
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 3
Prof. Piotr Indyk

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.2

The divide-and-conquer
design paradigm

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblemsby
solving them recursively.

3. Combine subproblem solutions.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.3

Example: merge sor t

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n) = 2T(n/2) + O(n)

subproblems

subproblem size

work dividing
and combining

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.4

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.5

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.6

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.7

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.8

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.9

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.10

Recurrence for binary search

T(n) = 1T(n/2) + Θ(1)

subproblems

subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1 CASE 2 (k = 0)
T(n) = Θ(lgn) .

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.11

Power ing a number

Problem: Compute an, where n ∈ N.

an =
an/2 ⋅ an/2 if n is even;

a(n–1)/2 ⋅ a(n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algor ithm:

T(n) = T(n/2) + Θ(1) T(n) = Θ(lgn) .

Naive algor ithm: Θ(n).

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.12

Polynomial multiplication

Example: (a0+a1x) * (b0+b1x) =
a0b0 + (a0b1+a1b0)x + a1b1 x2 =
c0 + c1x + c2 x2

Input: a(x)=a0+a1x+… +anx
n,

b(x)=b0+b1x+… +bnx
n,

Output: c(x)= a(x)*b(x) =c0+c1x+…+c2nx
2n

ci=a0bi+a1bi-1+…+ ai-1b1+aib0

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.13

Motivation (more in recitations)

• Essentially equivalent to multiplying large integers:

6046*6001 =
(6*100 + 4*101 + 0*102 + 6*103) *
(1*100 + 0*101 + 0*102 + 6*103) =
a(10) * b(10) = c(10), where c(x)=a(x)*b(x)

c(10) = c0100 + c1101 + … + c6106

• The coefficients of c form the “digits” of the product c(10)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.14

How to multiply two polynomials

• From the definition: Θ(n2) time

• Faster ? Use divide and conquer
– Divide:

a(x) = a0+a1x+… +anxn =

(a0 + … + an/2xn/2) + xn/2(an/2x0 + … + anxn/2) =

p(x) + xn/2 q(x) =

p + xn/2 q

– In the same way: b(x) = s+xn/2 t

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.15

Conquer

• Observe that:

a*b =

(p+xn/2q) * (s+xn/2t) =

p*s + xn/2 (p* t+q*s) + xn q* t

• But p,q,s,t have degree n/2

can compute the products recursively!
(and then perform Θ(n) additions)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.16

The great moment…

T(n) = 4T(n/2) + Θ(n)

subproblems

subproblem size

work dividing
and combining

nlogba = nlog24 = n2 CASE 1 T(n) = Θ(n2).

No better than the ordinary algorithm ???

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.17

Need to be more clever

• Compute:

p*s

q* t

(p+q) * (s+t) = p*s + (p* t + q*s) + q* t

(all polynomials have degree n/2)

• Can extract (p* t + q*s) without any
additional multiplications !

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.18

The truly great moment

T(n) = 3T(n/2) + Θ(n)

subproblems

subproblem size

work adding
and subtracting

nlogba = nlog23 = n1.58496…

Much better than Θ(n2) !

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.19

Matr ix multiplication

⋅=

nnnn

n

n

nnnn

n

n

nnnn

n

n

bbb

bbb

bbb

aaa

aaa

aaa

ccc

ccc

ccc

�

����

�

�

�

����

�

�

�

����

�

�

21

22221

11211

21

22221

11211

21

22221

11211

=
⋅=

n

k
kjikij bac

1

Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅ B.

i, j = 1, 2,… , n.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.20

Standard algor ithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.21

Divide-and-conquer algor ithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⋅=
hg

fe

dc

ba

ut

sr

C = A ⋅ B
r = ae+ bg
s = af + bh
t = ce+ dg
u = cf + dh

8 multsof (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.22

Analysis of D& C algor ithm

nlogba = nlog28 = n3 CASE 1 T(n) = Θ(n3).

No better than the ordinary algorithm.

submatrices

submatrix size

work adding
submatrices

T(n) = 8T(n/2) + Θ(n2)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.23

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

Strassen’s idea (1969)

• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e+ h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e+ f)

r = P5 + P4 – P2 + P6

s = P1 + P2

t = P3 + P4

u = P5 + P1 – P3 – P7

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.24

Strassen’s idea

• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e+ h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e+ f)

r = P5 + P4 – P2 + P6

= (a + d) (e + h)
+ d(g – e) – (a + b)h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.25

Strassen’salgor ithm

1. Divide: Partition A and B into
(n/2)×(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.

T(n) = 7T(n/2) + Θ(n2)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.26

Analysis of Strassen

T(n) = 7T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 CASE 1 T(n) = Θ(nlg 7).

Best to date (of theoretical interest only): Θ(n2.376).

The number 2.81may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n ≥ 30 or so.

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.27

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

• Can lead to more efficient algorithms

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.28

VLSI layout
Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

H(n)

W(n)

H(n) = H(n/2) + Θ(1)
= Θ(lg n)

W(n) = 2W(n/2) + Θ(1)
= Θ(n)

Area= Θ(n lg n)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.29

H-tree embedding

L(n)

L(n)

L(n/4) L(n/4)Θ(1)

L(n) = 2L(n/4) + Θ(1)

= Θ()n

Area= Θ(n)

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.30

Master theorem (repr ise)
T(n) = aT(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε)
T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn)
T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε) and af (n/b) ≤ cf (n)
T(n) = Θ(f (n)) .

Merge sort: a = 2, b = 2 nlogba = n
CASE 2 (k = 0) T(n) = Θ(n lgn) .

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.31

Fibonacci numbers

Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 �

Naive recursive algor ithm: Ω(φ n)
(exponential time), where φ =
is the golden ratio.

2/)51(+

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.32

Computing Fibonacci
numbers

Naive recursive squar ing:
Fn = φ n/ rounded to the nearest integer.5

• Recursive squaring: Θ(lg n) time.
• This method is unreliable, since floating-point

arithmetic is prone to round-off errors.

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming
each number by summing the two previous.

• Running time: Θ(n).

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.33

Recursive squar ing
n

FF

FF

nn

nn =
−

+

01

11

1

1Theorem: .

Proof of theorem. (Induction on n.)

Base (n = 1): .
1

01

11

01

12 =
FF

FF

Algor ithm: Recursive squaring.
Time = Θ(lg n) .

February 11, 2003 (c) Charles Leiserson and Piotr Indyk L3.34

Recursive squar ing

.

.

Inductive step (n ≥ 2):

n

n

FF

FF

FF

FF

nn

nn

nn

nn

=

⋅
−

=

⋅=
−−

−

−

+

01

11

01

111

01

11

01

11

21

1

1

1

