Introduction to Algorithms 6.046J/18.401J

Prof. Piotr Indyk

Order statistics

Select the *i*th smallest of *n* elements (the element with *rank i*).

- *i* = 1: *minimum*;
- *i* = *n*: *maximum*;
- $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: *median*.

Naive algorithm: Sort and index *i*th element. Worst-case running time = $\Theta(n \lg n) + \Theta(1)$ = $\Theta(n \lg n)$,

using merge sort.

 $\ensuremath{\mathbb{C}}$ Charles Leiserson and Piotr Indyk

Randomized divide-andconquer

RAND-SELECT(A, p, q, i) _ *i*th smallest of A[p...q]if p = q then return A[p] $r \leftarrow \text{RAND-PARTITION}(A, p, q)$ $k \leftarrow r - p + 1$ _ k = rank(A[r])if i = k then return A[r]if i < k

then return RAND-SELECT(A, p, r-1, i) else return RAND-SELECT(A, r+1, q, i-k)

Select the i = 7th smallest:

Partition:

2 5 3 6 8 13 10 11
$$k = 4$$

Select the 7 - 4 = 3rd smallest recursively.

© Charles Leiserson and Piotr Indyk

Intuition for analysis

(All our analyses today assume that all elements are distinct.)

Lucky: $T(n) = T(9n/10) + \Theta(n)$ $= \Theta(n)$

 $n^{\log_{10/9} 1} = n^0 = 1$ CASE 3

Unlucky: $T(n) = T(n-1) + \Theta(n)$ $= \Theta(n^2)$

arithmetic series

Worse than sorting!

- The probability that a random pivot induces lucky partition is at least 8/10 (Lecture 4)
- Let t_i be the number of partitions performed between the *(i-1)*-th and the *i*-th lucky partition
- The total time is at most:

 $t_1 n + t_2 (9/10) n + t_3 (9/10)^2 n + \dots$

• The total *expected* time is at most:

 $\frac{10/8 n + 10/8 (9/10) n + 10/8 (9/10)^2 n + \dots}{= O(n)}$

Alternative analysis of expected time

The analysis follows that of randomized quicksort, but it's a little different.

Let T(n) = the random variable for the running time of RAND-SELECT on an input of size n, assuming random numbers are independent.

For k = 0, 1, ..., n-1, define the *indicator random variable*

 $X_{k} = \begin{cases} 1 & \text{if PARTITION generates a } k : n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$

Analysis (continued)

To obtain an upper bound, assume that the *i*th element always falls in the larger side of the partition:

partition: $T(n) = \begin{cases} T(\max\{0, n-1\}) + \Theta(n) & \text{if } 0: n-1 \text{ split,} \\ T(\max\{1, n-2\}) + \Theta(n) & \text{if } 1: n-2 \text{ split,} \\ \vdots \\ T(\max\{n-1, 0\}) + \Theta(n) & \text{if } n-1: 0 \text{ split,} \end{cases}$

$$= \sum_{k=0}^{n} X_k (T(\max\{k, n-k-1\}) + \Theta(n)).$$

© Charles Leiserson and Piotr Indyk

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n)\right)\right]$$

Take expectations of both sides.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n)\right)\right]$$
$$= \sum_{k=0}^{n-1} E\left[X_k \left(T(\max\{k, n-k-1\}) + \Theta(n)\right)\right]$$

Linearity of expectation.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n)\right)\right]$$

= $\sum_{k=0}^{n-1} E\left[X_k \left(T(\max\{k, n-k-1\}) + \Theta(n)\right)\right]$
= $\sum_{k=0}^{n-1} E\left[X_k\right] \cdot E\left[T(\max\{k, n-k-1\}) + \Theta(n)\right]$

Independence of X_k from other random choices.

$$\begin{split} E[T(n)] &= E\left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n)\right)\right] \\ &= \sum_{k=0}^{n-1} E\left[X_k \left(T(\max\{k, n-k-1\}) + \Theta(n)\right)\right] \\ &= \sum_{k=0}^{n-1} E\left[X_k\right] \cdot E\left[T(\max\{k, n-k-1\}) + \Theta(n)\right] \\ &= \frac{1}{n} \sum_{k=0}^{n-1} E\left[T(\max\{k, n-k-1\})\right] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \end{split}$$

Linearity of expectation; $E[X_k] = 1/n$.

© Charles Leiserson and Piotr Indyk

$$\begin{split} E[T(n)] &= E\left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n)\right)\right] \\ &= \sum_{k=0}^{n-1} E\left[X_k \left(T(\max\{k, n-k-1\}) + \Theta(n)\right)\right] \\ &= \sum_{k=0}^{n-1} E\left[X_k\right] \cdot E\left[T(\max\{k, n-k-1\}) + \Theta(n)\right] \\ &= \frac{1}{n} \sum_{k=0}^{n-1} E\left[T(\max\{k, n-k-1\})\right] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \\ &\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E\left[T(k)\right] + \Theta(n) \quad \text{Upper terms appear twice.} \end{split}$$

© Charles Leiserson and Piotr Indyk

Hairy recurrence

(But not quite as hairy as the quicksort one.)

$$E[T(n)] = \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \Theta(n)$$

Prove: $E[T(n)] \le cn$ for constant c > 0.

• The constant *c* can be chosen large enough so that $E[T(n)] \leq cn$ for the base cases.

Use fact:
$$\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \le \frac{3}{8}n^2 \quad (\text{exercise})$$

© Charles Leiserson and Piotr Indyk

 $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n)$

Substitute inductive hypothesis.

© Charles Leiserson and Piotr Indyk

 $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n)$ $\leq \frac{2c}{n} \left(\frac{3}{8}n^2\right) + \Theta(n)$

Use fact.

© Charles Leiserson and Piotr Indyk

$$E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n)$$
$$\leq \frac{2c}{n} \left(\frac{3}{8}n^2\right) + \Theta(n)$$
$$= cn - \left(\frac{cn}{4} - \Theta(n)\right)$$

Express as *desired – residual*.

© Charles Leiserson and Piotr Indyk

$$\begin{split} E[T(n)] &\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n) \\ &\leq \frac{2c}{n} \left(\frac{3}{8}n^2\right) + \Theta(n) \\ &= cn - \left(\frac{cn}{4} - \Theta(n)\right) \\ &\leq cn \,, \end{split}$$

if c is chosen large enough so that cn/4 dominates the $\Theta(n)$.

© Charles Leiserson and Piotr Indyk

Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is *very* bad: $\Theta(n^2)$.
- *Q.* Is there an algorithm that runs in linear time in the worst case?
- *A.* Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

IDEA: Generate a good pivot recursively.

Worst-case linear-time order statistics

Select(i, n)

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
- 3. Partition around the pivot x. Let $k = \operatorname{rank}(x)$.
- 4. if i = k then return x

elseif i < k

then recursively SELECT the *i*th smallest element in the lower part else recursively SELECT the (i-k)th smallest element in the upper part Same as Rand-Select

1. Divide the *n* elements into groups of 5.

© Charles Leiserson and Piotr Indyk

1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.

greater

© Charles Leiserson and Piotr Indyk

Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
Recursively SELECT the median *x* of the [*n*/5] group medians to be the pivot.

© Charles Leiserson and Piotr Indyk

Introduction to Algorithms

lesser

greater

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

greater

© Charles Leiserson and Piotr Indyk

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor \frac{n}{5} \rfloor / 2 \rfloor = \lfloor \frac{n}{10} \rfloor$ group medians. • Therefore, at least $3 \lfloor \frac{n}{10} \rfloor$ elements are $\leq x$.

greater

© Charles Leiserson and Piotr Indyk

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor \frac{n}{5} \rfloor / 2 \rfloor = \lfloor \frac{n}{10} \rfloor$ group medians.

- Therefore, at least $3 \lfloor n/10 \rfloor$ elements are $\leq x$.
- Similarly, at least $3 \lfloor n/10 \rfloor$ elements are $\ge x$.

© Charles Leiserson and Piotr Indyk

Introduction to Algorithms

lesser

greater

Minor simplification

- For $n \ge 50$, we have $3\lfloor n/10 \rfloor \ge n/4$.
- Therefore, for $n \ge 50$ the recursive call to SELECT in Step 4 is executed recursively on $\le 3n/4$ elements.
- Thus, the recurrence for running time can assume that Step 4 takes time *T*(3*n*/4) in the worst case.
- For n < 50, we know that the worst-case time is $T(n) = \Theta(1)$.

Developing the recurrence

Solving the recurrence

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{3}{4}n\right) + \Theta(n)$$

Substitution: $T(n) \le cn$

$$T(n) \leq \frac{1}{5}cn + \frac{3}{4}cn + \Theta(n)$$
$$= \frac{19}{20}cn + \Theta(n)$$
$$= cn - \left(\frac{1}{20}cn - \Theta(n)\right)$$

 $\leq C n$

if c is chosen large enough to handle both the $\Theta(n)$ and the initial conditions.

© Charles Leiserson and Piotr Indyk

Conclusions

- Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of *n* is large.
- The randomized algorithm is far more practical.

Exercise: Why not divide into groups of **3**?