| ntroduction to Algorithms
6.046J/18.401J/SM A5503

ALGORITHMS

Lecture 3
Prof. Piotr Indyk

@== [hedivide-and-conquer
~ design paradigm

1. Divide the problem (instance)
Into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.2

ALGORITHMS

5+ Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2T(n/2) + O(n)

I

subproblems / work dividing
subproblem size and combining

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.3

~ ¥ Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trividl.

Example: Find 9
3 5 7 8 9 12 15

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.4

“5~ Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trividl.

Example: Find 9
3 5 7 8 9 12 15

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.5

AAAAAAAAAA

Hm Binary search

A
\

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.6

AAAAAAAAAA

Hm Binary search

A
\

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.7

AAAAAAAAAA

Hm Binary search

A
\

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.8

AAAAAAAAAA

Hm Binary search

A
\

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.9

AAAAAAAAAA

M\, Recurrence for binary search

A
\

T(n) =1T(N/2) +O(1)

N
subproblems work dividing
subproblem size and combining

n'oga = nlogzl = n0=1 = Case 2 (k= 0)
= T(n) =0(lgn) .

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.10

AT Powering a number

Problem: Compute a", wheren //N.

Naive algorithm: O(n).

Divide-anc

al = <

-conquer algorithm:

Can2[pn? if niseven:

T(n) =T(n/2) + ©(1) = T(n) =O(Ign) .

February 11, 2003

amL2R=0D218 if nisodd.

(c) Charles Leiserson and Piotr Indyk

L3.11

v Polynomial multiplication

a(X)=a,+rax+... +a.x,
b(X)=by+bx+... +b X",

Output: c(X)= a(X)*b(X) =C,+C,x+...+C, X"
C=agh+a,b +...+ a b +ab,

Example: (ay+a;x) * (by+bx) =
ahy + (Qbtaby)x + aby x=
C, * CX + C, X?

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.12

Motivation (morein recitations)

o Essentially equivalent to multiplying large integers:

6046* 6001 =

(6*10° + 4*10'+ 0*10°+ 6*10°%) *

(1*10°+ 0°10* + 0*10%+ 6*10°) =

a(10) * b(10) = ¢(10), where c(X)=a(x)* b(x)

c(10) = c,100+ ¢, 10+ ... + cZ10°

e The coefficients of c form the “digits’ of the product c(10)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.13

AAAAAAAAAA

H How to multiply two polynomials

Y ‘

e From the definition: ©(n?) time
o Faster ? Use divide and conquer
— Divide:
a(x) = agtax+...+axn=

(At ... ayX2) + XV (@ X0+ L.+ ax?) =
p(x) + X2 q(X) =

p+ Xn/2q

— Inthe same way: b(X) = s+x"V2t

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.14

AAAAAAAAAA

Observe that:

a*b =

(p+xv2q) * (s+xV2t) =

p*s+ XV2 (p*t+q*s) + X" g*t
But p,g,s,t have degree n/2

—> can compute the products recursively!
(and then perform ©(n) additions)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.15

ey M| he great moment...

T(n) =4T(n/2) +©(n)

N
subproblems work dividing
subproblem size and combining

n'og? = nlog% = n2 = Case1l = T(n) = O(n?).
No better than the ordinary algorithm ???

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.16

ey Need to be more clever

o Compute:
p*s

0

(

*{
0+(Q) * (stt) = p*s+ (p*t + g*s) + g*t

(all
e Can

nolynomials have degree n/2)
extract (p*t + g*s) without any

additional multiplications'!

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.17

“5¥ Thetruly great moment

T(n) = 3T(n/2) + ©(n)

" |
subproblems wor k adding
subproblem size and subtracting

nlogba — nlog23 = n1.584%...
Much better than ©(n?) !

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.18

an Matrix multiplication

Input: A=[ay,-],B:jb”.].?r o
Output: C:[Cij] = A/B. L]=12,...,n

Ci G - Gy &, &, - &,||b, b, - b
Cxn Cp - Gy Ay Ay o Ay, b21 b22 b2n

[
]
—

Cnl Co Cnn dy, Qp, - a'nn_ bnl bn2 bnn_

N
Cij = D [y
k=1

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.19

~* Standard algorithm

fori « 1ton
doforj —« 1ton

for Kk « 1ton
doc; « C; + a,/B,

Running time = O(n3)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.20

ALGORITHMS

Divide-and-conquer algorithm

—

| DEA:
nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:
rs| [abl|le f]
—t— = U

tu] |[cd][gh
C = A B

r =ae+ bg
s = af + bh . 8 mults of (n/2)x(n/2) submatrices
t =ce+dg | 4 addsof (n/2)x(n/2) submatrices
u=cf+dn_

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.21

T(n) =8T(N/2) +O(n?

" |
submatrices work adding
submatrix size Submatrices

n'ogr = nog8=n3 = Case1l = T(n) = O(nN3).
No better than the ordinary algorithm.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.22

e Multiply 2x2 matrices with only 7 recursive mults.

P,=al{f-h) r=P;+P,—P,+ P
P,=(a+Db)[h s=P,+P,
P;=(c+d)L[e t =P;+P,
P,=dL{g-e) u=Ps+P —P;—P;

P, = (a+d) e+ h)

P. = (b—d) g + h) Lmu!tz 186Ia_dds/subs.
P7:(a—c) [(e+f) ote O.I' _|anceon
commutativity of mult!

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.23

ALGORITHMS

Strassen’sidea

e Multiply 2x2 matrices with only 7 recursive mults.

P,=al{f-
P,=(a+Db)
P;,=(c+d)

P4:d "g_

Ps=(a+d)
Ps = (b—d)
P.=(a-c)

February 11, 2003

) r =P.+P,—P,+P;
h =(a+d)(et+ h)
& +d(g—e)—(a+ b)h
€) +(b—d)(g+h)

e+ h) —ae+ ah+ de+ dh
{g+h) + dg —de—ah —bh
{e+f) + bg + bh—dg—dh

= ae+ bg
(c) Charles Leiserson and Piotr Indyk L3.24

ALGORITHMS

Strassen’salgorithm

— .
v

1. Divide: Partition A and B into
(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and —.

2. Conquer: Perform 7 multiplications of
(n/2)%(n/2) submatrices recursively.

3. Combine: Form C using + and —on
(n/2)x(n/2) submatrices.

T(n) = 7T(n/2) + ©(n?)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.25

ALGORITHMS

“ 5~ Analysisof Strassen

T(n) = 7T(n/2) + ©(n?)
n'og? = o2’ = 28l — Case 1 = T(n) = ©(N'97).
The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
Impact on running time is significant. Infact,

Strassen’ s algorithm beats the ordinary algorithm
on today’ s machines for n = 30 or so.

Best to date (of theoretical interest only): ©(n>3).

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.26

~~+ Conclusion

* Divide and congquer isjust one of severdl
powerful techniques for algorithm design.

* Divide-and-conguer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

» Can lead to more efficient algorithms

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.27

AAAAAAAAAA

H VLS layout

Problem: Embed a complete binary tree
with nleavesin agrid using minimal area.

W(n)

I | i
H(n) - I

|

Hn) =H(N/2) + (1) Whn)=2Wn/2) + O(1)
=0O(lgn) = 0O(n)
Area= 0O(nlgn)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.28

L(n)

8" H-treeem bedding

L(n)

L(n/4) O(1) L(n/4)

February 11, 2003

L(n) =2L(n/4) + ©(1)
= O(n)
Area= Q(n)
(c) Charles Leiserson and Piotr Indyk L3.29

“oY Master theorem (reprise)
T(n) = aT(n/b) + f(n)

Cask 1: f(n) = O(n'092~¢)
= T(n) = O(n'°%A)

Case 2: f(n) = ©(n'°%2|gkn)
= T(n) = ©(n'o%a [gk*t1n) .

Case 3: f(n) = Q(n'o%a+*¢) and af (n/b) < cf(n)
= T(n) = O(f(n)) .
Mergesort: a=2,b=2 = n'%a=n
= CAse2(k=0) = T(n) =0O(nign) .

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.30

ey Fibonaccl numbers

Recur sive definition:

0 if n=0;
F.=11 If n=1,
 F ,+F. , Ifn=2

01 1 2 3 5 8 1321 34 ---

Naiverecursive algorithm: Q(¢")
(exponential time), where = (1++/5)/2
IS the golden ratio.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.31

w= Computing Fibonaccl
~ numbers
Nalve recur sive sguaring:
F. = ¢"/\/5 rounded to the nearest integer.
e Recursive squaring: ©(lg n) time.

* This method is unreliable, since floating-point
arithmetic is prone to round-off errors.

Bottom-up:

* Compute F,, F,, F,, ..., F, in order, forming
each number by summing the two previous.

e Running time: ©(n).

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.32

Theorem:

I:n +1
|:n

|:n
|:n -1_

N~ Recursive squaring

1 1"

Algorithm: Recursive sguaring.

Time=0(lgn) .

Proof of theorem. (Induction onn.)

Base (n = 1):

February 11, 2003

>
F

Fl—
Fo_

1 171
1 0|

(c) Charles Leiserson and Piotr Indyk

1 0|

L3.33

|:n +1
|:n

February 11, 2003

F

|:n—l_

Inductive step (n = 2):

F

“aY Recur sive squaring

|:n -1

(c) Charles Leiserson and Piotr Indyk

L3.34

