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Quicksor t

• Proposed by C.A.R. Hoare in 1962.

• Divide-and-conquer algorithm.

• Sorts “ in place”  (like insertion sort, but not 
like merge sort).

• Very practical (with tuning).
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Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays 
around a pivot x such that elements in lower 
subarray ≤ x ≤ elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.

3. Combine: Trivial.

≤ x≤ x xx ≥ x≥ x

Key: Linear-time partitioning subroutine.
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xx

Running time
= O(n) for n
elements.

Running time
= O(n) for n
elements.

Partitioning subroutine
PARTITION(A, p, q) A[ p . . q] 

x ← A[ p] pivot = A[ p]
i ← p
for j ← p + 1 to q

do if A[ j] ≤ x
then i ← i + 1

exchangeA[i] ↔ A[ j]
exchangeA[ p] ↔ A[i]
return i

≤ x≤ x ≥ x≥ x ??
p i qj

Invariant:
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Example of par titioning

i j
66 1010 1313 55 88 33 22 1111
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Example of par titioning

66 1010 1313 55 88 33 22 1111

i j
66 55 1313 1010 88 33 22 1111
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Example of par titioning
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i j
66 55 1313 1010 88 33 22 1111
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Example of par titioning
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Example of par titioning
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Example of par titioning

66 1010 1313 55 88 33 22 1111

66 55 33 1010 88 1313 22 1111

66 55 1313 1010 88 33 22 1111

i j
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Example of par titioning

66 1010 1313 55 88 33 22 1111

66 55 33 1010 88 1313 22 1111

66 55 1313 1010 88 33 22 1111

i j
66 55 33 22 88 1313 1010 1111
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Example of par titioning

66 1010 1313 55 88 33 22 1111

66 55 33 1010 88 1313 22 1111

66 55 1313 1010 88 33 22 1111

66 55 33 22 88 1313 1010 1111

i
22 55 33 66 88 1313 1010 1111
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Pseudocode for  quicksor t

QUICKSORT(A, p, r)
if p < r

then q ← PARTITION(A, p, r)
QUICKSORT(A, p, q–1)
QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)
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Analysis of quicksor t

• Assume all input elements are distinct.

• In practice, there are better partitioning 
algorithms for when duplicate input 
elements may exist.

• Let T(n) = worst-case running time on 
an array of n elements.
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Worst-case of quicksor t

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has no elements.
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(arithmetic series)
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Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn
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Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(n)
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cn

T(0) T(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn
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cn

T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) T(n–2)
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cn

T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

Θ(1)

�
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cn

T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn
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cn

Θ(1) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

Θ(1) c(n–2)
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T(n) = Θ(n) + Θ(n2)
= Θ(n2)

h = n
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Best-case analysis
(For intuition only! )

If we’ re lucky, PARTITION splits the array evenly:

T(n) = 2T(n/2) + Θ(n)
= Θ(n lg n) (same as merge sort)

What if the split is always 10
9

10
1 : ?

( ) ( ) )()(
10
9

10
1 nnTnTnT Θ++=

What is the solution to this recurrence?
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Analysis of “ almost-best”  case

)(nT
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Analysis of “ almost-best”  case
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Analysis of “ almost-best”  case
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Analysis of “ almost-best”  case
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log10n

Analysis of “ almost-best”  case
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O(n) leavesO(n) leaves
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Randomized quicksor t

IDEA: Partition around a random element. 
I.e., around A[t] , where t chosen 
uniformly at random from {p…r}
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Randomized Algor ithms

• Algorithms that make decisions based on 
random coin flips.

• Can “ fool” the adversary.

• The running time (or even correctness) is a 
random variable; we measure the expected
running time.

• We assume all random choices are 
independent .

• This is not the average case !
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“ Paranoid”  quicksor t

• Will modify the algorithm to make it easier to 
analyze:

• Repeat:
• Choose the pivot at random
• Perform PARTITION

• Until the resulting split is lucky, i.e., not 
worse than 1/10: 9/10
• Recurseon both subarrays
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Analysis

• Let T(n) be an upper bound on the expected
running time on any array of n elements

• Consider any input of size n

• The time needed to sort the input is bounded 
from the above by a sum of

• The time needed to sort the left subarray

• The time needed to sort the right subarray

• The number of iterations until we get a 
lucky split, times cn
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Expectations

cnpartitionsEinTiTnT •+−+≤ ][#)()(max)(

• By linearity of expectation:

where maximum is taken over i ∈ [n/10,9n/10]

• We will show that E[#partitions]  is less than 2

• Therefore:

]10/9,10/[,2)()(max)( nnicninTiTnT ∈+−+≤
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Final bound

• Can use the recursion tree argument:

• Tree depth is Θ(log n)

• Total work at each level is at most 2cn

• The total expected time is Ο(n log n)
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Lucky par titions

• The probability that a random pivot induces 
lucky partition is at least 8/10

(we are not lucky if the pivot happens to be 
among the smallest/largest n/10 elements)

• If we flip a coin, with heads prob. p=8/10 , 
the expected waiting time for the first head 
is 1/p = 10/8 < 2
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Quicksor t in practice

• Quicksort is a great general-purpose 
sorting algorithm.

• Quicksort is typically over twice as fast 
as merge sort.

• Quicksort can benefit substantially from 
code tuning.  

• Quicksort behaves well even with 
caching and virtual memory.
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More intuition

Suppose we alternate lucky, unlucky, 
lucky, unlucky, lucky, ….

L(n) = 2U(n/2) + Θ(n) lucky
U(n) = L(n – 1) + Θ(n) unlucky

Solving:
L(n) = 2(L(n/2 – 1) + Θ(n/2)) + Θ(n)

= 2L(n/2 – 1) + Θ(n)
= Θ(n lg n)

How can we make sure we are usually lucky?

Lucky!
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Randomized quicksor t 
analysis

Let T(n) = the random variable for the running 
time of randomized quicksort on an input of size 
n, assuming random numbers are independent.

For k = 0, 1, …, n–1, define the indicator 
random variable

Xk =
1 if PARTITION generates a k : n–k–1 split,
0 otherwise.

E[Xk] = Pr{ Xk = 1}  = 1/n, since all splits are 
equally likely, assuming elements are distinct.
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Analysis (continued)

T(n) = 

T(0) + T(n–1) + Θ(n) if 0 : n–1 split,
T(1) + T(n–2) + Θ(n) if 1 : n–2 split,
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Calculating expectation
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Take expectations of both sides.
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Calculating expectation
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Linearity of expectation.
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Calculating expectation
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Independence of Xk from other random 
choices.
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Calculating expectation

( )

( )[ ]

[ ] [ ]

[ ] [ ] ���

�

�

�

−

=

−

=

−

=

−

=

−

=

−

=

Θ+−−+=

Θ+−−+⋅=

Θ+−−+=

�
	



�
�


Θ+−−+=

1

0

1

0

1

0

1

0

1

0

1

0

)(1)1(1)(1

)()1()(

)()1()(

)()1()()]([

n

k

n

k

n

k

n

k
k

n

k
k

n

k
k

n
n

knTE
n

kTE
n

nknTkTEXE

nknTkTXE

nknTkTXEnTE

Linearity of expectation; E[Xk] = 1/n .
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Calculating expectation
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Summations have 
identical terms.
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Hairy recurrence
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(The k = 0, 1 terms can be absorbed in the Θ(n).)

Prove: E[T(n)] ≤ an lgn for constant a > 0.

Use fact: 2
1
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−≤ (exercise).

• Choose a large enough so that an lgn
dominates E[T(n)] for sufficiently small n ≥ 2.
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Substitution method
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Substitute inductive hypothesis.
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Substitution method
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Substitution method
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Substitution method
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• Assume 


