The Relative Power of
Synchronization Primitives

S B
BROWN
Maurice Herlihy
CS176
Fall 2003

Wait-Free Implementation

* Every method call completes in finite
number of steps

* Implies no mutual exclusion

®

o
2Js BROWN(2) © 2003 Herlihy and Shavit 2
'GH

Wait-Free Constructions

* Wait-free atomic registers
- From safe registers
* Two-threaded FIFO queue
- From atomic registers
- And indirectly from safe registers

ey
2J0 BROWN © 2003 Herlihy and Shavit
'GH

Rationale

+ We wanted atomic registers to
implement mutual exclusion

+ So we couldn't use mutual exclusion to
implement atomic registers

* But wait, there's morel!

ey
2J0 BROWN © 2003 Herlihy and Shavit 4
'GH

Why is Mutual Exclusion
so wrong?

EF BROWN(2)
o

Asynchronous Interrupts

EH BROWN(2) © 2003 Herlihy and Shavit 6
-

Heterogeneous processors

EH BROWN (1) © 2003 Herlihy and Shavit 7
g

Fault-tolerance

" L
#ﬁ

A",

& S

EH BROWN(2) © 2003 Herlihy and Shavit
g

Basic Questions

* Wait-Free Synchronziation might be
a good idea in principle

* But how do you do it
- Systematically?

- Correctly?
- Efficiently?
@ BROWN © 2003 Herlihy and Shavit 9
5

FIFO Queue: Enqueue Method

EH BROWN © 2003 Herlihy and Shavit 10
g

FIFO Queue: Dequeue Method

q.deq() /@

EH BROWN © 2003 Herlihy and Shavit 11
g

Two-Thread Wait-Free Queue

public class LockFreeQueue {
int head = 0, tail = 0;
Item[QSIZE] items;
public void enq(Item x) {
while (tail-head == QSIZE) {};
items[tail % QSIZE] = x; tail++;
}
public Item deq() {
while (tail == head) {}
Item item = items[head % QSIZE];
head++; return item;

3

EH BROWN © 2003 Herlihy and Shavit 12
g

Two-Thread Wait-Free Queue

public class LockFreeQueue {
int head = 0, tail = 0;
Item[QSIZE] items;
public void enq(Item x) {
while (tail-head == QSIZE) {};
tems[tail % QSIZE] = x;] tail++;
} ~—— 31
pubTic Item deq() { Puf object in quue
while (tail == head) {}
Item item = items[head % QSIZE];
head++; return item;

3

e
EH% BROWN © 2003 Herlihy and Shavit 13
K

Two-Thread Wait-Free Queue

public class LockFreeQueue {

int head = 0, tail = 0;

Item[QSIZE] items;

public void enq(Item x) {
while (tail-head == QSIZE) {};
items[tail % QSIZE] = x;
} .
e T A O Increment tail
while (tail == head) {} counter
Item item = items[head % QSIZE];
head++; return item;

3

e
EH% BROWN © 2003 Herlihy and Shavit 14
K

What About Multiple
Dequeuers?

Only new
* Implement a FIFO queue aspect
- Wait-free
- Linearizable

- From atomi rite registers

- Multiple dequeuers

e
EH% BROWN (1) © 2003 Herlihy and Shavit 1
K

O | ®
gﬁuj BROWN ® 2003 Hcrlihy and Shavit 15
Consensus

* While you are ruminating on the grand
challenge...

+ We will give you another puzzle
- Consensus
- Pretty important ...

e
EH% BROWN © 2003 Herlihy and Shavit 7
K

Consensus: Each Thread has a

Private Input
o

o
°c

[@Ju BROWN
5

They Communicate

BROWN
g

They Agree on One Thread's

Input

BROWN
g

20

Formally: Consensus

Consistent: all threads decide the same
value

Valid: the common decision value is
some thread's input

Wait-free: each thread decides after a
finite number of steps

ey
2J0 BROWN © 2003 Herlihy and Shavit 21
'GH

No Wait-Free Consensus using

Registers
= ﬂ S

BROWN
g

22

Proof Strategy

+ Assume otherwise

* Reason about the properties of any
such protocol

+ Derive a contradiction
* Quod Erat Demonstrandum

e
EHS“\ BROWN © 2003 Herlihy and Shavit 2
K

Wait-Free Computation

A moves /O\B moves
O O

* Either A or B "moves”
* Moving means

- Register read

- Register write

e
EHS“\ BROWN © 2003 Herlihy and Shavit %
K

The Two-Move Tree

Final Initial
states state

Eﬁ BROWN(2) © 2003 Herlihy and Shavit
5

Decision Values

SN

L O,

-

o/é e,
T b

&
EH BROWN © 2003 Herlihy and Shavit
g

Bivalent: Both Possible

bivalent
=
@)
- -

O/

oy
EH% BROWN © 2003 Herlihy and Shavit
K

Univalent: Single Value Possible

univalent

-

*F

&
EH BROWN © 2003 Herlihy and Shavit 28
g

x-valent: x Only Possible
Decision

oy
EH% BROWN © 2003 Herlihy and Shavit
K

O 1-valent

Summary

* Wait-free computation is a tree
* Bivalent system states
- Outcome not fixed
* Univalent states
- Outcome is fixed
- May not be "known" yet
* 1-Valent and 0-Valent states

e
EH% BROWN © 2003 Herlihy and Shavit 30
K

Claim

- Some initial state is bivalent

* Outcome depends on
- Chance

- Whim of the scheduler
* Multiprocessor gods do play dice ...

ey
2J0 BROWN © 2003 Herlihy and Shavit 31
'GH

Univalent Initial State

AR
&F

All executions must decide O

&

Univalent Initial State

(0

>

F

Including this solo execution by A

&

&H BROWN(2) © 2003 Herlihy and Shavit 32(1)
Univalent Initial State
All executions must decide 1
@ BROWN(2) © 2003 Herlihy and Shavit 34(1)

&H BROWN (1) © 2003 Herlihy and Shavit 33(1)
Univalent Initial State
Including this solo execution by B
@ BROWN (1) © 2003 Herlihy and Shavit 35(1)

Univalent Initial State?

Imagine all executions deciding alike...

(cue in the John Lennon .)

&
EH BROWN(2) © 2003 Herlihy and Shavit 36
-

Univalent Initial State?

Including this solo execution by A
which we know decides 0

EH BROWN(2) © 2003 Herlihy and Shavit 37
g

Univalent Initial State?

AELNS
£ B

Including this solo execution by B
which we know decides 1

EH BROWN(2) © 2003 Herlihy and Shavit 38
g

Uh-Oh

€0 33
F = <2 B
+ Solo executionby A+ Solo execution by B

must decide O must decide 1

ey
2J0 BROWN © 2003 Herlihy and Shavit 39
'GH

Uh-Oh

How univalent
is that?

& (@)

+ Solo executionby A+ Solo execution by B
must decide O must decide 1

ey
2J0 BROWN © 2003 Herlihy and Shavit 40
'GH

Critical States

critical

-
=}

0-valent 1-valent
@ BROWN(3) © 2003 Herlihy and Shavit 41(3)

From a Critical State

/©\
O -
0-valent _

If A goes first, If B goes first,
protocol decides 0 protocol decides 1

e
EHS“\ BROWN © 2003 Herlihy and Shavit 2
K

Reaching Critical State

initially bivalent

@A‘ M ynivalent
univalent ,@\

@,. univalent
» A
univalent @

R\
_ O-valent | EENEISHNN
g row © 2003 Herlihy and Shavit 43

Critical States

+ Starting from a bivalent initial state
* The protocol can reach a critical
state

- Otherwise we could stay bivalent
forever

- And the protocol is not wait-free

e
EH% BROWN © 2003 Herlihy and Shavit m
K

Model Dependency

* So far, memory-independent!
* True for
- Registers
- Message-passing
- Carrier pigeons
- Any kind of asynchronous computation

e
EH% BROWN © 2003 Herlihy and Shavit 45
K

What are the Threads Doing?

* Reads and/or writes
* To same/different registers

e
EH% BROWN © 2003 Herlihy and Shavit 4
K

Possible Interactions
A reads x

_—" _ Ateadsy

X. readﬁ y.readQ ||x.writeQ |y.writeQ)
x.read () ? ? ? ?
y.read() ? ? ? ?
x.write() ? ? ? ?
y.writeQ) ? ? ? ?

gﬁgﬁukow.\l © 2003 Herlihy and Shavit 47

Reading Registers

A runs solo,
eventually @ B reads x
decides 0

States look
f!'\e same to A

f)
EH% BROWN © 2003 Herlihy and Shavit 4
K

Possible Interactions

x.read() |y.readQ |x.writeQ |y.writeQ)
x.readQ no no no no
y.readQ no no no no
x.write() no no ? ?
y.writeQ) no no ? ?
@ BROWN © 2003 Herlihy and Shavit 49
5

Writing Distinct Registers
<>

A writes y
B writes x‘l

The song remain

sy
545 BROWN © 2003 Herlihy and Shavit 50
&

B writes x

)

)

Possible Interactions

x.read() |y.readQ |x.writeQ |y.writeQ)
x.readQ no no no no
y.readQ no no no no
x.uriteQ no no ? no
y.writeQ no no no ?
@ BROWN © 2003 Herlihy and Shavit 51
E

Writing Same Registers

A writes y® B writes x
A runs solo, O b

eventually
decides 0 [

States look _
the same to A

EH BROWN © 2003 Herlihy and Shavit 52
g

That's All, Folks!

x.read() |y.readQ |x.writeQ |y.writeQ)
x.readQ no no no no
y.readQ no no no no
x.writeQ no no no no
y.writeQ no no n e no
:.:;E BROWN ® 2003 Herlihy and Shavit 53
EH Y

Atomic Registers Can't Do
Consensus

+ If protocol exists
- It has a bivalent initial state
- Leading to a critical state
* What's up with the critical state?
- Case analysis for each pair of methods

)

B3 BROWN © 2003 Herlihy and Shavit 54
g

e

What Does Consensus have to
do with Concurrent Objects?

.o

e
EH% BROWN © 2003 Herlihy and Shavit
K

Java Jargon Watch

* Define Consensus as an abstract class
* We implement some methods
* Leave you to do the rest ...

e
EH% BROWN © 2003 Herlihy and Shavit 56
K

Consensus Ob ject

abstract class cConsensus {
private object[] proposed =
new object[N];

public void propose(object value) {
proposed[Thread.myIndex()] = value;

abstract public Object decide();
3

o
2Js BROWN(4) © 2003 Herlihy and Shavit
'GH

57(4)

Consensus Ob ject

abstract class cConsensus {
private object[] propose
new Object[N];

public void proposeXgbjetxt value) {
proposed[Thread.myIn

abstract public Obj Each thread's
3] proposed value

EF BROWN(4) © 2003 Herlihy and Shavit 58(4)
o

Consensus Ob ject

Propose a value sensus {
Privacte v jecuy) proposed =

public void propose(object value
proposed[Thread.myIndex()] = value;

abstract public Object decide();
3

e
EH% BROWN(#) © 2003 Herlihy and Shavit
K

50(4)

Consensus Ob ject

Decide a value: abstract method
means subclass does the heavy lifting
(real work)

public void ppoppse(object value) {
read.myIndex()] = value;

}
abstract public object decide();
i

EF BROWN(4) © 2003 Herlihy and Shavit 60(4)
o

10

Can FIFO Queue Implement
Consensus?

&

BROWN
g

FIFO Consensus

announce array

FIFO Queue
@ @ with red and
black balls
Coveted red ball Dreaded black ball
Eﬁﬁi BROWN © 2003 Herlihy and Shavit 62

Protocol: Write Value to Array

&

EH BROWN © 2003 Herlihy and Shavit 83
g

Protocol: Take Next Item from
Queue

ey
2J0 BROWN © 2003 Herlihy and Shavit 64
'GH

Protocol: Take Next Item from
Queue

I got the dreaded

black ball, so I will

decide the other's

value from the
array

I got the
coveted red ball,
so I will decide
my value

e
EHS“\ BROWN © 2003 Herlihy and Shavit 85
K

Consensus Using FIFO Queue

public class QueueConsensus
extends Consensus {
private Queue queue;
public QueuecConsensus() {
queue = new Queue();
queue .enq(Ball.RED);
queue .enq(Ball.BLACK);

v
e

e
EHS“\ BROWN © 2003 Herlihy and Shavit 56
K

Initialize Queue

public class QueueConsensus
extends Consensus {
private Queue queue;
public _QueuecConsensus() {
this.queue = new Queue();
this.queue.enq(Ball.RED);
this.queue.enq(Ball.BLAC

}
d ®|®
& ® 2003 Herlih d Shavi
m BROWN erlil y ant avit 87

Who Won?

public class QueueConsensus
extends Consensus {
private Queue queue;

public decide() {
Ball ball = this.queue.deq();
if (ball == Ball.RED)
return proposed[i];
else
return proposed[j];
}
}

)

)

EFN‘ BROWN © 2003 Herlihy and Shavit

=

68

Who Won?

public class QueueConsensus
extends Consensus {
private Queue queue;

else

return proposed[jl; Roceto dequeue

) H first queue item
@ BROWN © 2003 Herlihy and Shavit 69
E

Who Won?

public class QueueConsensus
extends Consensus {
private Queue queue;

;ub1ic decide() {

e .deqQ);

if (ball == Ball.RED)
return proposed[i];

} I win if I was first

EFN‘ BROWN © 2003 Herlihy and Shavit
5

70

Who Won?

public class QueueConsensus
extends Consensus {
private Queue queue;
Other thread wins if
public decide() { I was second
Ball ball = this.
if (ball == Ba
return pro
else
return proposed[j];

EFN‘ BROWN © 2003 Herlihy and Shavit 71
5

Why does this Work?

* If one thread gets the red ball
Then the other gets the black ball
* Winner decides her own value

Loser can find winner's value in array
- Because threads write array

- Before dequeueing from queue

)

4

EFN‘ BROWN © 2003 Herlihy and Shavit
5

72

12

Theorem

* We can solve 2-thread consensus
using only
- A two-dequeuer queue, and
- Some atomic registers

2

BJ3 BROWN © 2003 Herlihy and Shavit 73

&

Implications

+ Given
- A consensus protocol from queue and registers
+ Assume there exists
- A queue implementation from atomic registers
+ Substitution yields:

- A wait-free consensus protocol
registers

!{3'\:
S5 BROWN (D © 2003 Herlihy and Shavit 74(1)
&

Corollary

- It is impossible to implement
- a two-dequeuer wait-free FIFO queue
- from read/write memory.

2

BJ3 BROWN © 2003 Herlihy and Shavit 75

&

Consensus Numbers

* An object X has consensus number n
- If it can be used to solve n-thread
consensus
* Taking any number of instances of X
* together with atomic read/write registers
+ and implement n-thread consensus
- But not (n+1)-thread consensus

Consensus Numbers

* Theorem
- Atomic read/write registers have
consensus number 1
* Theorem

- Multi-dequeuer FIFO queues have
consensus number at least 2

2

BJ3 BROWN © 2003 Herlihy and Shavit 77

&

gﬁﬁ BROWN © 2003 Herlihy and Shavit 76
Consensus Numbers Measure
Synchronization Power

« Theorem

- If you can implement X from Y

- And X has consensus number ¢

- Then Y has consensus number at least ¢
gﬁﬁ BROWN © 2003 Herlihy and Shavit 78

13

Synchronization Speed Limit

+ Conversely
- If X has consensus nu

wait-free implementation of X by
* This theorem will be very useful

- Unforeseen practical implications!

e
EH% BROWN © 2003 Herlihy and Shavit
K

Multiple Assignment Theorem

+ Atomic registers cannot implement
multiple assignment

* Weird or what?
- Single write/multiple read OK
- Multi write/multiple read impossible

EF BROWN (1) © 2003 Herlihy and Shavit 81(1)
o

Earlier Grand Challenge

* Snapshot means
- Write any array element
- Read multiple array elements atomically
* What about
- Write multiple array elements atomically
- Scan any array elements

* Call this problem multiple assignment

e
EH% BROWN © 2003 Herlihy and Shavit 80
K

Proof Strategy

* If we can write to 2/3 array elements
- We can solve 2-consensus

- Impossible with atomic registers
* Therefore

- Cannot implement multiple assignment
with atomic registers

e
EH% BROWN © 2003 Herlihy and Shavit 820
K

Proof Strategy

* Take a 3-element array
- A writes atomically to slots 0 and 1
- B writes atomically to slots 1 and 2
- Any thread can scan any set of locations

e
EH% BROWN © 2003 Herlihy and Shavit 83()
K

Double Assignment Interface

interface Assign2 {

public void assign(int i,, int v,
int i,, int v,);

public int read(int 1);

}

EF BROWN(4) © 2003 Herlihy and Shavit 84(4)
o

14

Double Assignment Interface

interface Assign2 {

ic void assign(int 1,, 1nt v,
int i,, int v,);

int regd(aint 1J),;

Atomically assign
value[i;]= v,
value[i,]= v,

!{3'\:
S5 BROWN(4) © 2003 Herlihy and Shavit 85(4)
&

Double Assignment Interface

interface Assign2 {
public void assign(int i,, int v,

int i,, int v,);
public int read(int 1);

Return i-th value

!{3'\:
S5 BROWN(4) © 2003 Herlihy and Shavit 36(4)
&

Initially

|

Writes to
0and 1

BJg BROWN
e

Thread A wins if

Thread B
didn't move

Thread A wins if

Thread B
moved later

BJg BROWN
e

89 (1)

gﬁﬁ BROWN / and Shavit 88 ()
Thread A loses if
.4/"”
N
Thread B
moved earlier
gﬁﬁ BROWN 90 ()

15

Multi-Consensus Code

class MultiConsensus extends Consensus{
Assign2 a = new Assign2(3, EMPTY);
public object decide() {
a.assign(i, i, i+l, 1i);
int other = a.read((j+1) % 3);
if (other==emMPTY||other==a.read(j))
return proposed[i];

else
return proposed[j];
)
HFG BROWN(4) © 2003 Herlihy and Shavit 91(4)
S B

Multi-Consensus Code

Assign2 a = new Assign2(3,
public Object decid
a.assign(i, i, i+l,

if (other==emPTY| |other==a\read(j))
return proposed[i];

else Three slots
return proposed[j]; initialized to
1} EMPTY

© 2003 Herlihy and Shavit 92(4)

Multi-Consensus Code

class MultiConsensus extends Consensus{
Assign2 a = new Assign2(3, EMPTY);
public Object dec1de() {

a. ass1gn(1 i

n 5

if (other==EM

return proposed[i

else
return proposed[j]; Assignid 0 to 0,1
}} (or id 1 t0 1,2)
%H:uj BROWN(4) © 2003 Herlihy and Shavit 93(4)

Multi-Consensus Code

class MultiConsensus extends Consensus{
Assign2 a = new Assign2(3, EMPTY);
pub11c Ob]ect dec1de() {

return proposed[1],

else
return proposed[j] Read the register my
1} thread didn't assign

© 2003 Herlihy and Shavit 94(4)

Multi-Consensus Code

class MultiConsensus ext
Assign2 a = new Assign2(
public object decide()
a. ass1gn(1 i, i+l, 1)

int_o ead((j+
if | |othe
return prope i];
else o
return proposed[j]; Other thread didn't
1} move, so I win
%H:uj BROWN(4) © 2003 Herlihy and Shavit 95(4)

Multi-Consensus Code

sus extends Consensus{

5sign2(3, EMPTY);

ide() {

F4l, 1);

ead((§+1) % 3);

|fother==a.read(3))
staendbropoaed [

else Other thread moved
return proposed[jl; later, so I win

3

&

;_H BROWN(4) © 2003 Herlihy and Shavit 96(4)

16

Multi-Consensus Code

class MultiConsensus extends Consensus{
Assign2 a = new Assign2(3, EMPTY);
public object decide() {
a.assign(i, i, i+l, 1i);
int other = a.read((j+1) % 3);
if (other==emPTY||other==a.read(j))
return proposed[i];
e;;;—————————‘~\ ;Fég
return proposed[j]3

H OK, I win.

o
2Js BROWN(4) © 2003 Herlihy and Shavit
o

97(4)

Multi-Consensus Code

class MulticConsensus - ,
Assign2 a = new Assi ; /ﬁ
public object decide

a.assign(i, i, i+l,
int other = a.read(
if (other==EMPTY| |c
return proposed[i] ,

se
[:;;turn proposed[j] JOther thread moved
i¥ first, so I lose

o
2Js BROWN(4) © 2003 Herlihy and Shavit
o

95(4)

Summary

* If a thread can assign atomically to 2
out of 3 array locations

* Then we can solve 2-consensus

* Therefore
- No wait-free multi-assignment
- From read/write registers

&

2 srown © 2003 Herlihy and Shavit
5

Read-Modify-Write Objects

* Method call
- Returns object’s prior value x
- Replaces x with mumble (x)

&

2 srown ® 2003 Herlihy and Shavit 100
5

Read-Modify-Write

public abstract class RMWRegister {
private int value;

public void synchronized
getAndMumble () {
int prior = this.value;
this.value = mumble(this.value);
return prior;
}
}

P

2 srown () © 2003 Herlihy and Shavit 101
5

Read-Modify-Write

public abstract class RMWRegister {
private int value;

public void synchronized
getAndMumble () {
int prior = this.value;

this.value = mumble(this.value);
return prior;

e
2 srown () ® 2003 Herlihy and Shavit 102
5

17

Read-Modify-Write

public abstract class RMWRegister {
private int value;

public void synchronized
getAndMumble () {

int prior = this.value;
this.value = mumbJe(this.value);
return prior;

}
} Return prior value
éﬁzﬁ BROWN (1) © 2003 Herlihy and Shavit 103

Read-Modify-Write

public abstract class RMWRegister {
private int value;

public void synchronized
getAndMumble () {
int prior = this.value;

fEhis.value = mumbTe(this.value);

return prior;

}

} Apply function to current value

© 2003 Herlihy and Shavit

104

RMW Everywherel!

* Most synchronization instructions
- are RMW methods

* The rest
- Can be trivially transformed into RMW
methods
@ BROWN © 2003 Herlihy and Shavit 105

Example: Read

public abstract class RMWRegister {
private int value;

public void synchronized read() {
int prior = this.value;
this.value = this.value;
return prior;

© 2003 Herlihy and Shavit

106

Example: Read

public abstract class RMW {
private int value;

public void synchronized read() {
int prior = this.value;
this.value = this.value;
return prior;

} Apply f(v)=v, the
} identity function
é'iuj BROWN (1) © 2003 Herlihy and Shavit 107

Example: getAndSet

public abstract class RMWRegister {
private int value;

public void synchronized
getAndset(int v) {

int prior = this.value;
this.value = v;

return prior;

}
V-

)

&

EFN‘ BROWN (1) © 2003 Herlihy and Shavit
5

108

18

Example: getAndSet

public abstract class RMWRegister {
private int value;

public void synchronized
getAndSet(int v) {
int prior = this.value;

return pr E
}
}m

F(x)=v is constant function

getAndIncrement

public abstract class RMWRegister {
private int value;

public void synchronized
getAndIncrement() {

int prior = this.value;
this.value = this.value + 1;
return prior;

© 2003 Herlihy and Shavit

110

éﬁzﬁ BROWN (1) © 2003 Herlihy and Shavit 109
getAndIncrement

public abstract class RMWRegister {
private int value;

public void synchronized
getAndIncrement() {

int prior = this.value;
his.value = this.value + 1;
return prior,

}
. F(x) = x+1
e
EF:': BROWN () © 2003 Herlihy and Shavit 111

getAndAdd

public abstract class RMWRegister {
private int value;

public void synchronized
getAndAdd(int a) {

int prior = this.value;
this.value = this.value + a;
return prior;

© 2003 Herlihy and Shavit

112

Example: getAndAdd

public abstract class RMWRegister {
private int value;

public void synchronized
getAndIncrement(int a) {
int prior = this.value;
his.value = this.value + a;
return prior;

}
}'" F(x) = x+a
sy
EF:': BROWN () © 2003 Herlihy and Shavit 113

compareAndSet

public abstract class RMWRegister {
private int value;
public boolean synchronized
compareAndSet(int expected,
int update) {
int prior = this.value;
if (this.value==expected) {
this.value = update; return true;
}
return false;

} -}

)

&

EFN‘ BROWN (1) © 2003 Herlihy and Shavit
5

114

19

compareAndSet

public abstract class RMWRegister {
private int value;

public boolean synchronized

compareAndset(int[expected,
int update)

int prior = this.value;

if (this.value==expecte

this-value = update;

}
return false; \
L If value is expected, ..
LHH:& BROWN (1) © 2003 Herlihy and Shavit 115
o]

compareAndSet

public abstract class RMWRegister {
private int value;
public boolean synchronized

int prior = this.value;
if (this.value==expected)} \{

this.value = update; return true;
}

return false; 0
} L} .. replace it

© 2003 Herlihy and Shavit

116

compareAndSet

public abstract class RMWRegister {
private int value;
public boolean synchronized
compareAndset(int expected,
int update) {
int prior = this.value;
if (this.value==expected
this.value = update;
}

return false;
} .} Report success

P

EFN‘ BROWN (1) © 2003 Herlihy and Shavit 17
5

compareAndSet

public abstract class RMWRegister {
private int value;
public boolean synchronized
compareAndSet(int expected,
int update) {
int prior = this.value;
if (this.value==expected) {
this.value = update; return true;

(et atser = Otherwise report
.
failure

© 2003 Herlihy and Shavit

118

Definition

+ ARMW method
- With function mumble(x)
- is non-trivial if there exists a value v
- Such that v # mumble(v)

» Read () is trivial

» getAndIncrement() is non-trivial

)

&

EFN‘ BROWN © 2003 Herlihy and Shavit 119
5

)

Par Example

e Identity (x)=x
- is trivial

» getAndIncrement(x) = x+1
- is non-trivial

)

P

EFN‘ BROWN © 2003 Herlihy and Shavit
5

)

120

20

Theorem

* Any non-trivial RMW object has
consensus number at least 2

* No wait-free implementation of RMW
registers from atomic registers

* Hardware RMW instructions not just
a convenience

e
2 srown © 2003 Herlihy and Shavit 121
5

Reminder

* Subclasses of consensus have
- propose(x) method
+ which just stores x into this.announce[i]
* Built-in method
-decide() method
+ which determines winning value
+ Customized, class-specific method

P

2 srown ® 2003 Herlihy and Shavit 12
5

Proof

public class RMWConsensus
implements Consensus {
private RMwRegister r = v;

public object decide() {
if (r.getAndmumble() == v)
return this.announce[i];

else
return this.announce[j];
e
B2 srown® © 2003 Herlihy and Shavit 123
o]

Proof

public class RMWConsensus
implements cConsensus {
private RMWRegister r = v;

public object deci
if (r.getAndvumble() ==
return this.announce[i];

else Initialized to v
return this.announce[j];
H
/fij BROWN(4) © 2003 Herlihy and Shavit 124
5

Proof

public class RMWConsensus

implements consensus { Am I first?
private RMwRegister r = v;

if (r.getAndmumble() == v)
return this.announcel[1];

else
return this.announce[j];
e
B2 srown® © 2003 Herlihy and Shavit 125
o]

Proof

public class RMWConsensus
implements consensus {
private RMWRegister r = v;

public object decide() { Yes, return

if (r.getAndMumble = my input
return this.announce[1];

else
return this.announce[j];
e
B2 srown@® ® 2003 Herlihy and Shavit 126
o]

21

Proof

public class RMWConsensus
implements _Consengys, {refurn
jvate RMWRegist '
LIRS COTSTEr Mothei's input
public object decide()
if (r.getAndmumble() s
return this.annou

o=
BROWN(4) © 2003 Herlihy and Shavit 127
= o

Proof

* We have displayed
- A two-thread consensus protocol
- Using any non-trivial RMW object

-
Lfl"& BROWN © 2003 Herlihy and Shavit 128
K

Interfering RMW

* Let F be a set of functions such that
for all f; and f; either
- Commute: f,(f,(v))=F (f,(v))
- Overurite: f;(f,(v))=f,(v)

* Claim: Any such set of RMW objects
has consensus number exactly 2

-
& srown © 2003 Herlihy and Shavit 129
=k

Examples

+ Test-and-Set f(v)=1
Overwrite fi(f,(v))=f(v)

+ Swap f(v,x)=x
Overurite f(f (v))=fi(v)

+ Fetch-and-inc f(v)=v+1
Commute f(f (V)= f (f(v))

-
& srown © 2003 Herlihy and Shavit 130
=k

Meanwhile Back at the Critical
State

A about to @ B about to

apply f, / apply fg
- O

0-valent 1-valent

-
Lfl"& BROWN © 2003 Herlihy and Shavit 131
K

Maybe the Functions Commute

e

A applles fA./ B applles fe

B applles fs A épplies fu

¢ runs',.s'blo c r'i'Jns solo
/g—valen'l' Lo i S i Véﬂenf
gﬁ BROWN © 2003 Herlihy and Shavit 132

22

Maybe the Functions Commute

A applies f, /® B applies
| These states look the same to C
c runs, s'i';lo %
0- valé"ri"l;w;",. :

HF‘ BROWN © 2003 Herlihy and Shavit
S B

Maybe the Functions Overwrite

A applles fA @ B applles fe

C runs solo
0 Valéﬁ'} :.I:....\'/'&Ienf
EH BROWN © 2003 Herlihy and Shavit 134

Maybe the Functions Overwrite

| These states Iook the same to C|
A applles f' | B applues fs

Impact

* Many early machines provided these
"weak"” RMW instructions
- Test-and-set (IBM 360)
- Fetch-and-add (NYU Ultracomputer)
- Swap (Original SPARCs)

* We now understand their limitations
- But why do we want consensus anyway?

EF BROWN © 2003 Herlihy and Shavit 136

0- valenf \
EH BROWN © 2003 Herlihy and Shavit
compareAndSet

public abstract class RMWRegister {
private int value;
public boolean synchronized
compareAndset(int expected,
int update) {
int prior = this.value;
if (this.value==expected) {
this.value = update; return true;

return false;
—
;_F BROWN () © 2003 Herlihy and Shavit 137
S B

compareAndSet

public abstract class RMWRegister {
private int value;
public boolean synchronized
compareAndSet(int(expected,
int update)
int prior = this.value;
if (this.val ue==expecte
this.value = up
}

return false;

} .} replace value if expected, .

~

;_H BROWN (1) © 2003 Herlihy and Shavit 138
oo

23

compareAndSet Has o
Consensus Number

public class RMWConsensus
implements Consensus {
private AtomicInteger r =

new AtomicInteger(-1);

public object decide() {
r.compareAndset(-1,1);
return this.announce[r.get()];
}
}

)

&

I3 BROWN(4) © 2003 Herlihy and Shavit

"

&

139

compareAndSet Has o
Consensus Number

public class RMWConsensus
implements Consensus {

private AtomicInteger r

new AtomicInteger(-1);

}
} Initialized to -1

)

&

£J5 BROWN(4) © 2003 Herlihy and Shavit 140

"

&

compareAndSet Has «
Consensus Number

public class RMWConsensus

implements Consensf:rs {l' .
private AtomicInteger 'L 10 SWap in
my id

new AtomicInteger(-

return this.announce[r.get()];

)

&

£J3 BROWN(4) © 2003 Herlihy and Shavit

"

&

141

compareAndSet Has «
Consensus Number

public class RMWConsensus

implements ConsenBlrjes a . '
private AtomicInteger ClCewinnerns

new AtomicInteger(-1) Prefe"ence

public object decide
r.compareAndSet(-141);
return this.announce[r.qget()]:

)

&

£J3 BROWN(4) © 2003 Herlihy and Shavit 142

"

&

The Consensus Hierarchy

1 Read/Write Registers, Snapshots...

2 getAndSet, getAndIncrement, ..

=« compareAndSet, ..

)

&

I3 BROWN © 2003 Herlihy and Shavit

"

&

143

Multiple Assignment

+ Atomic k-assignment
+ Solves consensus for 2k-2 threads

+ Every even consensus number has an
objec‘r (can be extended to odd numbers)

)

&

I3 BROWN © 2003 Herlihy and Shavit 144

"

&

24

Lock-Free Implementations

* Infinitely often some method call
completes in a finite number of steps

* Pragmatic approach

* Implies no mutual exclusion
gﬁnj BROWN(2) © 2003 Herlihy and Shavit 145

Lock-Free Implementations

* Lock-free consensus is just as
impossible

« Lock-free = Wait-free for finite
executions

* All the results we presented hold
for lock-free algorithms also.

o
2Js BROWN(2) © 2003 Herlihy and Shavit 146
'GH

There is More: Universality

+ Consensus is universal
* From n-thread consensus
- Wait-free/Lock-free
- Linearizable
- n-threaded
- Implementation
- Of any sequentially specified object

e
EH% BROWN © 2003 Herlihy and Shavit 147
K

The Relative Power of
Synchronization Methods

Nir Shavit
Multiprocessor Synchronization
Spring 2003

BJ2 BROWN
5

Notes For The Relative Power
of Synchronization Methods

+ Students had alot of questions during lecture so I added a lot of slides...
+ Added lock-freedom in the end, especially since we will talk about it when

doing unoiversal stuff. It needs more lock-free stuff since it becoime major
later

+ What about rot , gotta say here that reduction theorem works
only for deterministic data structures

I updated many slides but hav't listed which yet, sorry

+ Added slide for getting toi CS
+ Added slide for using only two registers

e
EH% BROWN © 2003 Herlihy and Shavit 149
K

25

