Introduction to Algorithms 6.046J/18.401J

Lecture 4

Prof. Piotr Indyk

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).

Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

$\operatorname{Partition}(A, p, q) \triangleleft A[p \ldots q]$
$x \leftarrow A[p] \quad \triangleleft \operatorname{pivot}=A[p]$

Running time
 $=O(n)$ for n
 elements.

exchange $A[p] \leftrightarrow A[i]$ return i

Example of partitioning

6	5	13	10	8	3	2	11

6	5	3	10	8	13	2	11

Example of partitioning

6	5	13	10	8	3	2	11

6	5	3	10	8	13	2	11

Example of partitioning

Example of partitioning

6	5	3	2	8	13	10	11

Pseudocode for quicksort

Quicksort (A, p, r)
if $p<r$
then $q \leftarrow \operatorname{Partition}(A, p, r)$
Quicksort $(A, p, q-1)$
Quicksort $(A, q+1, r)$

Initial call: $\operatorname{QuicKsort}(A, 1, n)$

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let $T(n)=$ worst-case running time on an array of n elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$
\begin{aligned}
T(n) & =T(0)+T(n-1)+\Theta(n) \\
& =\Theta(1)+T(n-1)+\Theta(n) \\
& =T(n-1)+\Theta(n) \\
& \left.=\Theta\left(n^{2}\right) \quad \text { arithmetic series }\right)
\end{aligned}
$$

ㅊ․ㄱ Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

…․ Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

$T(n)$
…․ Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

\therefore … Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

\therefore … ${ }^{-}$Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

$$
T(n)=T(0)+T(n-1)+c n
$$

Best-case analysis

(For intuition only!)
If we're lucky, Partition splits the array evenly:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \\
& =\Theta(n \lg n) \quad(\text { same as merge sort })
\end{aligned}
$$

What if the split is always $\frac{1}{10}: \frac{9}{10}$?

$$
T(n)=T\left(\frac{1}{10} n\right)+T\left(\frac{9}{10} n\right)+\Theta(n)
$$

What is the solution to this recurrence?
\ldots Analysis of "almost-best" case
$T(n)$

Analysis of "almost-best" case

ㅊ..‥" Analysis of "almost-best" case

Analysis of "'almost-best" case

\therefore …" Analysis of "almost-best" case

$c n \log _{10} n \leq T(n) \leq c n \log _{10 / 9} n+O(n)$

Randomized quicksort

Idea: Partition around a random element. I.e., around $A[t]$, where t chosen uniformly at random from $\{p \ldots r\}$

Randomized Algorithms

- Algorithms that make decisions based on random coin flips.
- Can "fool" the adversary.
- The running time (or even correctness) is a random variable; we measure the expected running time.
- We assume all random choices are independent.
- This is not the average case !

"Paranoid" quicksort

- Will modify the algorithm to make it easier to analyze:
- Repeat:
- Choose the pivot at random
- Perform PARTITION
- Until the resulting split is lucky, i.e., not worse than 1/10: 9/10
- Recurse on both subarrays

Analysis

- Let $T(n)$ be an upper bound on the expected running time on any array of n elements
- Consider any input of size n
- The time needed to sort the input is bounded from the above by a sum of
- The time needed to sort the left subarray
- The time needed to sort the right subarray
- The number of iterations until we get a lucky split, times cn

Expectations

- By linearity of expectation:
$T(n) \leq \max T(i)+T(n-i)+E[\#$ partitions $] \bullet c n$
where maximum is taken over $i \in[n / 10,9 n / 10]$

- Therefore:

$$
T(n) \leq \max T(i)+T(n-i)+2 c n, i \in[n / 10,9 n / 10]
$$

Final bound

- Can use the recursion tree argument:
- Tree depth is $\Theta(\log n)$
- Total work at each level is at most $2 c n$
- The total expected time is $O(n \log n)$

Lucky partitions

- The probability that a random pivot induces lucky partition is at least $8 / 10$
(we are not lucky if the pivot happens to be among the smallest/largest $n / 10$ elements)
- If we flip a coin, with heads prob. $p=8 / 10$, the expected waiting time for the first head is $1 / p=10 / 8<2$

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from code tuning.
- Quicksort behaves well even with caching and virtual memory.

More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

$$
\begin{array}{ll}
L(n)=2 U(n / 2)+\Theta(n) & \text { lucky } \\
U(n)=L(n-1)+\Theta(n) & \text { unlucky }
\end{array}
$$

Solving:

$$
\begin{aligned}
L(n) & =2(L(n / 2-1)+\Theta(n / 2))+\Theta(n) \\
& =2 L(n / 2-1)+\Theta(n) \\
& =\Theta(n \lg n) \text { Lucky! }
\end{aligned}
$$

How can we make sure we are usually lucky?

Randomized quicksort analysis

Let $T(n)=$ the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For $k=0,1, \ldots, n-1$, define the indicator random variable
$X_{k}= \begin{cases}1 & \text { if Partition generates a } k: n-k-1 \text { split, } \\ 0 & \text { otherwise } .\end{cases}$
$E\left[X_{k}\right]=\operatorname{Pr}\left\{X_{k}=1\right\}=1 / n$, since all splits are equally likely, assuming elements are distinct.

Analysis (continued)

$$
\begin{aligned}
T(n) & =\left\{\begin{array}{c}
T(0)+T(n-1)+\Theta(n) \text { if } 0: n-1 \text { split, } \\
T(1)+T(n-2)+\Theta(n) \text { if } 1: n-2 \text { split, } \\
\vdots \\
T(n-1)+T(0)+\Theta(n) \text { if } n-1: 0 \text { split, }
\end{array}\right. \\
& =\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n)) .
\end{aligned}
$$

\therefore ․․ Calculating expectation

$$
E[T(n)]=E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right]
$$

Take expectations of both sides.

득 Calculating expectation

$$
\begin{aligned}
E[T(n)] & =E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right]
\end{aligned}
$$

Linearity of expectation.

Calculating expectation

$$
\begin{aligned}
E[T(n)] & =E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+T(n-k-1)+\Theta(n)]
\end{aligned}
$$

Independence of X_{k} from other random choices.

Calculating expectation

$$
\begin{aligned}
E[T(n)] & =E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+T(n-k-1)+\Theta(n)] \\
& =\frac{1}{n} \sum_{k=0}^{n-1} E[T(k)]+\frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)]+\frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\end{aligned}
$$

Linearity of expectation; $E\left[X_{k}\right]=1 / n$.

Calculating expectation

$$
\begin{aligned}
& E[T(n)]=E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
&=\sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
&=\sum_{k=0}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+T(n-k-1)+\Theta(n)] \\
&=\frac{1}{n} \sum_{k=0}^{n-1} E[T(k)]+\frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)]+\frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \\
&=\frac{2}{n} \sum_{k=1}^{n-1} E[T(k)]+\Theta(n) \quad \text { Summations have } \\
& \text { identical terms. }
\end{aligned}
$$

Hairy recurrence

$$
E[T(n)]=\frac{2}{n} \sum_{k=2}^{n-1} E[T(k)]+\Theta(n)
$$

(The $k=0,1$ terms can be absorbed in the $\Theta(n)$.)
Prove: $E[T(n)] \leq a n \lg n$ for constant $a>0$.

- Choose a large enough so that $a n \lg n$ dominates $E[T(n)]$ for sufficiently small $n \geq 2$.

Use fact: $\sum_{k=2}^{n-1} k \lg k \leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}$ (exercise).

Substitution method

$$
E[T(n)] \leq \frac{2}{n} \sum_{k=2}^{n-1} a k \lg k+\Theta(n)
$$

Substitute inductive hypothesis.

Substitution method

$$
\begin{aligned}
E[T(n)] & \leq \frac{2}{n} \sum_{k=2}^{n-1} a k \lg k+\Theta(n) \\
& \leq \frac{2 a}{n}\left(\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}\right)+\Theta(n)
\end{aligned}
$$

Use fact.

Substitution method

$$
\begin{aligned}
E[T(n)] & \leq \frac{2}{n} \sum_{k=2}^{n-1} a k \lg k+\Theta(n) \\
& \leq \frac{2 a}{n}\left(\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}\right)+\Theta(n) \\
& =a n \lg n-\left(\frac{a n}{4}-\Theta(n)\right)
\end{aligned}
$$

Express as desired - residual.

Substitution method

$$
\begin{aligned}
E[T(n)] & \leq \frac{2}{n} \sum_{k=2}^{n-1} a k \lg k+\Theta(n) \\
& =\frac{2 a}{n}\left(\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}\right)+\Theta(n) \\
& =a n \lg n-\left(\frac{a n}{4}-\Theta(n)\right) \\
& \leq a n \lg n
\end{aligned}
$$

if a is chosen large enough so that $a n / 4$ dominates the $\Theta(n)$.

- Assume

