceli];

seq == 0)
= help;

Quality is Job 1.1

while (this.announce[i].seq == 0) {

before.next.propose(prefer);

cell after = before.next.decide();

Seqobject oldobject =
before.response.object;

Response response =
oldobject.apply(after.invoc);

after.nextState.propose(response);

after.response =
(Response)after.nextState.decide();

)

P
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Quality is Job 1.1
while (this.announce[i].seq == 0) {

Eefore.next.propose(prefer);
cell after = before.next.decide();

Propose my favorite, then find out
who actually won

————— e e e S

Finishing the Job

+ Once we have linked in a cell

* Make sure remaining fields are filled
in before moving on

* New object state in response field

5
)
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Quality is Job 1.1
while (this.announce[i].seq == 0) {

before.next.propose(prefer);

cell after = before.next.decide();
Seqobject oldobject =
before.response.object;
after.response =
oldobject.apply(after.invoc);
after.seq = before.seq + 1;
this.head[1] = after;

}

)
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Quality is Job 1.1

while (this.announce[i].seq == 0) {

before.next.propose(prefer);

cell after = before.next.decide();
Seqobject oldobject =
before.response.object;

oldobject.applyXaffer.invoc);
after.can — hafandNean 1+ 1

this.he Get object's prior state
}
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Quality is Job 1.1

while (this.announce[i].seq == 0) {
Apply method and
fill in response

Lelnl arwer = wvel

ie(prefer);
Ve next.decide();
Seqobject oldobje

after.response =
oldobject.apply(a

fter.invoc);
this.head[1] = after;
}

)
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Quality is Job 1.1

while (this.announce[i].seq == 0) {
Fill in sequence R
number ie(prefer);

e alnbi' = uc.u.'e.next.dec‘ide();

Seqobject oldobject =
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Quality is Job 1.1

while (this.annou Note: Multiple threads
could fill in these fields

before.next.prop. 2. 2. 2.,

cell after = before.next cide();
Seqobject oldobject =
Ject;

after.response =
oldobject.apply(after.invoc);

after.seq = before.seq + 1;

this.head[1] = after;

}

)

4

EFN‘ BROWN © 2003 Herlihy and Shavit 69
5

Quality is Job 1.1

while (this.announce[1i Why is such

i;efore .next.propose(p. _dl'l.p,h,cahon oK?
cell after = before.next cide();
Seqobject oldobject

after.response =
oldobject.apply(after.invoc);

after.seq = before.seq + 1;

this.head[7] = after;

}

)
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Quality is Job 1.1

while (this.announce[i].seq == 0) {

before.next.propose(prefer);
cell after = before.next.decide();
seqobject oldobiect =

before.respc Advance my end of list
after.response =
oldobject.apply
a = ore,
this.head[1] = after;

.invoc);
+ 1;

5
)
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Asynchronous Computability
‘ i

Universal
Object

Wait-free/Lock-free computable

Threads with methods that solve n-

consensus
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12



GetAndSet is not Universal

public class RMWRegister {
private int value;
public boolean getAndsSet(int update)
{
int prior = this.value;
this.value = update;
return prior;
}
}

e
EH% BROWN (1) © 2003 Herlihy and Shavit 7
K

GetAndSet is not Universal

public class RMWRegister {
private int value;
pubTlic |boolean getAndSet(int update)
{
int prior = this.value;
this.value = update;
return prior;

} Consensus number 2
}
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GetAndSet is not Universal

public class RMWRegister {
private int value;
public |boolean getAndset(int update)
{
int prior = this.value;
this.value = update;
return prior;

} Not universal for > 3 threads
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CompareAndSet is Universal

public class RMWRegister {
private int value;
public boolean
compareAndset(int expected,
int update) {
int prior = this.value;
if (this.value == expected) {
this.value = update;
return true;
}
return false;

1}
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CompareAndSet is Universal

public class RMWRegister {
private int value;

public boolean
compareAndset(int expected,

int update)

int prior = this.
if (this.value == Rxpecfed) {
this.value = updata;

return true;
}

;'}et“r" false  consensus number

e
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CompareAndSet is Universal

public class RMWRegister {
private int value;
public boolean

compareAndset(int expected,
int update)
int pYior =/this.value;

if (tRis.vylue == expected) {
update;

Universal for any number of threads

e
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Practical Implications

* Any architecture that does not
provide a universal primitive has
inherent limitations

* You cannot avoid locking for
concurrent data structures ...

2
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Older Architectures

+ IBM 360

- testAndSet (getAndSet)
* NYU UltraComputer

- getAndAdd
* Neither universal

- Except for 2 threads

2

Newer Architectures

 Intel x86, Itanium, SPARC
- compareAndSet
* Alpha AXP, PowerPC
- Load-locked/store-conditional
+ All universal
- For any number of threads
+ Trend is clear ...

2
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Till Now: Correctness
+ Models

- Accurate (we never lied to you)
- But idealized (so we forgot to mention a few things)

* Protocols

- Elegant
- Important
- But ndive
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Next Time: Performance
+ Models

- More compliccﬂ'ed (not the same as complex!)

- Still focus on pr‘inciples (not soon obsolete)
* Protocols

- Elegan‘r (in their fashion)

- Impor“l’an‘l’ (why else would we pay attention?)

- And realistic (your mileage may vary)

2
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Comments on Universality

Maurice: I removed non-determinism from the

Code but there are still redundent fields in each cell.
Please fix code. Also, from comments and

questions we need to think of a better way to define

The max function of the seq numbers in the nodes since

It confused several students who came up

with counter examples simply because they missed the fact
That the max is on the seq numbers...
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