Introduction to Algorithms 6.046J/18.401

Lecture 22

Prof. Piotr Indyk

P vs NP (Episode II)

- We defined a large class of interesting problems, namely NP
 - Decision problems (YES or NO)
 - Solvable in non-deterministic polynomial time.
 I.e., a solution can be verified in polynomial time
- We have a way of saying that one problem is not harder than another $(\prod' \leq \prod)$
- Our goal: show equivalence between hard problems

Reductions: \prod ' to \prod

A' for \prod '

© 2003 by Piotr Indyk

Introduction to Algorithms

Showing equivalence between difficult problems

Options: - Show reductions between all pairs of problems – Reduce the number of reductions (!) using transitivity of "≤" – Show that *all* problems in NP **P**3 a reducible to a *fixed* \prod . To show that some problem $\prod' \in NP$ is equivalent to all difficult problems, we only show $\prod \leq \prod'$.

The first problem \prod

- Satisfiability problem (SAT):
 - Given: a formula φ with m clauses C_1, \dots, C_m over n variables.

Example: $x_1^v x_2^v x_5^v, x_3^v \neg x_5^v$

 Check if there exists TRUE/FALSE assignments to the variables that makes the formula satisfiable

SAT is NP-complete

- Fact: $SAT \in NP$
- Theorem [Cook'71]: For any $\prod' \in NP$, we have $\prod' \leq SAT$.
- Definition: A problem \prod such that for any $\prod' \in NP$ we have $\prod' \leq \prod$, is called *NP-hard*
- Definition: An NP-hard problem that belongs to NP is called *NP-complete*
- Corollary: SAT is NP-complete.

Menu for today

SAT

Clique

Independent set

Vertex cover

(thanks, Steve J)

Follow from Cook's Theorem

Conclusion: all of the above problems are NP-complete

© 2003 by Piotr Indyk

Introduction to Algorithms

May 8, 2003 L20.7

Clique again

- Clique:
 - Input: undirected graph G=(V,E), K
 - Output: is there a subset C of V, |C|≥K, such that every pair of vertices in C has an edge between them

• $SAT \leq Clique$

- Given a SAT formula $\varphi = C_1, \dots, C_m$ over x_1, \dots, x_n , we need to produce G = (V, E) and K, such that φ satisfiable iff G has a clique of size $\ge K$.
- Notation: a literal is either x_i or $\neg x_i$

SAT ≤ Clique reduction

- For each literal t occurring in φ , create a vertex v_t
- Create an edge v_t v_t, iff:
 -t and t' are not in the same clause, and
 -t is not the negation of t'

SAT ≤ Clique example

- Formula: $x_1 v x_2 v x_3$, $\neg x_2 v \neg x_3$, $\neg x_1 v x_2$
- Graph:

Claim: φ satisfiable iff G has a clique of size ≥ m

Introduction to Algorithms

- "→" part:
 - Take any assignment that satisfies φ .
 - E.g., $x_1 = F$, $x_2 = T$, $x_3 = F$
 - Let the set C contain one satisfied literal per clause
 - C is a clique

Proof

- "←" part:
 - Take any clique C of size $\geq m$ (i.e., = m)
 - Create a set of equations that satisfies selected literals.

E.g., $x_3 = T$, $x_2 = F$, $x_1 = F$

- The set of equations is consistent and the solution satisfies $\boldsymbol{\phi}$

- We constructed a reduction that maps:
 - YES inputs to SAT to YES inputs to Clique
 - -NO inputs to SAT to NO inputs to Clique
- The reduction works in poly time
- Therefore, $SAT \leq Clique \rightarrow Clique NP$ -hard
- Clique is in NP \rightarrow Clique is NP-complete

Independent set (IS)

- Input: undirected graph G=(V,E)
- Output: is there a subset S of V, |S|≥K such that no pair of vertices in S has an edge between them

Clique ≤ IS

 Given an input G=(V,E), K to Clique, need to construct an input G'=(V',E'), K' to IS, such that G has clique of size ≥K iff G' has IS of size ≥K.

- Construction: $K'=K, V'=V, E'=\overline{E}$
- Reason: C is a clique in G iff it is an IS in G's complement.

Vertex cover (VC)

- Input: undirected graph G=(V,E)
- Output: is there a subset C of V, |C| ≤ K, such that each edge in E is incident to at least one vertex in C.

$IS \leq VC$

 Given an input G=(V,E), K to IS, need to construct an input G'=(V',E'), K' to VC, such that G has an IS of size ≥K iff G' has VC of size ≤K'.

- Construction: V'=V, E'=E, K'=|V|-K
- Reason: S is an IS in G iff V-S is a VC in G.