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The divide-and-conquer  
design paradigm

1. Divide the problem (instance) 
into subproblems.

2. Conquer the subproblemsby 
solving them recursively.

3. Combine subproblem solutions.
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Example: merge sor t

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n) = 2T(n/2) + O(n)

# subproblems

subproblem size

work dividing 
and combining
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.
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Recurrence for  binary search

T(n) = 1T(n/2) + Θ(1)

# subproblems

subproblem size

work dividing 
and combining

nlogba = nlog21 = n0 = 1 CASE 2 (k = 0)
T(n) = Θ(lgn) . 
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Power ing a number

Problem: Compute an, where n ∈ N.

an =
an/2 ⋅ an/2 if n is even;

a(n–1)/2 ⋅ a(n–1)/2 ⋅ a if n is odd.

Divide-and-conquer  algor ithm:

T(n) = T(n/2) + Θ(1)  T(n) = Θ(lgn) . 

Naive algor ithm: Θ(n).
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Polynomial multiplication

Example: (a0+a1x) *  (b0+b1x) = 
a0b0 + (a0b1+a1b0)x + a1b1 x2 =
c0 + c1x + c2 x2

Input: a(x)=a0+a1x+… +anx
n,

b(x)=b0+b1x+… +bnx
n,

Output: c(x)= a(x)*b(x) =c0+c1x+…+c2nx
2n

ci=a0bi+a1bi-1+…+ ai-1b1+aib0
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Motivation (more in recitations)

• Essentially equivalent to multiplying large integers:

6046*6001 = 
(6*100 + 4*101 + 0*102 + 6*103) *  
(1*100 + 0*101 + 0*102 + 6*103)  =
a(10) *  b(10) = c(10), where c(x)=a(x)*b(x)

c(10) = c0100 + c1101 + … + c6106

• The coefficients of c form the “digits”  of the product c(10)
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How to multiply two polynomials

• From the definition: Θ(n2) time

• Faster ? Use divide and conquer
– Divide: 

a(x) = a0+a1x+… +anxn = 

(a0 + … + an/2xn/2 ) + xn/2(an/2x0 + … + anxn/2 ) =

p(x) + xn/2 q(x) = 

p + xn/2 q

– In the same way: b(x) = s+xn/2 t
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Conquer

• Observe that:

a*b = 

(p+xn/2q) *  (s+xn/2t) = 

p*s + xn/2 (p* t+q*s) + xn q* t

• But p,q,s,t have degree n/2 

can compute the products recursively!    
(and then perform Θ(n) additions)
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The great moment…

T(n) = 4T(n/2) + Θ(n)

# subproblems

subproblem size

work dividing 
and combining

nlogba = nlog24 = n2 CASE 1 T(n) = Θ(n2). 

No better than the ordinary algorithm ???
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Need to be more clever

• Compute:

p*s

q* t 

(p+q) *  (s+t) = p*s + (p* t + q*s) + q* t

(all polynomials have degree n/2 )

• Can extract (p* t + q*s) without any 
additional multiplications !
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The truly great moment

T(n) = 3T(n/2) + Θ(n)

# subproblems

subproblem size

work adding 
and subtracting

nlogba = nlog23 = n1.58496…

Much better than Θ(n2) !
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Matr ix multiplication
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Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅ B.

i, j = 1, 2,… , n.
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Standard algor ithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)
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Divide-and-conquer  algor ithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⋅=
hg

fe

dc

ba

ut

sr

C = A ⋅ B
r = ae+ bg
s = af + bh
t = ce+ dg
u = cf + dh

8 multsof (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices
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Analysis of D& C algor ithm

nlogba = nlog28 = n3 CASE 1 T(n) = Θ(n3). 

No better than the ordinary algorithm.

# submatrices

submatrix size

work adding 
submatrices

T(n) = 8T(n/2) + Θ(n2)
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7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

Strassen’s idea (1969)

• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e+ h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e+ f )

r = P5 + P4 – P2 + P6

s = P1 + P2

t = P3 + P4

u = P5 + P1 – P3 – P7
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Strassen’s idea

• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e+ h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e+ f )

r = P5 + P4 – P2 + P6

= (a + d) (e + h) 
+ d(g – e) – (a + b)h
+ (b – d) (g + h)

= ae + ah + de + dh 
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg
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Strassen’salgor ithm

1. Divide: Partition A and B into 
(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.

T(n) = 7T(n/2) + Θ(n2)
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Analysis of Strassen

T(n) = 7T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 CASE 1 T(n) = Θ(nlg 7).

Best to date (of theoretical interest only): Θ(n2.376).

The number 2.81may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 30 or so.
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Conclusion

• Divide and conquer is just one of several 
powerful techniques for algorithm design. 

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 
method (so practice this math).

• Can lead to more efficient algorithms
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VLSI  layout
Problem: Embed a complete binary tree 
with n leaves in a grid using minimal area.

H(n)

W(n)

H(n) = H(n/2) + Θ(1)
= Θ(lg n)

W(n) = 2W(n/2) + Θ(1)
= Θ(n)

Area= Θ(n lg n)
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H-tree embedding

L(n)

L(n)

L(n/4) L(n/4)Θ(1)

L(n) = 2L(n/4) + Θ(1)

= Θ( )n

Area= Θ(n)
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Master  theorem (repr ise)
T(n) = aT(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε)
T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn)
T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε) and af (n/b) ≤ cf (n) 
T(n) = Θ( f (n)) .

Merge sort: a = 2, b = 2 nlogba = n
CASE 2 (k = 0)  T(n) = Θ(n lgn) . 
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Fibonacci numbers

Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 �

Naive recursive algor ithm: Ω(φ n)
(exponential time), where φ =
is the golden ratio.

2/)51( +
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Computing Fibonacci 
numbers

Naive recursive squar ing:
Fn = φ n/ rounded to the nearest integer.5

• Recursive squaring: Θ(lg n) time. 
• This method is unreliable, since floating-point 

arithmetic is prone to round-off errors.

Bottom-up: 
• Compute F0, F1, F2, …, Fn in order, forming 
each number by summing the two previous.

• Running time: Θ(n). 
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Recursive squar ing
n
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1Theorem: .

Proof of theorem.  (Induction on n.)

Base (n = 1): .
1 

01

11

01

12 =
FF

FF

Algor ithm: Recursive squaring.
Time = Θ(lg n) .
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Recursive squar ing

.

.

Inductive step (n ≥ 2):
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