Introduction to Algorithms 6.046J/18.401J

Lecture 6

Prof. Piotr Indyk

Order statistics

Select the i th smallest of n elements (the element with rank i).

- $i=1$: minimum;
- $i=n$: maximum;
- $i=\square(n+1) / 2 \square$ or $\square(n+1) / 2 \square$ median.

Naive algorithm: Sort and index i th element. Worst-case running time $=\square(n \lg n)+\square(1)$

$$
=\square(n \lg n),
$$

using merge sort.

neomas Randomized divide-andconquer

$\operatorname{Rand}-\operatorname{Select}(A, p, q, i) \quad$ _ i th smallest of $A[p \ldots q]$
if $p=q$ then return $A[p]$
$r \square$ Rand-Partition (A, p, q)
$k \square r-p+1 \quad-k=\operatorname{rank}(A[r])$
if $i=k$ then return $A[r]$
if $i<k$
then return $\operatorname{Rand}-\operatorname{Select}(A, p, r-1, i)$
else return $\operatorname{Rand}-\operatorname{Select}(A, r+1, q, i-k)$

© Charles Leiserson and Piotr Indyk

Example

Select the $i=7$ th smallest:

Partition:

Select the 7-4 $=3$ rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.)
Lucky:

$$
\begin{aligned}
T(n) & =T(9 n / 10)+\square(n) & & n^{\log _{10 / 9} 1}=n^{0}=1 \\
& =\square(n) & & \text { CASE } 3
\end{aligned}
$$

Unlucky:

$$
T(n)=T(n-1)+\square(n) \quad \text { arithmetic series }
$$

$$
=\square\left(n^{2}\right)
$$

Worse than sorting!

Analysis

- The probability that a random pivot induces lucky partition is at least $8 / 10$ (Lecture 4)
- Let t_{i} be the number of partitions performed between the (i-1)-th and the i-th lucky partition
- The total time is at most:

$$
t_{1} n+t_{2}(9 / 10) n+t_{3}(9 / 10)^{2} n+\ldots
$$

- The total expected time is at most:

$$
\begin{aligned}
& 10 / 8 n+10 / 8(9 / 10) n+10 / 8(9 / 10)^{2} n+\ldots \\
= & O(n)
\end{aligned}
$$

Alternative analysis of expected time

The analysis follows that of randomized quicksort, but it's a little different.

Let $T(n)=$ the random variable for the running time of Rand-Select on an input of size n, assuming random numbers are independent.
For $k=0,1, \ldots, n-1$, define the indicator random variable
$X_{k}=\left\{\begin{array}{l}1 \text { if Partition generates a } k: n-k-1 \text { split, }\end{array}\right.$ 0 otherwise.

Analysis (continued)

To obtain an upper bound, assume that the i th element always falls in the larger side of the partition:

$$
\begin{aligned}
T(n) & =\left\{\begin{array}{cl}
T(\max \{0, n-1\})+\square(n) & \text { if } 0: n-1 \text { split, } \\
T(\max \{1, n-2\})+\square(n) & \text { if } 1: n-2 \text { split, } \\
\vdots \\
T(\max \{n-1,0\})+\square(n) & \text { if } n-1: 0 \text { split, }
\end{array}\right. \\
& =\square_{k=0}^{n \square 1} X_{k}(T(\max \{k, n \square k \square 1\})+\square(n)) .
\end{aligned}
$$

ㅊ․․ Calculating expectation

$$
E[T(n)]=E_{\left[\prod_{k=0}^{n \square 1}\right.}^{\prod_{k}^{1}} X_{k}(T(\max \{k, n \square k \square 1\})+\square(n))
$$

Take expectations of both sides.

Calculating expectation

Linearity of expectation.

Calculating expectation

$$
\begin{aligned}
E[T(n)] & =E \square_{\square k=0}^{\square \square 1} X_{k}(T(\max \{k, n \square k \square 1\})+\square(n)) \\
& =\prod_{k=0}^{n \square 1} E\left[X_{k}(T(\max \{k, n \square k \square 1\})+\square(n))\right] \\
& =\prod_{k=0}^{n \square 1} E\left[X_{k}\right] \cdot E[T(\max \{k, n \square k \square 1\})+\square(n)]
\end{aligned}
$$

Independence of X_{k} from other random choices.

Calculating expectation

$$
\begin{aligned}
E[T(n)] & \left.=E \prod_{[k=0}^{\square \square 1} X_{k}(T(\max \{k, n \square k \square 1\})+\square(n))\right] \\
& =\prod_{k=0}^{n \square} E\left[X_{k}(T(\max \{k, n \square k \square 1\})+\square(n))\right] \\
& =\prod_{k=0}^{n \square 1} E\left[X_{k}\right] \cdot E[T(\max \{k, n \square k \square 1\})+\square(n)] \\
& =\frac{1}{n} \prod_{k=0}^{n \prod 1} E[T(\max \{k, n \square k \square 1\})]+\frac{1}{n} \prod_{k=0}^{n \square 1} \square(n)
\end{aligned}
$$

Linearity of expectation; $E\left[X_{k}\right]=1 / n$.

Calculating expectation

$$
\begin{aligned}
& \left.E[T(n)]=E \prod_{k=0}^{\square \square]_{k}^{n}} X_{k}(T(\max \{k, n \square k \square 1\})+\square(n))\right] \\
& =\prod_{k=0}^{n \square 1} E\left[X_{k}(T(\max \{k, n \square k \square 1\})+\square(n))\right] \\
& =\prod_{k=0}^{n \square 1} E\left[X_{k}\right] \cdot E[T(\max \{k, n \square k \square 1\})+\square(n)] \\
& =\frac{1}{n} \prod_{k=0}^{n \square 1} E[T(\max \{k, n \square k \square 1\})]+\frac{1}{n} \prod_{k=0}^{n \square 1} \square(n) \\
& \square \frac{2}{n_{k}} \prod_{k=\square / 2 \square}^{n \square 1} E[T(k)]+\square(n) \\
& \begin{array}{l}
\text { Upper terms } \\
\text { appear twice. }
\end{array}
\end{aligned}
$$

Hairy recurrence

(But not quite as hairy as the quicksort one.)

$$
E[T(n)]=\frac{2}{n} \prod_{k=\square / 2}^{n} E[T(k)]+\square(n)
$$

Prove: $E[T(n)] \square c n$ for constant $c>0$.

- The constant c can be chosen large enough so that $E[T(n)] \square c n$ for the base cases.

Use fact:

$$
\begin{gathered}
n \square 1 \\
\square=\square^{n / 2} k \square
\end{gathered}
$$

Substitution method

Substitute inductive hypothesis.

Substitution method

$$
\begin{aligned}
& E[T(n)] \square \frac{2}{n} \square_{k=\square / 2}^{n} c k+\square(n) \\
& \square \frac{2 c}{n}=\frac{3}{\#} n^{2}-\square+(n)
\end{aligned}
$$

Use fact.

Substitution method

$$
\begin{aligned}
& E[T(n)] \square \square^{2} \\
& n_{k=\square} / 2 \square \\
& \square \frac{2 c}{n} \neq 8 n^{2}-\square+(n)
\end{aligned}
$$

Express as desired - residual.

Substitution method

$$
\Pi c n,
$$

if c is chosen large enough so that $\mathrm{cn} / 4$ dominates the $\square(n)$.

$$
\begin{aligned}
& E[T(n)] \square \frac{2}{n} \square_{k=\nabla^{k} / 2}^{n} c k+\square(n) \\
& \square \frac{2 c}{n}=\frac{3}{=8} n^{2}-\square(n)
\end{aligned}
$$

\therefore Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is very bad: $\square\left(n^{2}\right)$.
Q. Is there an algorithm that runs in linear time in the worst case?
A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

Idea: Generate a good pivot recursively.

ALGORITHM Worst-case linear-time order statistics

$\operatorname{Select}(i, n)$

1. Divide the n elements into groups of 5 . Find the median of each 5 -element group by rote.
2. Recursively Select the median x of the $[7 / 5 \square$ group medians to be the pivot.
3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$.
4. if $i=k$ then return x
elseif $i<k$
then recursively Select the i th smallest element in the lower part

Same as
RandSelect
else recursively Select the $(i-k)$ th smallest element in the upper part \int

Choosing the pivot

Choosing the pivot

1. Divide the n elements into groups of 5 .

…… Choosing the pivot

1. Divide the n elements into groups of 5. Find lesser the median of each 5-element group by rote.

Choosing the pivot

1. Divide the n elements into groups of 5 . Find lesser the median of each 5 -element group by rote.
2. Recursively Select the median x of the $\square n / 5 \square$ i group medians to be the pivot.

Analysis

At least half the group medians are $\square x$, which lesser is at least $\square \square / 2 \square / 2 \square=\square \eta / 10 \square$ group medians.

greater

Analysis (Assume all elements are distinct.)

At least half the group medians are $\square x$, which lesser is at least $\square \square / 2 \square / 2 \square=\square \eta / 10 \square$ group medians.

- Therefore, at least $3 \square n / 10 \square$ elements are $\square x$.

Analysis (Assume all elements are distinct.)

At least half the group medians are $\square x$, which lesser is at least $\square \square n / 5 \square / 2 \square=\square n / 10 \square$ group medians.

- Therefore, at least $3 \square n / 10 \square$ elements are $\square x$.
- Similarly, at least $3 \square n / 10 \square$ elements are $\geq x$. greater

Minor simplification

- For $n \geq 50$, we have $3 \square n / 10 \square \geq n / 4$.
- Therefore, for $n \geq 50$ the recursive call to Select in Step 4 is executed recursively on $\square 3 n / 4$ elements.
- Thus, the recurrence for running time can assume that Step 4 takes time $T(3 n / 4)$ in the worst case.
- For $n<50$, we know that the worst-case time is $T(n)=\square(1)$.

Developing the recurrence

$T(n) \quad \operatorname{Select}(i, n)$
$\square(n)\{1$. Divide the n elements into groups of 5 . Find the median of each 5 -element group by rote. $T(n / 5)\left\{\begin{array}{l}\text { 2. Recursively SeLECT the median } x \text { of the }\lceil n / 5 \square \\ \text { group medians to be the pivot. }\end{array} \square(n) \quad\right.$ 3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$. 4. if $i=k$ then return x elseif $i<k$ then recursively Select the i th smallest element in the lower part else recursively Select the $(i-k)$ th smallest element in the upper part

Solving the recurrence

$$
T(n)=T \mathrm{~B}_{5}^{\square} n \mathrm{~B}^{\mathrm{\theta}}+T \mathrm{~B}_{4}^{3} n \mathrm{~B}^{\mathrm{B}}+\square(n)
$$

Substitution:
$T(n) \square c n$

$$
\begin{aligned}
T(n) & \square \frac{1}{5} c n+\frac{3}{4} c n+\square(n) \\
& =\frac{19}{20} c n+\square(n) \\
& =c n \square \exists 1-c n \square \square(n) E \\
& \square c n,
\end{aligned}
$$

if c is chosen large enough to handle both the $\square(n)$ and the initial conditions.

Conclusions

- Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of n is large.
- The randomized algorithm is far more practical.

Exercise: Why not divide into groups of 3?

