| ntroduction to Algorithms
6.046J/18.401J

ALGORITHMS

Lecture 7/
Prof. Piotr Indyk

ALGORITHMS

“w~ Data Structures

 Role of data structures:
— Encapsulate data

— Support certain operations (e.g., INSERT,
DELETE, SEARCH)

» Our focus: efficiency of the operations
» Algorithmsvs. data structures

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.2

ALGORITHMS

Symbol-table problem

\ -

Symbol table T holding n records:

record _
X — Operationson T:

key[x

X 2 INSERT(T, X)
Other fields * DE-ETE(T. X)
. containing ° SEARCH(T, K)
satellite data

%

How should the data structure T be organized?

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.3

ALGORITHMS

\

' Direct-accesstable

| DEA: Suppose that the set of keysis
KDO{0,1, ..., m1}, and keys are distinct.
Set upanarray T[O .. m-1]:
TIK :{x if k 0 Kand key[X] =k,
NIL otherwise.
Then, operations take ©(1) time.

Problem: The range of keys can be large:

* 64-bit numbers (which represent
18,446,744,073,709,551,616 different keys),

e character strings (even larger!).

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.4

AAAAAAAAAA

H Hash functions

Solution: Use a hash function h to map the
universe U of all keysinto T
{0,1,..., m-1}: 0

N(k,)
N(k,)

h(k;) = h(ks)
h(ks)

m—1

When a record to be inserted maps to an already
occupied slot in T, acollision occurs.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.5

ALGORITHMS

m= Resolving collisions by
= chaining

e Records in the same dot arelinked into alist.
T

h(49) = h(86) = h(52) = |

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.6

ALGORITHMS

Analysis of chaining

i
\ e 41‘,
A\ ‘i‘

We make the assumption of simple uniform

hashing:

e Each key k [] K of keysisequally likely to
be hashed to any slot of table T, iIndependent
of where other keys are hashed.

L et n be the number of keys in the table, and
let m be the number of dlots.

Define the load factor of T to be
a =n/m
= average number of keys per dlot.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.7

Expected time to search for arecord with
agivenkey =0O(1+ a).

N

apply hash search
function and the list
access dlot

Expected search time=0O(1) if a = O(1),
or equivalently, if n=0O(m).

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.8

~~" Choosing a hash function

The assumption of simple uniform hashing
IS hard to guarantee, but several common
techniques tend to work well in practice as
long as their deficiencies can be avoided.

Desir ata:

* A good hash function should distribute the
keys uniformly into the slots of the table.

e Regularity in the key distribution should
not affect this uniformity.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.9

ALGORITHMS

s Division method

| pa e

Assume all keys are integers, and define
h(k) = k mod m.

Deficiency: Don't pick an mthat has a small

divisor d. A preponderance of keysthat are

congruent modulo d can adversely affect
uniformity.

Extremedeficiency: If m= 2", then the hash

doesn’'t even depend on all the bits of k:

* If k=1011000111011010, and r = 6, then
h(k) = 011010, . h(k)

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.10

=~ Divison method (continued)

h(k) = k mod m.

Pick mto be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
In the computing environment.

Annoyance:
« Sometimes, making the table size aprimeis
Inconvenient.

But, this method is popular, although the next
method we'll see is usually superior.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.11

ALGORITHMS

Multiplication method

i
\ e 41‘,
A\ ‘i‘

Assume that all keys are integers, m= 2", and our
computer has w-bit words. Define

h(k) = (A-k mod 2%) rsh (w—r),
where rsh is the “ bit-wise right-shift” operator
and A isan odd integer in therange 2%t < A< 2%,

e Don't pick A too closeto 2V,
e Multiplication modulo 2% isfast.
* The rsh operator isfast.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.12

ALGORITHMS

@==» Multiplication method
h(k) = (A-k mod 2%) rsh (w —r)
Suppose that m = 8 = 2% and that our computer
has w = 7-bit words;

1011001 _ 4
X 1101011 _

10010100110011
——

h(k) A

Modular wheedl

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.13

ALGORITHMS

Dot-product method

Randomized strategy:

Let mbe prime. Decomposekey kKintor + 1
digits, each with valueintheset {0, 1, ..., m-1}.
That is, let k= (k,, ky, ..., K.), where0O<k <m.

Picka=(a, a,, ..., a,,) where each a, Is chosen
randomly from {0, 1, ..., m-1}.

——

I
Define hy (k) =) aki modm.
1=0
* Excellent In practice, but expensive to compute.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.14

ALGORITHMS

= A weakness of hashing “aswe

\ ,,,;i% \

' saw It”

Problem: For any hash function h, a set

of keys exists that can cause the average

access time of a hash table to skyrocket.

» An adversary can pick all keysfrom
{kJU :nh(k) =1} for somedot .

|DEA: Choose the hash function at random,

Independently of the keys.

* Even If an adversary can see your code,
he or she cannot find a bad set of keys,
since he or she doesn’t know exactly
which hash function will be chosen.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.15

ALGORITHMS

| Universal hashing

\

w;\ ‘i‘

Definition. Let U be auniverse of keys, and
let H be afinite collection of hash functions,
each mappingU to {0, 1, ..., m-1}. We say
H I1suniversal if for al x, y L U, wherex #,
wehave {h L H: h(x)=h(y)}|=|H|/m.

That is, the chance

of acollision {h: h(x) = h(y)} H
between x and y is

1/mif we choose h

randomly from H. % { S~

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.16

ALGORITHMS

Universality is good

i
\ e 41‘,
A\ ‘i‘

Theorem. Let h be ahash function chosen
(uniformly) at random from a universal set H
of hash functions. Suppose h is used to hash
n arbitrary keys into the mslots of atable T.
Then, for agiven key x, we have

E[#collisions with X] < n/m.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.17

AAAAAAAAAA

M Proof of theorem

A
N

Proof. Let C, be the random variable denoting
the total number of collisions of keysin T with

“and et |
A 1 i) = hey),
~ L 0 otherwise.

Note: E[c,] =LUmand C, =) .
yuT ~{ %}

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.18

= Proof (continued)

E[C,1=E D, Cy « Take expectation
yOIT ~{ %} of both sides.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.19

ALGORITHMS

Proof (continued)

o —_

E[C,1=E D, Cy « Take expectation

yOT{x} of both sides.
=) Elcy] e Linearity of
yOT ~{ %} expectation.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.20

ALGORITHMS

T Pr oof (continued)

E[C,]=E| 2 cy » Take expectation

yaT{x} | of both sides.
=) Elc,] e Linearity of
yOT ~{ %} expectation.
= > 1/m * E[c,] = Um.
yuT ~{ %}

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.21

ALGORITHMS

Proof (continued)

o —_

E[C,=E| Q. Cy » Take expectation

YT} | of both sides.
=) Elcy] e Linearity of
yOT ~{ %} expectation.
= > 1/m * E[c,] = Um.
yaT {3
-n-1 * Algebra.
m

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.22

ALGORITHMS

@ Constructing a set of
~> universal hash functions

Let mbe prime. Decomposekey kintor + 1
digits, each withvalueintheset {0, 1, ..., m-1}.
Thatis, let k= (ky, k;, ..., K), where0 < k; <m.

Randomized strategy:

Picka=(a, a,, ..., &) where each &, Is chosen
randomly from {0, 1, ..., m-1}.

r
| — k. Dot product,

Define h, (k) izz(:)a.k, modm. =~

How bigisH ={h_}? [H|=m*% _$EII\/ISI!EMBER

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.23

ALGORITHMS

ws= Universality of dot-product
= hash functions

Theorem. Theset H ={h_} isuniversal.
Proof. Suppose that

X = (Xg, Xq, ---, %) @Nd
= Yo Yy, ---» Y,y @edistinct keys. Thus,
they differ in at least one digit position, wilog
position 0. For how many h, [J H do xandy
collide?

() =ha(b) = Yax =D 3y, (modm)

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.24

ALGORITHMS

T Pr oof (continued)

Equivalently, we have
I
2.8 (% —y)=0 (modm)
=0

or r
ay(X — Yo) + D a (% —y;)=0 (modm),
1=1

which implies that r
(X~ Yo) =—D_a(% —V;) (modm).
1=1

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.25

ALGORITHMS

s Fact from number theory

Theorem. Let mbeprime. Forany z[J Z _
such that z# O, there existsauniquez* [1 Z
such that

z-z*=1 (modm).

Example m=7.
Z 1 2 3 4 5 6
z'1'1 4 5 2 3 6

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.26

AAAAAAAAAA

M Back to the proof

We have r
3%~ Yo) =D a (% —Y;) (modm),
1=1

and since X, # Y, an inverse (X, — Y,)™ must exist,
which implies that

Cly E(—Za(& ~ yi)] (X~ Yo)™" (modm).
1=1

Thus, for any choicesof a,, a,, ..., a,, exactly
one choice of a, causes x and y to collide.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.27

ALGORITHMS

| Proof (completed)

\

w;\ ‘i‘

Q.How many h,’s cause x and y to collide?

A. Thereare mchoicesfor each of a,, a,, ..., a,,
but once these are chosen, exactly one choice
for a, causes x and y to collide, namely

8y = [(‘Z& (% =Y)] (X — yo)‘1] mod m.
1=1

Thus, the number of h,’'sthat cause x and y
tocollideism' - 1 =m = |H|/m.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.28

ALGORITHMS

B Perfect hashing

Given a set of n keys, construct a static hash
table of size m = O(n) such that SEARCH takes
©(1) timein the worst case.

T
|DEA: TWO- . ?&
level scheme - -
. . 1431 14|27
with universal N
hashi ng at 3 S, h3;(14) = hy(27) =1
both levels. 4100 26] S
No collisions > - - ~
6 (9186 40 |37 22
at level 2!
m a 012 3 456 7 8

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.29

ALGORITHMS

" Coallisions at level 2

Theorem Let H be aclass of universal hash
functionsfor atable of sizem=n? Then, if we
use arandom h [J H to hash n keys into the table,
the expected number of collisionsisat most 1/2.

Proof. By the definition of universality, the
probability that 2 given keysin the table collide
under his 1/m = 1/n2. Sincethereare (7] pairs
of keysthat can possibly collide, the expected
number of collisionsis

(n]%:n(n 1) 1 .1

2 2 n2 2

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.30

ALGORITHMS

<" Nocollisonsat level 2

Corollary. The probability of no collisions
IS at least 1/2.

Proof. Markov'sinequality saysthat for any
nonnegative random variable X, we have

Pr{X >t} < E[X]/.
Applying thisineguality witht = 1, we find
that the probability of 1 or more collisionsis
al most 1/2.

Thus, just by testing random hash functions
in H, we'll quickly find one that works.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.31

ALGORITHMS

~o" Analysisof storage

For the level-1 hash table T, choose m = n, and
let n. be random variable for the number of keys
that hashto sloti in T. By using n? slotsfor the
level-2 hash table S, the expected total storage
required for the two-level scheme is therefore

m-=1
el Y o(n?)|=oe(m),
i=0

since the analysisisidentical to the analysis from
recitation of the expected running time of bucket
sort. (For aprobability bound, apply Markov.)

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.32

@ Resolving collisions by open
=" addressing

No storage is used outside of the hash table itself.

* |nsertion systematically probes the table until an
empty slot isfound.

* The hash function depends on both the key and
probe number:
h:Ux{01,.. m1} - {01, ..., m1}.
 The probe sequence (h(k,0), h(k,1), ..., h(k,-1))
should be a permutation of {0, 1, ..., m-1}.
 The table may fill up, and deletion is difficult (but
not iImpossible).

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.33

ALGORITHMS

s Example of open addressing

Insert key k = 496:

T
0. Probe h(496,0) ’
586
\ o
204 || collision
481
m-1

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.34

ALGORITHMS

s Example of open addressing

Insert key k = 496: T
0. Probe h(496,0) o
1. Probe h(496,1) JEs8eEg collision
204
481
m-1

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.35

“~" Example of open addressing

Insert key k = 496: T

0. Probe h(496,0)
1. Probe h(496,1)

2. Probe h(496,2) \

Insertion

m—1

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.36

ALGORITHMS

\ .
AR

-

,,LT\‘ ”

Search for key k = 496:

0.
1.
2.

Probe
Probe
Probe

N(496,0)
N(496,1)

N1(496,2)

Example of open addressing

§

Search uses the same probe
seguence, terminating suc-
cessfully if it finds the key
and unsuccessfully If 1t encounters an empty slot.

© Charles Leiserson and Piotr Indyk

Introduction to Algorithms

February 27,2003 L7.37

ALGORITHMS

Probing strategies

i
\ e 41‘,
A\ ‘i‘

L inear probing:

Given an ordinary hash function h'(k), linear
probing uses the hash function

h(k,i) = (h'(K) + i) mod m.

This method, though ssmple, suffers from primary
clustering, where long runs of occupied slots build
up, Increasing the average search time. Moreover,
the long runs of occupied slots tend to get longer.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.38

ALGORITHMS

Y Pr obing strategies

\
AR

Double hashing

Given two ordinary hash functions h,(k) and h,(k),
double hashing uses the hash function
h(k,i) = (hy(k) + 11,(k)) mod m.

This method generally produces excellent results,
but h,(k) must be relatively primeto m. One way
IS to make m a power of 2 and design h,(K) to
produce only odd numbers.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.39

ALGORITHMS

- Analysis of open addressing

o R ;
\ ,,,;f,‘,,
“““

We make the assumption of uniform hashing:

* Each key is equally likely to have any one of
the m! permutations as its probe sequence.

Theorem. Given an open-addressed hash
table with load factor a = n/m< 1, the
expected number of probes in an unsuccessful

search isat most 1/(1-).

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.40

R Proof of the theorem

AR \ : —

Proof.
» At least one probe is always necessary.
* With probability n/m, the first probe hits an
occupied slot, and a second probe Is necessary.
* With probability (n—1)/(m-1), the second probe
hits an occupied slot, and athird probeis
necessary.

e With probability (n—2)/(m-2), the third probe
hits an occupied slot, etc.

Observethat "~ <N =g fori=1 2 ... n
m-i m

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.41

ALGORITHMS

T Pr oof (continued)

Therefore, the expected number of probesis

1+;(1+ r’:]‘_ll(“ ;:22(“'(“ m—ln +1)m
<l+a(l+a(l+a(--1+a)-)))
<l+a+al+a3+--

=).a The textbook has a
| :(1) Mor e rigorous proof.
l1-a

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.42

ALGORITHMS

' Implications of the theorem

o R ;
\ ,,,;f,‘,,
“““

e |f a Is constant, then accessing an open-
addressed hash table takes constant time.

o |f the table is half full, then the expected
number of probesis 1/(1-0.5) = 2.

o |f the table 1s 90% full, then the expected
number of probesis 1/(1-0.9) = 10.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 27,2003 L7.43

