Introduction to Algorithms March 19, 2004
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 15

Problem Set 5

Reading: Chapters §18.1-18.2, 14.1-14.3, 33.1-33.3, Skip Lists Handout

There are four problems. Each problem is to be done on a separ ate sheet (or sheets) of paper.
Mark the top of each sheet with your name, the course number, the problem number, your recitation
section, the date, and the names of any students with whom you collaborated. As on previous
assignments, “give an algorithm” entails providing a description, proof, and runtime analysis.

Problem 5-1. Joining and Splitting 2-3-4 Trees

The JOIN operator takes as input two 2-3-4 trees, T; and T3, and an element x such that for any
y1 € Ty and y, € T5, we have key[y:] < key[z] < key[ys]. As output JOIN returns a 2-3-4 tree T’
containing the node z and all the elements of 7 and T5.

The SpLIT operator is like an “inverse” JOIN: given a 2-3-4 tree T" and an element x € T, SPLIT
creates a tree 73 consisting of all elements in 7" — {z} whose keys are less than key|x], and a tree
T, consisting of all elements in 7" — {z} whose keys are greater than key|z].

In this problem, we will efficiently implement JOIN and SPLIT. For convenience, you may assume
that all elements have unique keys.

(@) Suppose that in every node x of the 2-3-4 tree there is a new field height[z] that stores
the height of the subtree rooted at x. Show how to modify INSERT and DELETE to
maintain the height of each node while still running in O(logn) time. Remember that
all leaves in a 2-3-4 tree have the same depth.

(b) Using part (a), give an O(1 + |h; — hy|)-time JOIN algorithm, where h; and h, are the
heights of the two input 2-3-4 trees.

(c) Give an O(logn)-time SPLIT algorithm. Your algorithm will take a 2-3-4 tree T and
key k as input. To write your SPLIT algorithm, you should take advantage of the
search path from 7°’s root to the node that would contain k. This path will consist of a
set of keys {ki, ..., k. }. Consider the left and right subtrees of each key k; and their
relationship to k. You may use your JOIN procedure from part (b) in your solution.

Problem 5-2. AVL Trees

An AVL treeis a binary search tree that is height balanced: for each node z, the heights of the left
and right subtrees of « differ by at most 1. Height is defined to be the length of the longest path
from a node to any leaf in the tree rooted at that node. To implement an AVL tree, we maintain an
extra field in each node: h[z] is the height of node z. As for any other binary search tree 7', we
assume that root[T’] points to the root node.

2 Handout 15: Problem Set 5

(@) Prove that an AVL tree with n nodes has height O(logn). (Hint: Prove that in an AVL
tree of height A, there are at least F}, nodes, where F}, is the hth Fibonacci number.)

(b) To insert into an AVL tree, a node is first placed in the appropriate place in binary
search tree order. After this insertion, the tree may no longer be height balanced.
Specifically, the heights of the left and right children of some node may differ by 2.
Describe a procedure BALANCE(x), which takes a subtree rooted at = whose left
and right children are height balanced and have heights that differ by at most 2, i.e.,
|h[right[z]] — A[left[z]]| < 2, and alters the subtree rooted at x to be height balanced.
(Hint: Use rotations.)

(c) Using part (b), describe a recursive procedure AVL-INSERT(z, z), which takes a
node z within an AVL tree and a newly created node z (whose key has already
been filled in), and adds z to the subtree rooted at z, maintaining the property that
x is the root of an AVL tree. As in TREE-INSERT from Section 12.3 in CLRS, as-
sume that key[z| has already been filled in and that left[z] = NIL and right[z] = NIL;
also assume that h[z] = 0. Thus, to insert the node z into the AVL tree 7', we call
AVL-INSERT (root[T], z).

(d) Show that AVL-INSERT, run on an n-node AVL tree, takes O(logn) time and per-
forms O(1) rotations.

Problem 5-3. Order Statistics in Skip Lists

In this problem we implement the order statistics operations RANK and SEARCH-BY-RANK in a
skip list. For a node z in a skip list L, RANK (z, L) gives the rank of = among the elements in the
list. SEARCH-BY-RANK (k, L) is the inverse of RANK. It returns the k-th element in the skip list
L. If no such node exists, it returns nil.

In this problem we assume that all elements in the skip list have distinct key values. Denote the
top level of the skip list as level 1. You may assume a skip list L has a variable L.depth that stores
the number of levelsin L.

(@) Show how you would augment the skip list data structure so that RANK and SEARCH-BY-RANK
can be implemented with O(logn) time complexity.

(b) Modify SEARCH, INSERT and DELETE so that the operations run in O(logn) time
with the augmented data structure.

(c) Give O(logn) implementations for RANK and SEARCH-BY-RANK.

Problem 5-4. Convex Layers

Given a set) of points in the plane, we define the convex layersof @ inductively. The first convex
layer of @ consists of those points in () that are vertices of CH(Q). For ¢ > 1, define @; to consist
of the points of @ with all points in convex layers 1,2, ...,7 — 1 removed. Then the ith convex
layer of @ is CH(Q;) if @; # () and is undefined otherwise.

Handout 15: Problem Set 5

(@) Give an O(n?)-time algorithm to find the convex layers of a set on n points. Hint:
Refer to CLRS chapter 33.3.

(b) Suppose we are given an unsorted array of n real values A. Let the array B contain
the values of A in descending sorted order. Give a linear time algorithm to convert
A to a set of points @, such that each convex layer @; can be translated to B[] in
constant time. In other words, give a linear time reduction from the sorting problem
to the convex layer problem.

