Introduction to Algorithms
6.046J/18.401J

ALGORITHMS

AR

L i VUM B Sl S
| Thy f
- B
v =t
= S
o ~
| THOMAS H. CORMEN
CHARLES E LEISERSON
RONALD L. RIVEST
CLIFFORD STEIN

Lecture 6
Prof. Piotr Indyk

“ 4~ Order statistics
Select the ith smallest of 7 elements (the
element with rank i).
o= 1: minimum;

° | = n: maximum;
«i=|(nt1)/2] or [(nt1)/2]: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = O(n lg n) + (1)
= Q(n 1g n),

using merge sort.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.2

ALGORITHMS

i Randomized divide-and-
=3 conquer

RAND-SELECT(A4, p, g, 1) _ ith smallest of A[p. ¢g]

if p = ¢ then return 4| p]
7 <= RAND-PARTITION(A, p, q)

k<—r—p+1 _ k=rank(A[r])
if / =/ then return 4| r|
if 1<k

then return RAND-SELECT(A, p, r — 1, 1)
else return RAND-SELECT(A, r + 1, g, 1 — k)

—f—>

< A|r] > A|r]
P v q

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.3

AAAAAAAAAA

= 4+ Example

Select the / = 7th smallest:

6 |10 13| 5 |8 | 3 |2 |11} i=7
pivot

Partition:

2 15|36 |8 |13/10/11}) k=4

G _J
Y

Select the 7 — 4 = 3rd smallest recursively.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.4

~ .+~ Intuition for analysis

(All our analyses today assume that all elements
are distinct.)

Lucky:
T(n) = T(91/10) + O(n) ngionl = 0 =1
= 0(n) CASE 3
Unlucky:
I(n)=T(n—1)+ O(n) arithmetic series
= O(n?)

Worse than sorting!

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.5

ALGO‘I\{‘I“%\HMS

at Analys1s

“\ A

» The probability that a random pivot induces lucky
partition 1s at least 8//0 (Lecture 4)

 Let 7,be the number of partitions performed
between the (i-/)-th and the i-th lucky partition

* The total time 1s at most:
t,n+1t,(910)n+t;(9/10)°n + ..
* The total expected time 1s at most:
10/8n + 10/8 (9/10) n + 10/8 (9/10)° n + ...
=Q0(n)

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25, 2003

L6.6

AL GGGGGGGG

tlme

The analysis follows that of randomized
quicksort, but 1t’s a little different.

Let 7(n) = the random variable for the running
time of RAND-SELECT on an 1nput of size 7,
assuming random numbers are independent.

For k=0, 1, ..., n—1, define the indicator
random variable

Y — { | 1f PARTITION generates a & : n—k—1 split,
0 otherwise.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.7

f \ Analysis (continued)

To obtain an upper bound, assume that the ith
clement always falls 1n the larger side of the
partition:

C T(max{0, n—1})+ O(n) 1f0:n—1 split,

T(n) = < T(m:ax{l, n—-24)+0(n) 1t 1:n-2 split,

_I(max{n—1,0})+ O(n) 1f n—1:0 split,

—~ nz_le (T(max{k,n -k -1}) + ©(n)).

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.8

ALGORITHMS

\‘-_m

_— Calculatlng expectation

“\‘ y

E[T(n)] = EXk (T(max {k,n -k -1}) + O(n))

Take expectations of both sides.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.9

AAAAAAAAAA

Calculatlng expectation

r
s
\
n

INTRODUCTION

\‘ \‘

E[T(n)] = EXk (T(max{k,n -k -1}) + O(n))

_ g E[x, (T(max {k,n -k - 1}) + O(n))]
k=0

Linearity of expectation.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.10

“ .~ Calculating expectation

E[T(n)] = EXk(T(max{k n—k-1)+0(n))
2 E[X, (T (max{k,n - k - 1}) + ©(n))]
k=0

21 |x, | E[T(max{k,n -k -1}) + ©(n)_
k=0

Independence of X, from other random
choices.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.11

AAAAAAAAAA

-+ Calculating expectation

E[T(n)] = EXk (T(max{k,n -k -1}) + O(n))

2 E[X, (T(max {k,n — k -1}) + ©(n))]
k=0

N Elx, | E[T(max{k,n -k -1}) + O(n)
k=0

’SE[T(max{k n—k-1)]+1 E@(n)

”k=o

Linearity of expectation; £|.X, | = 1/n.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.12

AAAAAAAAAA

~ 4~ Calculating expectation

E[T(n)] = EXAﬂmM%n k-1})+0O(n))
j[@@mm%nkm+mmﬂ
k=0

_1DQ]Eﬁmmﬂkn k-11) +0(n)]

k=0
l [T(max{k n—k- 1})]+ 1 E@(n)
M E=0 =0
n-1
<2

7 k=%/§J[T(k)]+ @(I/l) Upper terms
appear twice.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.13

AAAAAAAAAA

f

“\‘

E[T(m)]=2 " E[T(k)]+O(n)

Prove: E[71(n)] = cn for constant ¢ > 0.

 The constant ¢ can be chosen large enough
so that £[7(n)]| = c¢n for the base cases.

Use fact: E K < (exercise).
=|n/2|

© Charles Leiserson and Piotr Indyk Intr oductzon to Algorithms February 25,2003 L6.14

“ <~ Substitution method
o

E|T(n)]< 1% E ck + O(n)
k=|n/2|

Substitute inductive hypothesis.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.15

ALGORITHMS

f‘»\\‘\ Substitution method

E[T(n)]<2 E ck +0(n)
g _ [7/2]
2c

<

) 2)+®(n)

Use fact.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.16

AAAAAAAAAA

\- Substitution method

n—1
E[T(m]<? N ck+0(n)
nk=[n/2
< 2¢(3,2)
=" 8n)+®(n)
=cn—(czl—®(n))

Express as desired — residual.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms

February 25,2003 L6.17

ALGORITHMS

\‘ Substitution method

if ¢ 1s chosen large enough so
that cn/4 dominates the ©O(n).

© Charles Leiserson and Piotr Indyk Introduction to Algorithms

February 25,2003 L6.18

ALGORITHMS

Summary of randomized
e \“ ° ° °
~*' order-statistic selection

v
-
N

* Works fast: linear expected time.
* Excellent algorithm 1n practice.
* But, the worst case is very bad: ©(»°).

0. Is there an algorithm that runs 1n linear
time 1n the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDEA: Generate a good pivot recursively.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.19

AL GGGGGGGG

w7 statistics
SELECT(Z, n)

1. Divide the » elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | n/5 |
group medians to be the pivot.

3. Partition around the pivot x. Let k& = rank(x).)

4.1if i =k then return x

elseif i <k Same as
then recursively SELECT the ith > RAND-
smallest element 1n the lower part SELECT

else recursively SELECT the (i—k)th
smallest element 1n the upper part

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.20

ALGORITHMS

E Choosing the pivot

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.21

ALGORITHMS

Choosing the pivot

“\‘?
@ @
@ @
@ @
@ @
@ @
1.D

ivide the » elements into groups of 5.

© Charles Leiserson and Piotr Indyk

Introduction to Algorithms

February 25, 2003

L6.22

GO THMS

‘\-’ Choosing the pivot

W

1. Divide the » elements into groups of 5. Find ‘esser
the median of each 5-element group by rote. I

greater

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 1L6.23

ALGORITHMS

~ &~ Choosing the pivot

%S

i
X ‘0 ‘0

1. Divide the » elements into groups of 5. Find ‘esser
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | n/5 | I
group medians to be the pivot. greater

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.24

GO THMS

‘\. Analysis

WY e

) ‘Q)

»®

At least half the group medians are < x, which ~ /esser
is at least | |n/5| /2| =|n/10| group medians. I

greater

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.25

GO THMS

\\ An aIYSlS (Assume all elements are distinct.)

“\‘ e

—=t—
SNENE So

At least half the group medians are < x, which ~ /esser
is at least | |n/5| /2| =|n/10| group medians. I

» Therefore, at least 3 | 7/10 | elements are < x.

greater

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.26

GO THMS

\\ AnaIYSlS (Assume all elements are distinct.)

(o

s

: —ip =
G YO YO W 0 Y

At least half the group medians are < x, which ~ /esser
is at least | |n/5| /2| =|n/10| group medians. I

» Therefore, at least 3 | 7/10 | elements are < x.
e Similarly, at least 3 | n/10| elements are = x. greater

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.27

ALcoii‘i%H“Ms

o “Minor simplification

)

* For n = 50, we have 3 | n/10]| = n/4.

e Theretfore, for n = 50 the recursive call to

SELECT 1n Step 4 1s executed recursively
on < 3n/4 elements.

* Thus, the recurrence for running time
can assume that Step 4 takes time 7(3n/4)
in the worst case.

* For n < 50, we know that the worst-case
time 1s 7(n) = O(1).

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 1L6.28

ALcoii‘i%H“Ms

'\\\‘ :

T (n)

— Developlng the recurrence

SELECT(Z, 1)

o(n) : 1. Divide the » elements into groups of 5. Find

1(n/5) =

O(n)

T(3n/4) <

the median of each 5-element group by rote.

- 2. Recursively SELECT the median x of the |7/5 |
group medians to be the pivot.

3. Partition around the pivot x. Let & = rank(x).

(4. if i =k then return x
elseif i <k
then recursively SELECT the ith
smallest element 1n the lower part

—

else recursively SELECT the (i—k)th
N smallest element 1n the upper part

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.29

g Solving the recurrence
() - T(l) N T(3) + O(n)

5 4
Substitution: I'(n) =< Lens3ens O(n)
1(n) = cn S 4
~ Dy O(n)
20

= CHn — (zlocn - @(n))

=Cn

5

if ¢ 1s chosen large enough to handle both the
®(n) and the 1nitial conditions.

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.30

AL(;oiii‘ﬂi‘i\hs

" Conclusmns

'\\\‘ :

° Smce the work at each level of recursion
1s a constant fraction (19/20) smaller, the
work per level 1s a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of 7 1s large.

* The randomized algorithm is far more
practical.

Exercise: Why not divide into groups of 3?

© Charles Leiserson and Piotr Indyk Introduction to Algorithms February 25,2003 L6.31

