Introduction to Algorithms 6.046J/18.401

Lecture 21

Prof. Piotr Indyk

P vs NP (interconnectedness of all things)

- A whole course by itself
- We'll do just two lectures
- More in 6.045, 6.840J, etc.

Have seen so far

- Algorithms for various problems
 - Running times $O(nm^2),O(n^2)$, $O(n \log n)$, O(n), etc.
 - I.e., polynomial in the input size
- Can we solve all (or most of) interesting problems in polynomial time ?
- Not really...

Example difficult problem

- Traveling Salesperson Problem (TSP)
 - Input: undirected graph with lengths on edges
 - Output: shortest tour that visits each vertex exactly once

 Best known algorithm: O(n 2ⁿ) time.

Another difficult problem

- Clique:
 - Input: undirected graph G=(V,E)
 - Output: largest subset C of V such that every pair of vertices in C has an edge between them
- Best known algorithm: O(n 2ⁿ) time

What can we do ?

- Spend more time designing algorithms for those problems
 - People tried for a few decades, no luck
- Prove there is **no** polynomial time algorithm for those problems
 - Would be great
 - Seems *really* difficult
 - Best lower bounds for "natural" problems:
 - $\Omega(n^2)$ for restricted computational models
 - 4.5n for unrestricted computational models

What else can we do ?

- Show that those hard problems are essentially equivalent. I.e., if we can solve one of them in poly time, then all others can be solved in poly time as well.
- Works for at least 10 000 hard problems

The benefits of equivalence

- Combines research efforts
- If one problem has polytime solution, then all of them do

© 2003 by Piotr Indyk

Introduction to Algorithms

A more realistic scenario

- Once an exponential lower bound is shown for one problem, it holds for all of them
- But someone *is* happy...

© 2003 by Piotr Indyk

Introduction to Algorithms

Summing up

- If we show that a problem ∏ is equivalent to ten thousand other well studied problems without efficient algorithms, then we get a very strong evidence that ∏ is hard.
- We need to:
 - Identify the class of problems of interest
 - Define the notion of equivalence
 - Prove the equivalence(s)

Class of problems: NP

- Decision problems: answer YES or NO. E.g.,"is there a tour of length ≤ K"?
- Solvable in *non-deterministic polynomial* time:
 - Intuitively: the solution can be verified in polynomial time
 - E.g., if someone gives as a tour T, we can verify if T is a tour of length $\leq K$.
- Therefore, TSP is in NP.

Formal definitions of P and NP

• A problem \prod is solvable in poly time (or $\prod \in P$), if there is a poly time algorithm V(.) such that for any input x:

 $\prod(x)=YES \text{ iff } V(x)=YES$

A problem ∏ is solvable in non-deterministic poly time (or ∏∈ NP), if there is a poly time algorithm V(.,.) such that for any input x:

 $\prod(x)=YES \text{ iff there exists a certificate y of size} \\poly(|x|) \text{ such that } V(x,y)=YES$

Examples of problems in NP

- Is "Does there exist a clique in G of size ≥K" in NP ?
 Yes: V(x,y) interprets x as a graph G, y as a set C, and checks if all vertices in C are adjacent and if |C|≥K
- Is Sorting in NP ? No, not a decision problem.
- Is "Sortedness" in NP ?

Yes: ignore y, and check if the input x is sorted.

 Is Compositeness in NP ? Yes. In fact, for V as in Lecture 17, there are many certificates y.

Reductions: \prod ' to \prod

A' for \prod '

© 2003 by Piotr Indyk

Introduction to Algorithms

Reductions

• \prod' is poly time reducible to $\prod (\prod' \leq \prod)$ iff there is a poly time function f that maps inputs x' to \prod' into inputs x of \prod , such that for any x'

 $\prod'(x')=\prod(f(x'))$

- Fact: if $\prod \in P$ and $\prod' \leq \prod$ then $\prod' \in P$
- Fact 2: if $\prod \in NP$ and $\prod' \leq \prod$ then $\prod' \in NP$
- Fact 3: if $\prod' \leq \prod$ and $\prod'' \leq \prod'$ then $\prod'' \leq \prod'$

- We defined a large class of interesting problems, namely NP
- We have a way of saying that one problem is not harder than another $(\prod' \leq \prod)$
- Our goal: show equivalence between hard problems