
Introduction to Algorithms
6.046J/18.401

Lecture 21
Prof. Piotr Indyk

Introduction to Algorithms May 6, 2003 L20.2© 2003 by Piotr Indyk

P vs NP
(interconnectedness of all things)

• A whole course by itself

• We’ ll do just two lectures

• More in 6.045, 6.840J, etc.

Introduction to Algorithms May 6, 2003 L20.3© 2003 by Piotr Indyk

Have seen so far

• Algorithms for various problems

– Running times O(nm2),O(n2) ,O(n log n),
O(n), etc.

– I.e., polynomial in the input size

• Can we solve all (or most of) interesting
problems in polynomial time ?

• Not really…

Introduction to Algorithms May 6, 2003 L20.4© 2003 by Piotr Indyk

Example difficult problem

• Traveling Salesperson
Problem (TSP)
– Input: undirected graph

with lengths on edges
– Output: shortest tour that

visits each vertex exactly
once

• Best known algorithm:
O(n 2n) time.

Introduction to Algorithms May 6, 2003 L20.5© 2003 by Piotr Indyk

Another difficult problem

• Clique:
– Input: undirected graph

G=(V,E)
– Output: largest subset C

of V such that every pair
of vertices in C has an
edge between them

• Best known algorithm:
O(n 2n) time

Introduction to Algorithms May 6, 2003 L20.6© 2003 by Piotr Indyk

What can we do ?

• Spend more time designing algorithms for those
problems
– People tried for a few decades, no luck

• Prove there is no polynomial time algorithm for
those problems
– Would be great
– Seems really difficult
– Best lower bounds for “natural” problems:

• Ω(n2) for restricted computational models
• 4.5n for unrestricted computational models

Introduction to Algorithms May 6, 2003 L20.7© 2003 by Piotr Indyk

What else can we do ?

• Show that those hard problems are
essentially equivalent. I.e., if we can solve
one of them in poly time, then all others can
be solved in poly time as well.

• Works for at least 10 000 hard problems

Introduction to Algorithms May 6, 2003 L20.8© 2003 by Piotr Indyk

The benefits of equivalence

• Combines research
efforts

• If one problem has
polytimesolution,
then all of them do

P1

P2

P3

Introduction to Algorithms May 6, 2003 L20.9© 2003 by Piotr Indyk

A more realistic scenar io

• Once an exponential
lower bound is shown
for one problem, it
holds for all of them

• But someone is
happy…

P1

P2

P3

Ron Rivest

Introduction to Algorithms May 6, 2003 L20.10© 2003 by Piotr Indyk

Summing up

• If we show that a problem � is equivalent
to ten thousand other well studied problems
without efficient algorithms, then we get a
very strong evidence that � is hard.

• We need to:
– Identify the class of problems of interest
– Define the notion of equivalence
– Prove the equivalence(s)

Introduction to Algorithms May 6, 2003 L20.11© 2003 by Piotr Indyk

Class of problems: NP

• Decision problems: answer YES or NO. E.g.,” is
there a tour of length K” ?

• Solvable in non-deterministic polynomial time:

– Intuitively: the solution can be verified in
polynomial time

– E.g., if someone gives as a tour T, we can
verify if T is a tour of length K.

• Therefore, TSP is in NP.

Introduction to Algorithms May 6, 2003 L20.12© 2003 by Piotr Indyk

Formal definitions of P and NP

• A problem � is solvable in poly time (or �∈P), if
there is a poly time algorithm V(.) such that for
any input x:

�(x)=YES iff V(x)=YES

• A problem � is solvable in non-deterministic poly
time (or �∈NP), if there is a poly time algorithm
V(. , .) such that for any input x:
�(x)=YES iff there exists a certificatey of size

poly(|x|) such that V(x,y)=YES

Introduction to Algorithms May 6, 2003 L20.13© 2003 by Piotr Indyk

Examples of problems in NP

• Is “Does there exist a clique in G of size K” in NP ?
Yes: V(x,y) interprets x as a graph G, y as a set C, and
checks if all vertices in C are adjacent and if |C| K

• Is Sorting in NP ?
No, not a decision problem.

• Is “Sortedness” in NP ?
Yes: ignore y, and check if the input x is sorted.

• Is Compositeness in NP ?
Yes. In fact, for V as in Lecture 17, there are many
certificates y.

Introduction to Algorithms May 6, 2003 L20.14© 2003 by Piotr Indyk

Reductions: �’ to �

A for �
YES

NO
fx’ f(x’)=

A’ for �’

x
YES

NO

Introduction to Algorithms May 6, 2003 L20.15© 2003 by Piotr Indyk

Reductions

• �’ is poly time reducible to � (�’ �) iff there
is a poly time function f that maps inputs x’ to �’
into inputs x of �, such that for any x’

�’ (x’)=�(f(x’))

• Fact: if �∈P and �’ � then �’∈P

• Fact 2: if �∈NP and �’ � then �’∈NP

• Fact 3: if �’ � and �” �’ then �” �

Introduction to Algorithms May 6, 2003 L20.16© 2003 by Piotr Indyk

Recap

• We defined a large class of interesting
problems, namely NP

• We have a way of saying that one problem
is not harder than another (�’ �)

• Our goal: show equivalence between hard
problems

