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@== [ hedivide-and-conquer
~ design paradigm

1. Divide the problem (instance)
Into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
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ALGORITHMS

5+ Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2T(n/2) + O(n)

I

# subproblems / work dividing
subproblem size and combining
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~ ¥ Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trividl.

Example: Find 9
3 5 7 8 9 12 15
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AAAAAAAAAA

M\, Recurrence for binary search

A
\

T(n) =1T(N/2) +O(1)

N
# subproblems work dividing
subproblem size and combining

n'oga = nlogzl = n0=1 = Case 2 (k= 0)
= T(n) =0(lgn) .
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AT Powering a number

Problem: Compute a", wheren //N.

Naive algorithm: O(n).

Divide-anc

al = <

-conquer algorithm:

Can2[pn? if niseven:

T(n) =T(n/2) + ©(1) = T(n) =O(Ign) .

February 11, 2003

amL2R=0D218  if nisodd.
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v Polynomial multiplication

a(X)=a,+rax+... +a.x,
b(X)=by+bx+... +b X",

Output: c(X)= a(X)*b(X) =C,+C,x+...+C, X"
C=agh+a,b  +...+ a b +ab,

Example: (ay+a;x) * (by+bx) =
ahy + (Qbtaby)x  + aby x=
C, * CX + C, X?
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Motivation (morein recitations)

o Essentially equivalent to multiplying large integers:

6046* 6001 =

(6*10° + 4*10'+ 0*10°+ 6*10°%) *

(1*10°+ 0°10* + 0*10%+ 6*10°) =

a(10) * b(10) = ¢(10), where c(X)=a(x)* b(x)

c(10) = c,100+ ¢, 10+ ... + cZ10°

e The coefficients of c form the “digits’ of the product c(10)
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AAAAAAAAAA

H How to multiply two polynomials

Y ‘

e From the definition: ©(n?) time
o Faster ? Use divide and conquer
— Divide:
a(x) = agtax+...+axn=

(At ... ayX2) + XV (@ X0+ L.+ ax?) =
p(x) + X2 q(X) =

p+ Xn/2q

— Inthe same way: b(X) = s+x"V2t
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AAAAAAAAAA

Observe that:

a*b =

(p+xv2q) * (s+xV2t) =

p*s+ XV2 (p*t+q*s) + X" g*t
But p,g,s,t have degree n/2

—> can compute the products recursively!
(and then perform ©(n) additions)
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ey M| he great moment...

T(n) =4T(n/2) +©(n)

N
# subproblems work dividing
subproblem size and combining

n'og? = nlog% = n2 = Case1l = T(n) = O(n?).
No better than the ordinary algorithm ???
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ey Need to be more clever

o Compute:
p*s

0

(

*{
0+(Q) * (stt) = p*s+ (p*t + g*s) + g*t

(all
e Can

nolynomials have degree n/2)
extract (p*t + g*s) without any

additional multiplications'!
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“5¥ Thetruly great moment

T(n) = 3T(n/2) + ©(n)

" |
# subproblems wor k adding
subproblem size and subtracting

nlogba — nlog23 = n1.584%...
Much better than ©(n?) !
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an Matrix multiplication

Input: A=[ay,-],B:jb”.].?r o
Output: C:[Cij] = A/B. L]=12,...,n

Ci G - Gy &, &, - &,||b, b, - b
Cxn Cp - Gy Ay Ay o Ay, b21 b22 b2n

[
]
—

_Cnl Co Cnn_ dy, Qp, - a'nn_ bnl bn2 bnn_

N
Cij = D [y
k=1

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.19




~* Standard algorithm

fori « 1ton
doforj —« 1ton

for Kk « 1ton
doc; « C; + a,/B,

Running time = O(n3)
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ALGORITHMS

Divide-and-conquer algorithm

—

| DEA:
nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:
rs| [abl|le f]
—t— = U

tu] |[cd][gh
C = A B

r =ae+ bg
s = af + bh . 8 mults of (n/2)x(n/2) submatrices
t =ce+dg | 4 addsof (n/2)x(n/2) submatrices
u=cf+dn_
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T(n) =8T(N/2) +O(n?

" |
# submatrices work adding
submatrix size Submatrices

n'ogr = nog8=n3 = Case1l = T(n) = O(nN3).
No better than the ordinary algorithm.
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e Multiply 2x2 matrices with only 7 recursive mults.

P,=al{f-h) r=P;+P,—P,+ P
P,=(a+Db)[h s=P,+P,
P;=(c+d)L[e t =P;+P,
P,=dL{g-e) u=Ps+P —P;—P;

P, = (a+d) e+ h)

P. = (b—d) g + h) Lmu!tz 186Ia_dds/subs.
P7:(a—c) [(e+f) ote O.I' _|anceon
commutativity of mult!
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ALGORITHMS

Strassen’sidea

e Multiply 2x2 matrices with only 7 recursive mults.

P,=al{f-
P,=(a+Db)
P;,=(c+d)

P4:d "g_

Ps=(a+d)
Ps = (b—d)
P.=(a-c)

February 11, 2003

) r =P.+P,—P,+P;
h =(a+d)(et+ h)
& +d(g—e)—(a+ b)h
€) +(b—d)(g+h)

e+ h) —ae+ ah+ de+ dh
{g+h) + dg —de—ah —bh
{e+f) + bg + bh—dg—dh

= ae+ bg
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ALGORITHMS

Strassen’salgorithm

— .
v

1. Divide: Partition A and B into
(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and —.

2. Conquer: Perform 7 multiplications of
(n/2)%(n/2) submatrices recursively.

3. Combine: Form C using + and —on
(n/2)x(n/2) submatrices.

T(n) = 7T(n/2) + ©(n?)
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ALGORITHMS

“ 5~ Analysisof Strassen

T(n) = 7T(n/2) + ©(n?)
n'og? = o2’ = 28l — Case 1 = T(n) = ©(N'97).
The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
Impact on running time is significant. Infact,

Strassen’ s algorithm beats the ordinary algorithm
on today’ s machines for n = 30 or so.

Best to date (of theoretical interest only): ©(n>3).
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~~+ Conclusion

* Divide and congquer isjust one of severdl
powerful techniques for algorithm design.

* Divide-and-conguer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

» Can lead to more efficient algorithms
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AAAAAAAAAA

H VLS layout

Problem: Embed a complete binary tree
with nleavesin agrid using minimal area.

W(n)

I | i
H(n) - I

|

Hn) =H(N/2) + (1) Whn)=2Wn/2) + O(1)
=0O(lgn) = 0O(n)
Area= 0O(nlgn)
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L(n)

8" H-treeem bedding

L(n)

L(n/4) O(1) L(n/4)

February 11, 2003

L(n) =2L(n/4) + ©(1)
= O(n)
Area= Q(n)
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“oY Master theorem (reprise)
T(n) = aT(n/b) + f(n)

Cask 1: f(n) = O(n'092~¢)
= T(n) = O(n'°%A)

Case 2: f(n) = ©(n'°%2|gkn)
= T(n) = ©(n'o%a [gk*t1n) .

Case 3: f(n) = Q(n'o%a+*¢) and af (n/b) < cf(n)
= T(n) = O(f(n)) .
Mergesort: a=2,b=2 = n'%a=n
= CAse2(k=0) = T(n) =0O(nign) .
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ey Fibonaccl numbers

Recur sive definition:

0 if n=0;
F.=11 If n=1,
 F ,+F. , Ifn=2

01 1 2 3 5 8 1321 34 ---

Naiverecursive algorithm: Q(¢")
(exponential time), where = (1++/5)/2
IS the golden ratio.
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w= Computing Fibonaccl
~ numbers
Nalve recur sive sguaring:
F. = ¢"/\/5 rounded to the nearest integer.
e Recursive squaring: ©(lg n) time.

* This method is unreliable, since floating-point
arithmetic is prone to round-off errors.

Bottom-up:

* Compute F,, F,, F,, ..., F, in order, forming
each number by summing the two previous.

e Running time: ©(n).

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.32



Theorem:

I:n +1
|:n

|:n
|:n -1_

N~ Recursive squaring

1 1"

Algorithm: Recursive sguaring.

Time=0(lgn) .

Proof of theorem. (Induction onn.)

Base (n = 1):

February 11, 2003

>
F

Fl—
Fo_

1 171
1 0|
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|:n +1
|:n

February 11, 2003

F

|:n—l_

Inductive step (n = 2):

F

“aY Recur sive squaring

|:n -1
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