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Computational Geometry

• Algorithms for geometric problems

• Applications: CAD, GIS, computer vision,……. 

• E.g., the closest pair problem:

– Given: a set of points P={ p1…pn} in the plane, 
such that pi=(xi,yi)

– Goal: find a pair pi pj that minimizes  ||pi – pj||

• We will see more examples in the next lecture
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Computational Model

• In the next two lectures, we will assume that 
– The input (e.g., point coordinates) are real numbers
– We can perform (natural) operations on them in 

constant time, with perfect precision
• Advantage: simplicity
• Drawbacks: highly non-trivial issues:

– Theoretical: if we allow arbitrary operations on reals, 
we can compress n numbers into a one number

– Practical: algorithm designed for infinite precision 
sometimes fail on real computers
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Closest Pair

• Find a closest pair among p1…pn

• Easy to do in O(n2) time 

– For all pi pj, compute ||pi – pj|| and 
choose the minimum

• We will aim for O(n log n) time 
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Divide and conquer

• Divide: 

– Compute the median of 
x-coordinates

– Split the points into PL
and PR, each of size n/2

• Conquer: compute the 
closest pairs for PL and PR

• Combine the results (the 
hard part)
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Combine

• Let d=min(d1,d2)
• Observe:

– Need to check only pairs 
which cross the dividing 
line

– Only interested in pairs 
within distance < d

• Suffices to look at points in the 
2d-width strip around the 
median line

d1

d2

2d
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Scanning the strip

• Sort all points in the strip 
by their y-coordinates, 
forming q1…qk, k n.

• Let yi be the y-coordinate of 
qi

• For i=1 to k
– j=i-1
– While yi-yj < d

• Check the pair qi,qj

• j:=j-1

d
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Analysis

• Correctness: easy
• Running time is more 

involved
• Can we have many qj’s

that are within distance 
d from qi ?

• No
• Proof by packing

argument

d
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Analysis, ctd.

Theorem: there are at most 7 
qj’s such that yi-yj d.

Proof:
• Each such qj must lie either in 

the left or in the right d × d
square

• Within each square, all points 
have distance distance d
from others

• We can pack at most 4 such 
points into one square, so we 
have 8 points total (incl. qi) 

qi
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Packing bound

• Proving “4”  is not trivial
• Will prove “5”

– Draw a disk of radius d/2
around each point

– Disks are disjoint
– The disk-square intersection 

has area (d/2)2/4 = /16 
d2

– The square has area d2

– Can pack at most 16/ 5.1
points
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Running time

• Divide: O(n)
• Combine: O(n log n) because we sort by y
• However, we can:

– Sort all points by y at the beginning
– Divide preserves the y-order of points
Then combine takes only O(n)

• We get T(n)=2T(n/2)+O(n), so        
T(n)=O(n log n)
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Close pair

• Given: P={ p1…pn}

• Goal: check if there is any pair pi pj within 
distance 1 from each other

• Will give an O(n) time randomized 
algorithm, using… 

… hashing!
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Algorithm

1. Impose a square grid onto the 
plane, where each cell is a 1 
× 1 square

2. Put each point into a bucket 
corresponding to the cell it 
belongs to (see last slide)

3. If there is a bucket with > 4
points in it, answer YES (by 
the packing theorem)

4. Otherwise, for each p∈P, 
check all points in the cell 
containing p, as well as the 
cells adjacent to it
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Analysis

• Running time:

– Putting points into the buckets: O(n) time 
using hashing

– Checking if there is a heavy bucket: O(n)

– Checking the cells: 9 × 4 × n = O(n)

• Overall: linear time
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To hash or not to hash

• In step 2 of the algorithm, we need to partition the points into
“buckets” , i.e., sets B1…Bk, k n. Each bucket contains all points that 
belong to some non-empty cell.

• This can be solved using any data structure for the “symbol table”
problem, as in Lecture 7. The key of a point p=(x,y) is the identifier of 
the cell that p belongs to. Note that now the keys are not unique, i.e., 
many points can have the same key. 

• We could solve the symbol table problem using direct access table. 
However, the space used by the algorithm would be proportional to the 
total number of cells in the grid, which could be much larger than n. In 
particular, we would not be able to initialize that much space in O(n)
time.

• Hashing allows us to reduce the space (and initialization time) to O(n),
since the space depends only on the number of nonempty cells. Since 
hashing uses randomness, the resulting algorithm is randomized.


