
Introduction to Algorithms
6.046J/18.401

Lecture 17
Prof. Piotr Indyk

Introduction to Algorithms April 17, 2003 L17.2© 2003 by Piotr Indyk

Fast Fourier Transform

• Discrete Fourier Transform (DFT):

– Given: coefficients of a polynomial

a(x)=a0+a1x+… +an-1x
n-1

– Goal: compute a(n
0), a(n

1) … a(n
n-1),

n is the “principal n-th root of unity”

• Challenge: Perform DFT in O(n log n) time.

Introduction to Algorithms April 17, 2003 L17.3© 2003 by Piotr Indyk

Motivation I: 6.003

• FFT is essential for digital signal processing

– a0, a1, … , an-1: signal in the “ time domain”

– a(n
0), a(n

1) … a(n
n-1): signal in the

“ frequency domain”

– FFT enables quick conversion from one domain
to the other

• Used in Compact Disks, Digital Cameras,
Synthesizers, etc, etc.

Introduction to Algorithms April 17, 2003 L17.4© 2003 by Piotr Indyk

Example application: SETI

• Searching For Extraterrestial Intelligence (SETI):

“At each drift rate, the client searches for signals at one or more
bandwidths between 0.075 and 1,221 Hz. This is accomplished by
using FFTs of length 2n (n = 3, 4, ..., 17) to transform the data into
a number of time-ordered power spectra.”

Introduction to Algorithms April 17, 2003 L17.5© 2003 by Piotr Indyk

FFT

• Very elaborate implementations
(e.g., FFTW, “ the Fastest Fourier Transform
in the West” , done at MIT)

• Hardware implementations

Introduction to Algorithms April 17, 2003 L17.6© 2003 by Piotr Indyk

Motivation II: Computer Science

• We will see how to multiply two
polynomials in O(n log n) time using FFT

• Multiplication of polynomials mult. of
(large) integers - cryptography

• Also: pattern matching, etc.

Introduction to Algorithms April 17, 2003 L17.7© 2003 by Piotr Indyk

DFT

• Recall: want a(n
0), a(n

1) … a(n
n-1)

• n is the “principal n-th root of unity, i.e.,
for j=0…n-1 we have (n

j)n=1

• We will work in the field of complex
numbers where

n = e2 i/n = cos(2 /n) +i sin(2 /n)

• n is indeed the principal n-th root of unity:

(n
j)n = e2 ij = cos(2 j) +i sin(2 j) = 1

Introduction to Algorithms April 17, 2003 L17.8© 2003 by Piotr Indyk

Halving Lemma

• If n>0 is even, then the squares of the n
complex n-th roots of unity are the n/2
complex (n/2)-th roots of unity, i.e.:

{ (n
0)2, … , (n

n-1)2} = { n/2
0, … , n/2

n/2-1}

• Proof: (n
j)2 = e2(2 ij/n) = e2 ij/(n/2) = n/2

j

Introduction to Algorithms April 17, 2003 L17.9© 2003 by Piotr Indyk

FFT

• Divide-and-conquer algorithm

• “Split” a(x) into a[0](x) and a[1](x) :

a[0](x)= a0+a2x+… +an-2x
n/2-1

a[1](x)= a1+a3x+… +an-1x
n/2-1

• Therefore

a[0](x2)+ x a[1](x2) = a(x)

Introduction to Algorithms April 17, 2003 L17.10© 2003 by Piotr Indyk

FFT: the algorithm

• Recall we need to evaluate the polynomial a at
points { n

0 , ... , n
n-1}

• Suffices to
– Evaluate polynomials a[0] and a[1] at points

{ (n
0)2 ... , (n

n-1)2} =P
– Compute a(n

j) = a[0]((n
j)2) + n

j a[1] ((n
j)2)

• However, P= { n/2
0, … , n/2

n/2-1} , |P|=n/2
• Thus, we just need to recursively evaluate two

polynomials with degree n/2-1 at n/2 points!
• Time: T(n)=2 T(n/2) + O(n) T(n)=O(n log n)

Introduction to Algorithms April 17, 2003 L17.11© 2003 by Piotr Indyk

Comments

• We assumed that n is a power of 2

• This is NOT without loss of generality

Introduction to Algorithms April 17, 2003 L17.12© 2003 by Piotr Indyk

Inverse DFT

• Given: the values a(n
0), a(n

1) … a(n
n-1),

denoted by y0, y1, … , yn-1.
• Goal: compute the coefficients a0, a1,…,an-1

• Algorithm:
– “Observe” that aj=y((n

-1)j), y(x) is a
polynomial with coefficients y0,… , yn-1
(see CLRS for proof)

– Run FFT

Introduction to Algorithms April 17, 2003 L17.13© 2003 by Piotr Indyk

Polynomial multiplication

Input: a(x)=a0+a1x+… +an-1x
n-1,

b(x)=b0+b1x+… +bn-1x
n-1,

Output: c(x)= a(x)*b(x)=c0+c1x+…+c2n-2x
2n-2

ci=a0bi+a1bi-1+…+ ai-1b1+aib0

How to solve it in O(n log n) time ?

Introduction to Algorithms April 17, 2003 L17.14© 2003 by Piotr Indyk

FFT-based algorithm

• Extend a,b to degree 2n-2 (by adding 0’s)

• Compute a(2n
0)…a(2n

2n-2) and

b(2n
0)…b(2n

2n-2) (via FFT)

• Compute c(2n
j)= a(2n

j)*b(2n
j), j=0…2n-2

• Compute c0, c1,…,c2n-2 (via inverse FFT)

• Same time as FFT

Introduction to Algorithms April 17, 2003 L17.15© 2003 by Piotr Indyk

Uniqueness of c

• Can show (CLRS) that if we fix the values
of a (d-1)-degree polynomial at d different
points, then the polynomial is unique

• E.g., there is only one line passing through
2 points

• Therefore, the algorithm is correct

