
Introduction to Algorithms May 14, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Practice Final Solutions

Practice Final Solutions
� Do not open this exam booklet until you are directed to do so. Read all the instructions first.
� When the exam begins, write your name on every page of this exam booklet.
� The exam contains seven multi-part problems. You have 180 minutes to earn 180 points.
� This exam booklet contains 17 pages, including this one. An extra sheet of scratch paper is

attached. Please detach it before turning in your exam.
� This exam is closed book. You may use three handwritten A4 or

������ ���
	�	 � � crib sheets. No
calculators or programmable devices are permitted.

� Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Do not put part of the answer to one problem on the back of
the sheet for another problem, since the pages may be separated for grading.

� Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.

� Do not spend too much time on any one problem. Read them all through first, and attack
them in the order that allows you to make the most progress.

� Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

� Good luck!

Problem Points Grade Initials

1 12

2 56

3 20

4 25

5 27

6 20

7 20

Total 180

Name: Solutions
Circle your recitation letter and the name of your recitation instructor:

David A B Steve C D Hanson E F

6.046J/18.410J Practice Final Solutions Name 2

Problem 1. Algorithm Design Techniques [12 points]

The following are a few of the design strategies we followed in class to solve several problems.

1.Dynamic programming.

2.Greedy strategy.

3.Divide-and-conquer.

For each of the following problems, mention which of the above design strategies was used (in
class) in the following algorithms.

1.Longest common subsequence algorithm

Solution: Dynamic Programming

2.Minimum spanning tree algorithm (Prim’s algorithm)

Solution: Greedy

6.046J/18.410J Practice Final Solutions Name 3

3.Select

Solution: Divide-and-Conquer

4.Fast Fourier Transform

Solution: Divide-and-Conquer

6.046J/18.410J Practice Final Solutions Name 4

Problem 2. True or False, and Justify [56 points]

Circle T or F for each of the following statements, and briefly explain why. The better your
argument, the higher your grade, but be brief. Your justification is worth more points than your
true-or-false designation. Each part is 4 points.

(a) T F An inorder traversal of a Min Heap will output the values in sorted order.

Solution: False. Consider the Min Heap with 1 at the root and 3 as left child and
2 as right child.

(b) T F A Monte-Carlo algorithm is a randomized algorithm that always outputs the cor-
rect answer and runs in expected polynomial time.

Solution: False. This is definition of a Las Vegas Algorithm.

6.046J/18.410J Practice Final Solutions Name 5

(c) T F Two distinct degree- � polynomials with integer coefficients can evaluate to the
same value in as many as ��� 	 distinct points.

Solution: False. They have same value on at most � distinct points.

(d) T F The right subtree of an � -node 2-3-4 tree contains �����	� nodes.

Solution: False. A tree with all degree-3 nodes on one subtree and degree-2
nodes on the other will have depth
����������� . There will be ��������� �!�"�#������� � �$ �%�&� nodes on the sparse subtree. Note: The prior version of the solutions incor-
rectly stated that this problem was true.

(e) T F If a problem in NP can be solved in polynomial time, then all problems in NP
can be solved in polynomial time.

Solution: False. The decision version of MST is in NP, but this doesn’t mean
that all problems in NP can be solved in polynomial time.

6.046J/18.410J Practice Final Solutions Name 6

(f) T F If an NP-complete problem can be solved in linear time, then all NP-complete
problems can be solved in linear time.

Solution: False. The reductions are polynomial-time but not necessarily linear
time.

(g) T F If single digit multiplication can be done in � � 	 � time, then multiplying two�
-digit numbers can be done in � � � ���� � � time.

Solution: True. Use FFT.

(h) T F In a
�

-bit binary counter (that is initialized to zero and is always non-negative),
any sequence of ��� ��� increments followed by ��� � decrements takes � �	� �
�&� total bit flips in the worst case, where a bit flip changes one bit in the binary
counter from 0 to 1 or from 1 to 0.

Solution: True. As shown in lecture the amortized cost of an increment in a
sequence of increments is � � 	 � and by the same arguement, the amortized cost
of a decrement in a sequence of decrements is � � 	 �

6.046J/18.410J Practice Final Solutions Name 7

(i) T F Consider a directed graph G in which every edge has a positive edge weight.
Suppose you create a new graph � � by replacing the weight of each edge by the
negation of its weight in � . For a given source vertex � , you compute all shortest
path from � in � � using Dijkstra’s algorithm.

True or false: the resulting paths in � � are the longest (i.e., highest cost) simple
paths from � in � .

Solution: False. Dijkstra’s algorithm may not necessarily return the minimum
weight path because this new graph may contain a negative weight cycle.

(j) T F A spanning tree of a given undirected, connected graph � ��������� � can be found
in � ��� � time.

Solution: True. Perform a walk on the graph starting from an arbitrary node.

6.046J/18.410J Practice Final Solutions Name 8

(k) T F Consider the following algorithm for computing the square root of a number � :

SQUARE-ROOT ���#�
For

� � 	 ������� ������� :
if
� � �	� then output

�
.

True or False: This algorithm runs in polynomial time.

Solution: False. To run in polynomial-time, this algorithm would have to run in
time polynomial in ��
� .

(l) T F An efficient max-flow algorithm can be used to efficiently compute a maximum
matching of a given bipartite graph.

Solution: True. Add a “supersource” and a “supersink”, each connected to a
partition of the graph by unit capacity edges.

6.046J/18.410J Practice Final Solutions Name 9

(m) T F The following recurrence has solution � �%�&� ��� �%� �� �%� � � � .

� �%�	� � ��� ��� ��� �&����� �

Solution: True. � �%� � � � � ��� �%� �� �&� .

(n) T F Computing the convolution of two vectors, each with � entries, requires ���%� � �
time.

Solution: False. Use the standard FFT algorithm.

6.046J/18.410J Practice Final Solutions Name 10

Problem 3. Placing Gas Stations Along a Highway [20 points]

Give a dynamic programming algorithm that on input � , where � ��� ��� ��� � � � � ����� � � � �
��� is a finite set of positive integers, determines whether it is possible to place gas stations along
an � -mile highway such that:

1. A gas station can only be placed at a distance �
	��� from the start of the highway.

2. There must be a gas station at the beginning of the highway (��� ���) and at the end of the
highway (� � � �).

3. The distance between every two consecutive gas stations on the highway is between 15 and
25 miles.

For example, suppose the input is ��� � 	
� ����� � � � ������� . Then your algorithm should output “yes”,
because we can place gas stations at distances ��� � 	�� ����� ������� from the beginning of the highway.

However, if the input is ��� � � � � ��� � ��� ������� , then your algorithm should output “no”, because there
is no subset of the distances that satisfies the conditions listed above.

Remember to analyze the running time of your algorithm.

Solution: Check to see if 0 and � are in � . If not, output “no”.
Let ������� = “yes” if � � �!� .
For

�
from 	 to � , let " � � 	 :

Let ��� "��$#&% '
(#�)*� � “yes” if ��� � �#� “yes”, for some
� �+� � � �," , and 	
� �.- � �0/ ��#�- � � � .

Return �1� �2� .

6.046J/18.410J Practice Final Solutions Name 11

Problem 4. Independent Set and Vertex Cover [25 points]

For a graph � � ������� � , we say ��� � is an independent set in � if there are no edges between
any two vertices in � .

We say a subset ��� � is a vertex cover of � if for every at edge ��� ��� � in � at least one of � or �
is in � .

(a) [10 points] Show � is an independent set in � if and only if � / � is a vertex cover
of � .

Solution: � Assume � is an Independent Set, but that � / � is not a Vertex Cover.
Then there exists an edge whose endpoints are both not in � / � , namely, there is an
edge whose endpoints are in � . That is a contradiction, so � / � must be a Vertex
Cover.� Now assume that � / � is a Vertex Cover, but that � is not an Independent Set.
Then there exists an edge with both endpoints in � . But then that edge would not
be touched by � / � , so � / � could not be a Vertex Cover. This contradicts our
assumption, so � must be an Independent Set.
Therefore, � is an Independent Set iff � / � is a Vertex Cover.

6.046J/18.410J Practice Final Solutions Name 12

(b) [5 points] Show that the decision problem Independent Set = � � � � � ��- � contains an
independent set of size at least

� � is in NP.

Solution: A set of
�

vertices forming an independent set is a proof that a given graph
is an instance of Independent Set language. This proof can be verified trivially in
polynomial time.

6.046J/18.410J Practice Final Solutions Name 13

(c) [10 points] We showed in class that the decision problem Vertex Cover = � ��� � � �
-
� contains a vertex cover of size at most

� � is NP-complete. Use this to show that
Independent Set is NP-complete.

Solution: We need to show that Vertex Cover reduces to Independent Set. By part
(a), if a graph has a Vertex Cover of size

�
, then it has an Independent Set of size

� /
�

. So, given an instance ��� � � � , we can trivially make an instance of Independent
Set � � � � /

� � .

6.046J/18.410J Practice Final Solutions Name 14

Problem 5. Flows [27 points]

Consider the following graph:

s t
3

1
1

4
8

3
5

2

2

1
7

(a) [10 points] What is the maximum flow in this graph? Give the actual flow as well as
its value. Justify your answer.

Solution: The maximum flow is 6. From S, we route 3 along both the 3-capacity
edge and the 5-capacity edge. The resultant flow will inundate the 1, 1 and 4-capacity
edges that form a min-cut for the graph. By the Max-Flow/Min-Cut algorithm, this is
a Max-Flow.

6.046J/18.410J Practice Final Solutions Name 15

(b) [5 points] True or false: For any flow network � and any maximum flow on � , there
is always an edge � such that increasing the capacity of � increases the maximum flow
of the network. Justify your answer.

Solution: False. A counterexample is a graph with two unit capacity edges in a chain.
Increasing the capacity of a single edge will not increase the max flow, since the other
edge is at capacity.

6.046J/18.410J Practice Final Solutions Name 16

(c) [5 points] Suppose you have a flow network � with integer capacities, and an integer
maximum flow

�
. Suppose that, for some edge � , we increase the capacity of � by one.

Describe an � �&- � - � -time algorithm to find a maximum flow in the modified graph.

Solution: Add the new flow to the residual flow graph in � ��- � -�� time. Perform a tree
traversal from the source node to detect whether a path now exists to the sink. If so,
augment along that path and increase the maximum flow by one.

6.046J/18.410J Practice Final Solutions Name 17

(d) [7 points] Consider the decision problem: Flow = � ��� ��� ��� � � �
- � � ������� � is a flow
network, � ���0� � , and the value of an optimal flow from � to � in � is

� � .

Is Flow in NP? Why or why not?

Solution: Yes. We can explicitly compute the max-flow using Edmonds-Karp or
another polynomial time max-flow algorithm. Since � ����� , Flow must be in NP.

6.046J/18.410J Practice Final Solutions Name 18

Problem 6. Comparing Sets [20 points]

Given two sets of integers � � and � � , each of size � , your job is to determine if � � and � � are
identical.

Give a � ���	� time randomized algorithm that always outputs “yes” if � � � � � and outputs “no”
with probability at least 	 / 	 ��� if � ���� � � .
You may assume that we have a probabilistic model of computation in which generating a random
number takes � � 	 � time and a comparison, a multiplication, and an addition of two numbers each
takes � � 	 � time, regardless of the size of the two numbers involved.

Hint: Reduce the problem of comparing sets to the problem of comparing polynomials.

Solution: Reduce the problem of comparing sets to that of comparing two degree- � polynomials
� � ���#� ������� %	� � ��� /�
 � � and � � � �#� ������ %	� � ��� /�
 � � with � integer roots, where each polyno-
mial is specified as a list of these � integer roots, i.e. � � ���#��� �
 � � �
 � � �������
 � � � . The following
randomized algorithm for comparing � � ���#� and � � � �#� which runs in � �%�	� time.

COMPARE-POLYNOMIALS � � � ���#� � � � � �#� �
1 Choose a random integer ��� � 	 ������� � � �
2 Compute � � ��� � � � �	�� � ��� /�
 � 	%� and � � ��� � � � �	�� � ��� /�
 � 	 �
3 if � � ��� � ��� � ��� �
4 then output � � ��� �
5 else output � ������ �

Line 2 of COMPARE-POLYNOMIALS � � � ���#� � � � � �#� � runs in � �%�	� time, since each multiplication
takes � � 	 � time. All other lines take � � 	 � time under the assumptions stated above. Now we will
analyze the probability that COMPARE-POLYNOMIALS � � � ���#� � � � ���#� � outputs the correct answer.
If � � � �#� � � � ���#� , then COMPARE-POLYNOMIALS � � � � �#� � � � ���#� � outputs the correct answer with
probability 1.
A degree- � polynomial � � �#� has at most � distinct roots. Furthermore, �!��� � �� � if � is not a root
of � � �#� . Thus, � � �#� has at most � integer zeroes in the range � 	 ������� � � � .
Let � � � �#� � � � ���#� / � � ���#� . Note that � � ��� � � � � ��� � exactly when � � ��� � � � . Since the
maximum degree of � � � �#� is � , � � ���#� has at most � distinct roots. Thus, if we choose a random
integer � from the range � 	 ������� � � � , the probability that � � � �#� evaluates to 0 is at most 	 ��� .
Therefore, if � � ���#� �� � � ���#� , the probability that we choose � such that � � ��� � / � � ��� � � � is at
most

�
� . Thus, the probability that COMPARE-POLYNOMIALS � � � � �#� � � � ���#� � outputs the correct

answer is at least 	 /
�
� .

6.046J/18.410J Practice Final Solutions Name 19

Problem 7. Finding the Topological Sort of a Complete Directed Acyclic Graph [20 points]

Let � � ������� � be a directed acyclic graph that has an edge between every pair of vertices and
whose vertices are labeled 	 � � ��������� , where � � - � - . To determine the direction of an edge
between two vertices in � , you are only allowed to ask a query. A query consists of two specified
vertices � and � and is answered with:

“from � to � ” if � � ��� � is in � , or

“from � to � ” if � � ���#� is in � .

Give matching upper and lower bounds (as functions of �) for the number of queries required to
find a topological sort of � .

Solution: This problem reduces to sorting. A query establishes an ordering between two nodes,
i.e. ��� ��� � ’s existence can be interpreted as ��� � and � � ���#� as � � � . Since the graph is complete,
there exists an ordering between every pair of nodes, in other words, we have a total ordering on
the graph.
We can simply run a comparison-based sort to output a topological sort. The “max” element will
be a source node with out-going edges to all other nodes. Similarly, the “min” element will be a
sink node. Since query is effectively a comparison operator, there is a tight ���%� ��� �	� lower bound
on performing a topological sort in this model.

