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P vs NP 
(interconnectedness of all things)

• A whole course by itself

• We’ ll do just two lectures

• More in 6.045, 6.840J, etc.
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Have seen so far

• Algorithms for various problems

– Running times O(nm2),O(n2) ,O(n log n), 
O(n), etc.

– I.e., polynomial in the input size

• Can we solve all (or most of) interesting 
problems in polynomial time ?

• Not really… 
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Example difficult problem

• Traveling Salesperson 
Problem (TSP)
– Input: undirected graph 

with lengths on edges
– Output: shortest tour that 

visits each vertex exactly 
once

• Best known algorithm:    
O(n 2n) time.
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Another  difficult problem

• Clique:
– Input: undirected graph 

G=(V,E)
– Output: largest subset C

of V such that every pair 
of vertices in C has an 
edge between them

• Best known algorithm:     
O(n 2n) time
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What can we do ?

• Spend more time designing algorithms for those 
problems 
– People tried for a few decades, no luck

• Prove there is no polynomial time algorithm for 
those problems
– Would be great
– Seems really difficult
– Best lower bounds for “natural”  problems:

• Ω(n2) for restricted computational models
• 4.5n for unrestricted computational models



Introduction to Algorithms May 6, 2003 L20.7© 2003 by Piotr Indyk

What else can we do ?

• Show that those hard problems are 
essentially equivalent. I.e., if we can solve 
one of them in poly time, then all others can 
be solved in poly time as well.

• Works for at least 10 000 hard problems
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The benefits of equivalence

• Combines research 
efforts

• If one problem has 
polytimesolution, 
then all of them do

P1

P2

P3
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A more realistic scenar io

• Once an exponential  
lower bound is shown 
for one problem, it 
holds for all of them

• But someone is
happy…

P1

P2

P3

Ron Rivest
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Summing up

• If we show that a problem � is equivalent 
to ten thousand other well studied problems 
without efficient algorithms, then we get a 
very strong evidence that � is hard.

• We need to:
– Identify the class of problems of interest
– Define the notion of equivalence
– Prove the equivalence(s)
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Class of problems: NP

• Decision problems: answer YES or NO. E.g.,” is
there a tour of length K” ?

• Solvable in non-deterministic polynomial time:

– Intuitively: the solution can be verified in 
polynomial time

– E.g., if someone gives as a tour T, we can 
verify if T is a tour of length K.

• Therefore, TSP is in NP. 
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Formal definitions of P and NP

• A problem � is solvable in poly time (or �∈P), if 
there is a poly time algorithm V(.) such that for 
any input x:

�(x)=YES iff V(x)=YES

• A problem � is solvable in non-deterministic poly 
time (or �∈NP), if there is a poly time algorithm 
V(. , .) such that for any input x:
�(x)=YES iff there exists a certificatey of size 

poly(|x|) such that V(x,y)=YES
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Examples of problems in NP

• Is “Does there exist a clique in G of size K” in NP ? 
Yes: V(x,y) interprets x as a graph G, y as a set C, and 
checks if all vertices in C are adjacent and if |C| K

• Is Sorting in NP ? 
No, not a decision problem.

• Is “Sortedness” in NP ?
Yes: ignore y, and check if the input x is sorted.

• Is Compositeness in NP ?
Yes. In fact, for V as in Lecture 17, there are many 
certificates y. 
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Reductions: �’ to �

A for �
YES

NO
fx’ f(x’ )=

A’ for �’

x
YES

NO
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Reductions

• �’ is poly time reducible to � ( �’ � ) iff there 
is a poly time function f that maps inputs x’ to �’
into inputs x of �, such that for any x’

�’ (x’ )=�(f(x’ ))

• Fact:    if �∈P and �’ � then �’∈P

• Fact 2: if �∈NP and �’ � then �’∈NP

• Fact 3: if �’ � and �” �’ then �” �
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Recap

• We defined a large class of interesting 
problems, namely NP

• We have a way of saying that one problem 
is not harder than another (�’ �)

• Our goal: show equivalence between hard 
problems


