
Introduction to Algorithms
6.046J/18.401J

Lecture 7
Prof. Piotr Indyk

Introduction to Algorithms February 27, 2003 L7.2© Charles Leiserson and Piotr Indyk

Data Structures

• Role of data structures:

– Encapsulate data

– Support certain operations (e.g., INSERT,
DELETE, SEARCH)

• Our focus: efficiency of the operations

• Algorithms vs. data structures

Introduction to Algorithms February 27, 2003 L7.3© Charles Leiserson and Piotr Indyk

Symbol-table problem

Symbol table T holding n records:

key[x]key[x]

record
x

Other fields
containing
satellite data

Operations on T:
• INSERT(T, x)
• DELETE(T, x)
• SEARCH(T, k)

How should the data structure T be organized?

Introduction to Algorithms February 27, 2003 L7.4© Charles Leiserson and Piotr Indyk

Direct-access table

IDEA: Suppose that the set of keys is
K ⊆ { 0, 1, …, m–1} , and keys are distinct.
Set up an array T[0 . . m–1]:

T[k] =
x if k ∈ K and key[x] = k,
NIL otherwise.

Then, operations take Θ(1) time.

Problem: The range of keys can be large:
• 64-bit numbers (which represent

18,446,744,073,709,551,616 different keys),
• character strings (even larger!).

Introduction to Algorithms February 27, 2003 L7.5© Charles Leiserson and Piotr Indyk

As each key is inserted, h maps it to a slot of T.

Hash functions

Solution: Use a hash function h to map the
universe U of all keys into
{ 0, 1, …, m–1} :

U

K
k1

k2 k3

k4

k5

0

m–1

h(k1)
h(k4)

h(k2)

h(k3)

When a record to be inserted maps to an already
occupied slot in T, a collision occurs.

T

= h(k5)

Introduction to Algorithms February 27, 2003 L7.6© Charles Leiserson and Piotr Indyk

Resolving collisions by
chaining

• Records in the same slot are linked into a list.

h(49) = h(86) = h(52) = i

T

4949 8686 5252i

Introduction to Algorithms February 27, 2003 L7.7© Charles Leiserson and Piotr Indyk

Analysis of chaining
We make the assumption of simple uniform
hashing:
• Each key k ∈ K of keys is equally likely to
be hashed to any slot of table T, independent
of where other keys are hashed.

Let n be the number of keys in the table, and
let mbe the number of slots.

Define the load factor of T to be
α = n/m

= average number of keys per slot.

Introduction to Algorithms February 27, 2003 L7.8© Charles Leiserson and Piotr Indyk

Search cost

Expected time to search for a record with
a given key = Θ(1 + α).

apply hash
function and
access slot

search
the list

Expected search time = Θ(1) if α = O(1),
or equivalently, if n = O(m).

Introduction to Algorithms February 27, 2003 L7.9© Charles Leiserson and Piotr Indyk

Choosing a hash function

The assumption of simple uniform hashing
is hard to guarantee, but several common
techniques tend to work well in practice as
long as their deficiencies can be avoided.

Desirata:
• A good hash function should distribute the
keys uniformly into the slots of the table.

• Regularity in the key distribution should
not affect this uniformity.

Introduction to Algorithms February 27, 2003 L7.10© Charles Leiserson and Piotr Indyk

h(k)

Division method
Assume all keys are integers, and define

h(k) = k mod m.

Extreme deficiency: If m= 2r, then the hash
doesn’ t even depend on all the bits of k:

• If k = 10110001110110102 and r = 6, then
h(k) = 0110102 .

Deficiency: Don’ t pick an m that has a small
divisor d. A preponderance of keys that are
congruent modulo d can adversely affect
uniformity.

Introduction to Algorithms February 27, 2003 L7.11© Charles Leiserson and Piotr Indyk

Division method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
in the computing environment.

Annoyance:
• Sometimes, making the table size a prime is
inconvenient.

But, this method is popular, although the next
method we’ ll see is usually superior.

Introduction to Algorithms February 27, 2003 L7.12© Charles Leiserson and Piotr Indyk

Multiplication method

Assume that all keys are integers, m= 2r, and our
computer has w-bit words. Define

h(k) = (A·k mod 2w) rsh (w – r),
where rsh is the “bit-wise right-shift” operator
and A is an odd integer in the range 2w–1 < A < 2w.

• Don’ t pick A too close to 2w.
• Multiplication modulo 2w is fast.
• The rsh operator is fast.

Introduction to Algorithms February 27, 2003 L7.13© Charles Leiserson and Piotr Indyk

4

0

35
26

17

Modular wheel

Multiplication method
example

h(k) = (A·k mod 2w) rsh (w – r)

Suppose that m= 8 = 23 and that our computer
has w = 7-bit words:

1 0 1 1 0 0 1
× 1 1 0 1 0 1 1
1 0 0 1 0 1 0 0 1 1 0 0 1 1

= A
= k

h(k) A
..

2A
..

3A
..

Introduction to Algorithms February 27, 2003 L7.14© Charles Leiserson and Piotr Indyk

Dot-product method
Randomized strategy:
Let mbe prime. Decompose key k into r + 1
digits, each with value in the set { 0, 1, …, m–1} .
That is, let k = k0, k1, …, km–1 , where 0 ≤ ki < m.
Pick a = a0, a1, …, am–1 where each ai is chosen
randomly from { 0, 1, …, m–1} .

mkakh
r

i
iia mod)(

0=
=Define .

• Excellent in practice, but expensive to compute.

Introduction to Algorithms February 27, 2003 L7.15© Charles Leiserson and Piotr Indyk

A weakness of hashing “ as we
saw it”

Problem: For any hash function h, a set
of keys exists that can cause the average
access time of a hash table to skyrocket.

IDEA: Choose the hash function at random,
independently of the keys.
• Even if an adversary can see your code,

he or she cannot find a bad set of keys,
since he or she doesn’ t know exactly
which hash function will be chosen.

• An adversary can pick all keys from
{ k ∈ U : h(k) = i} for some slot i.

Introduction to Algorithms February 27, 2003 L7.16© Charles Leiserson and Piotr Indyk

Universal hashing
Definition. Let U be a universe of keys, and
let H be a finite collection of hash functions,
each mapping U to { 0, 1, …, m–1} . We say
H is universal if for all x, y ∈ U, where x ≠ y,
we have |{ h ∈ H : h(x) = h(y)} | = |H|/m.

That is, the chance
of a collision
between x and y is
1/m if we choose h
randomly from H.

H{ h : h(x) = h(y)}

|H|
m

Introduction to Algorithms February 27, 2003 L7.17© Charles Leiserson and Piotr Indyk

Universality is good

Theorem. Let h be a hash function chosen
(uniformly) at random from a universal set H
of hash functions. Suppose h is used to hash
n arbitrary keys into the mslots of a table T.
Then, for a given key x, we have

E[#collisions with x] < n/m.

Introduction to Algorithms February 27, 2003 L7.18© Charles Leiserson and Piotr Indyk

Proof of theorem

Proof. Let Cx be the random variable denoting
the total number of collisions of keys in T with
x, and let

cxy =
1 if h(x) = h(y),
0 otherwise.

Note: E[cxy] = 1/m and
−∈

=
}{ xTy
xyx cC .

Introduction to Algorithms February 27, 2003 L7.19© Charles Leiserson and Piotr Indyk

Proof (continued)

=
−∈ }{

][
xTy

xyx cECE • Take expectation
of both sides.

Introduction to Algorithms February 27, 2003 L7.20© Charles Leiserson and Piotr Indyk

Proof (continued)

−∈

−∈

=

=

}{

}{

][

][

xTy
xy

xTy
xyx

cE

cECE

• Linearity of
expectation.

• Take expectation
of both sides.

Introduction to Algorithms February 27, 2003 L7.21© Charles Leiserson and Piotr Indyk

Proof (continued)

−∈

−∈

−∈

=

=

=

}{

}{

}{

/1

][

][

xTy

xTy
xy

xTy
xyx

m

cE

cECE

• E[cxy] = 1/m.

• Linearity of
expectation.

• Take expectation
of both sides.

Introduction to Algorithms February 27, 2003 L7.22© Charles Leiserson and Piotr Indyk

Proof (continued)

m
n

m

cE

cECE

xTy

xTy
xy

xTy
xyx

1

/1

][

][

}{

}{

}{

−=

=

=

=

−∈

−∈

−∈
• Take expectation
of both sides.

• Linearity of
expectation.

• E[cxy] = 1/m.

• Algebra..

Introduction to Algorithms February 27, 2003 L7.23© Charles Leiserson and Piotr Indyk

REMEMBER
THIS!

Constructing a set of
universal hash functions

Let mbe prime. Decompose key k into r + 1
digits, each with value in the set { 0, 1, …, m–1} .
That is, let k = k0, k1, …, kr , where 0 ≤ ki < m.

Randomized strategy:
Pick a = a0, a1, …, ar where each ai is chosen
randomly from { 0, 1, …, m–1} .

mkakh
r

i
iia mod)(

0=
=Define .

How big is H = { ha} ? |H| = mr + 1.

Dot product,
modulo m

Introduction to Algorithms February 27, 2003 L7.24© Charles Leiserson and Piotr Indyk

Universality of dot-product
hash functions

Theorem. The set H = { ha} is universal.

Proof. Suppose that

x = x0, x1, …, xr and

y = y0, y1, …, yr are distinct keys. Thus,
they differ in at least one digit position, wlog
position 0. For how many ha ∈ H do x and y
collide?

)(mod)()(
00

myaxabhxh
r

i
ii

r

i
iiaa

==

≡⇔=

Introduction to Algorithms February 27, 2003 L7.25© Charles Leiserson and Piotr Indyk

Proof (continued)

Equivalently, we have

)(mod0)(
0

myxa
r

i
iii ≡−

=
or

)(mod0)()(
1

000 myxayxa
r

i
iii ≡−+−

=

)(mod)()(
1

000 myxayxa
r

i
iii

=
−−≡−

which implies that

,

.

Introduction to Algorithms February 27, 2003 L7.26© Charles Leiserson and Piotr Indyk

Fact from number theory

Theorem. Let m be prime. For any z ∈ Zm
such that z ≠ 0, there exists a unique z–1 ∈ Zm
such that

z · z–1 ≡ 1 (mod m).

Example: m= 7.

z

z–1

1 2 3 4 5 6

1 4 5 2 3 6

Introduction to Algorithms February 27, 2003 L7.27© Charles Leiserson and Piotr Indyk

Back to the proof

)(mod)()(
1

000 myxayxa
r

i
iii

=
−−≡−

We have

and since x0 ≠ y0 , an inverse (x0 – y0)
–1 must exist,

which implies that

,

)(mod)()(1
00

1
0 myxyxaa

r

i
iii

−

=
−⋅−−≡ .

Thus, for any choices of a1, a2, …, ar, exactly
one choice of a0 causes x and y to collide.

Introduction to Algorithms February 27, 2003 L7.28© Charles Leiserson and Piotr Indyk

Proof (completed)

Q.How many ha’ s cause x and y to collide?

A. There are m choices for each of a1, a2, …, ar ,
but once these are chosen, exactly one choice
for a0 causes x and y to collide, namely

myxyxaa
r

i
iii mod)()(1

00
1

0 −⋅−−= −

=
.

Thus, the number of ha’ s that cause x and y
to collide is mr · 1 = mr = |H|/m.

Introduction to Algorithms February 27, 2003 L7.29© Charles Leiserson and Piotr Indyk

Perfect hashing
Given a set of n keys, construct a static hash
table of size m= O(n) such that SEARCH takes
Θ(1) time in the worst case.

IDEA: Two-
level scheme
with universal
hashing at
both levels.
No collisions
at level 2! 4040 3737 2222

0
1
2
3
4
5
6

2626

m a 0 1 2 3 4 5 6 7 8

1414 2727

S4

S6

S1

44 3131

11 0000

99 8686

T

h31(14) = h31(27) = 1

Introduction to Algorithms February 27, 2003 L7.30© Charles Leiserson and Piotr Indyk

Collisions at level 2
Theorem. Let H be a class of universal hash
functions for a table of size m= n2. Then, if we
use a random h ∈ H to hash n keys into the table,
the expected number of collisions is at most 1/2.
Proof. By the definition of universality, the
probability that 2 given keys in the table collide
under h is 1/m= 1/n2. Since there are pairs
of keys that can possibly collide, the expected
number of collisions is

()
2

n

2
11

2
)1(1

2 22
<⋅−=⋅

n
nn

n

n
.

Introduction to Algorithms February 27, 2003 L7.31© Charles Leiserson and Piotr Indyk

No collisions at level 2
Corollary. The probability of no collisions
is at least 1/2.

Thus, just by testing random hash functions
in H, we’ ll quickly find one that works.

Proof. Markov’s inequality says that for any
nonnegative random variable X, we have

Pr{ X ≥ t} ≤ E[X]/t.
Applying this inequality with t = 1, we find
that the probability of 1 or more collisions is
at most 1/2.

Introduction to Algorithms February 27, 2003 L7.32© Charles Leiserson and Piotr Indyk

Analysis of storage
For the level-1 hash table T, choose m= n, and
let ni be random variable for the number of keys
that hash to slot i in T. By using ni

2 slots for the
level-2 hash table Si, the expected total storage
required for the two-level scheme is therefore

())(
1

0

2 nnE
m

i
i Θ=Θ

−

=
,

since the analysis is identical to the analysis from
recitation of the expected running time of bucket
sort. (For a probability bound, apply Markov.)

Introduction to Algorithms February 27, 2003 L7.33© Charles Leiserson and Piotr Indyk

Resolving collisions by open
addressing

No storage is used outside of the hash table itself.
• Insertion systematically probes the table until an
empty slot is found.

• The hash function depends on both the key and
probe number:

h : U × { 0, 1, …, m–1} → { 0, 1, …, m–1} .
• The probe sequence h(k,0), h(k,1), …, h(k,m–1)
should be a permutation of { 0, 1, …, m–1} .

• The table may fill up, and deletion is difficult (but
not impossible).

Introduction to Algorithms February 27, 2003 L7.34© Charles Leiserson and Piotr Indyk

204204

Example of open addressing

Insert key k = 496:

0. Probeh(496,0)
586
133

481

T
0

m–1

collision

Introduction to Algorithms February 27, 2003 L7.35© Charles Leiserson and Piotr Indyk

Example of open addressing

Insert key k = 496:

0. Probeh(496,0)
586
133

204

481

T
0

m–1

1. Probeh(496,1) collision586

Introduction to Algorithms February 27, 2003 L7.36© Charles Leiserson and Piotr Indyk

Example of open addressing

Insert key k = 496:

0. Probeh(496,0)
586
133

204

481

T
0

m–1

1. Probeh(496,1)

insertion496

2. Probeh(496,2)

Introduction to Algorithms February 27, 2003 L7.37© Charles Leiserson and Piotr Indyk

Example of open addressing

Search for key k = 496:

0. Probeh(496,0)
586
133

204

481

T
0

m–1

1. Probeh(496,1)

496

2. Probeh(496,2)

Search uses the same probe
sequence, terminating suc-
cessfully if it finds the key
and unsuccessfully if it encounters an empty slot.

Introduction to Algorithms February 27, 2003 L7.38© Charles Leiserson and Piotr Indyk

Probing strategies

Linear probing:

Given an ordinary hash function h′(k), linear
probing uses the hash function

h(k,i) = (h′(k) + i) mod m.

This method, though simple, suffers from primary
clustering, where long runs of occupied slots build
up, increasing the average search time. Moreover,
the long runs of occupied slots tend to get longer.

Introduction to Algorithms February 27, 2003 L7.39© Charles Leiserson and Piotr Indyk

Probing strategies

Double hashing
Given two ordinary hash functions h1(k) and h2(k),
double hashing uses the hash function

h(k,i) = (h1(k) + i⋅h2(k)) mod m.

This method generally produces excellent results,
but h2(k) must be relatively prime to m. One way
is to make m a power of 2 and design h2(k) to
produce only odd numbers.

Introduction to Algorithms February 27, 2003 L7.40© Charles Leiserson and Piotr Indyk

Analysis of open addressing

We make the assumption of uniform hashing:

• Each key is equally likely to have any one of
the m! permutations as its probe sequence.

Theorem. Given an open-addressed hash
table with load factor α = n/m< 1, the
expected number of probes in an unsuccessful
search is at most 1/(1–α).

Introduction to Algorithms February 27, 2003 L7.41© Charles Leiserson and Piotr Indyk

Proof of the theorem
Proof.
• At least one probe is always necessary.
• With probability n/m, the first probe hits an
occupied slot, and a second probe is necessary.

• With probability (n–1)/(m–1), the second probe
hits an occupied slot, and a third probe is
necessary.

• With probability (n–2)/(m–2), the third probe
hits an occupied slot, etc.

Observe that α=<
−
−

m
n

im
in for i = 1, 2, …, n.

Introduction to Algorithms February 27, 2003 L7.42© Charles Leiserson and Piotr Indyk

Proof (continued)

Therefore, the expected number of probes is

+−
+

−
−+

−
−++ ��

1
11

2
21

1
111

nmm
n

m
n

m
n

()()()()

α

α

ααα
αααα

−
=

=

++++≤
++++≤

∞

=

1
1

1

1111

0

32

i

i

�

��

.

The textbook has a
more rigorous proof.

Introduction to Algorithms February 27, 2003 L7.43© Charles Leiserson and Piotr Indyk

Implications of the theorem

• If α is constant, then accessing an open-
addressed hash table takes constant time.

• If the table is half full, then the expected
number of probes is 1/(1–0.5) = 2.

• If the table is 90% full, then the expected
number of probes is 1/(1–0.9) = 10.

