
Introduction to Algorithms
6.046J/18.401

Lecture 20
Prof. Piotr Indyk

Introduction to Algorithms May 1, 2003 L20.2© 2003 by Piotr Indyk

Computational Geometry ctd.

• Segment intersection problem:

– Given: a set of n distinct segments s1…sn,
represented by coordinates of endpoints

– Goal (I): detect if there is any pair si sj
that intersects

– Goal (II): report all pairs of intersecting
segments

Introduction to Algorithms May 1, 2003 L20.3© 2003 by Piotr Indyk

Segment intersection

• Easy to solve in O(n2) time
• …which is optimal for the reporting

problem:
• However:

– We will see we can do better for
the detection problem

– Moreover, the number of
intersections P is usually small.
Then, we would like an output
sensitive algorithm, whose
running time is low if P is small.

Introduction to Algorithms May 1, 2003 L20.4© 2003 by Piotr Indyk

Result

• We will show:

– O(n log n) time for detection

– O((n +P) log n) time for reporting

• We will use …

… (no, not divide and conquer)

… Binary Search Trees

• Specifically: Line sweep approach

Introduction to Algorithms May 1, 2003 L20.5© 2003 by Piotr Indyk

Orthogonal segments

• All segments are either
horizontal or vertical

• Assumption: all coordinates
are distinct

• Therefore, only vertical-
horizontal intersections exist

H-segment

V-segment

Introduction to Algorithms May 1, 2003 L20.6© 2003 by Piotr Indyk

Orthogonal segments

• Sweep line:
– A vertical line sweeps the

plane from left to right
– It “stops” at all “ important”

x-coordinates, i.e., when it
hits a V-segment or
endpoints of an H-segment

– Invariant: all intersections
on the left side of the sweep
line have been already
reported

Introduction to Algorithms May 1, 2003 L20.7© 2003 by Piotr Indyk

Orthogonal segments ctd.

• We maintain sorted y-
coordinates of H-segments
currently intersected by the
sweep line (using a balanced
BST T)

• When we hit the left point of
an H-segment, we add its y-
coordinate to T

• When we hit the right point of
an H-segment, we delete its y-
coordinate from T

Introduction to Algorithms May 1, 2003 L20.8© 2003 by Piotr Indyk

Orthogonal segments ctd.

• Whenever we hit a V-
segment (with coordinates
ytop, ybottom), we report all
H-segments in T with y-
coordinates in [ytop, ybottom]

Introduction to Algorithms May 1, 2003 L20.9© 2003 by Piotr Indyk

Algorithm

• Sort all V-segments and endpoints of H-
segments by their x-coordinates – this gives
the “ trajectory” of the sweep line

• Scan the elements in the sorted list:
– Left endpoint: add segment to T
– Right endpoint: remove segment from T
– V-segment: report intersections with the

H-segments stored in T

Introduction to Algorithms May 1, 2003 L20.10© 2003 by Piotr Indyk

Analysis

• Sorting: O(n log n)
• Add to/delete from T:

– O(log n) per operation
– O(n log n) total

• Processing V-segments:
– O(log n) per intersection
– O(P log n) total
– Can be improved to O(P +n log n)

• Overall: O(P+ n log n) time

Introduction to Algorithms May 1, 2003 L20.11© 2003 by Piotr Indyk

The general case

• Assumption: all
coordinates of endpoints
and intersections distinct

• In particular:

– No vertical segments

– No three segments
intersect at one point

Introduction to Algorithms May 1, 2003 L20.12© 2003 by Piotr Indyk

Sweep line

• Invariant (as before): all
intersections on the left of
the sweep line have been
already reported

• Stops at all “ important” x-
coordinates, i.e., when it hits
endpoints or intersections

• Do not know the
intersections in advance !

• The list of important x-
coordinates is constructed
and maintained dynamically

Introduction to Algorithms May 1, 2003 L20.13© 2003 by Piotr Indyk

Sweep line

• Also need to maintain the
information about the
segments intersecting the
sweep line

• Cannot keep the values of y-
coordinates of the segments !

• Instead, we will maintain
their order .I.e., at any point,
we maintain all segments
intersecting the sweep line,
sorted by the y-coordinates
of the intersections.

Introduction to Algorithms May 1, 2003 L20.14© 2003 by Piotr Indyk

Algorithm

• Initialize the “vertical” BST V (to “empty”)
• Initialize the “horizontal” priority queue H (to contain the

segments’ endpoints sorted by x-coordinates)
• Repeat

– Take the next “event” p from H:
// Update V
– If p is the left endpoint of a segment, add the segment

to V
– If p is the right endpoint of a segment, remove the

segment from V
– If p is the intersection point of s and s’ , swap the order

of s and s’ in V, report p

Introduction to Algorithms May 1, 2003 L20.15© 2003 by Piotr Indyk

Algorithm ctd.

// Update H

– For each new pair of neighbors s and s’ in V:

• Check if s and s’ intersect on the right side of the
sweep line

• If so, add their intersection point to H

• Remove the possible duplicates in H

• Until H is empty

Introduction to Algorithms May 1, 2003 L20.16© 2003 by Piotr Indyk

Analysis

• Initializing H: O(n log n)

• Updating V:

– O(log n) per operation

– O((P+n) log n) total

• Updating H:

– O(log n) per intersection

– O(P log n) total

• Overall: O((P+ n) log n) time

Introduction to Algorithms May 1, 2003 L20.17© 2003 by Piotr Indyk

Correctness

• All reported intersections are correct
• Assume there is an intersection not reported. Let p=(x,y)

be the first such unreported intersection (of s and s’)
• Let x’ be the last event before p. Observe that:

– At time x’ segments s and s’ are neighbors on the
sweep line

– Since no intersections were missed till then, V
maintained the right order of intersecting segments

– Thus, s and s’ were neighbors in V at time x’ . Thus,
their intersection should have been detected

