Introduction to Algorithms 6.046J/18.401

Lecture 17
Prof. Piotr Indyk

Fast Fourier Transform

- Discrete Fourier Transform (DFT):
- Given: coefficients of a polynomial

$$
a(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}
$$

- Goal: compute $\mathrm{a}\left(\omega_{\mathrm{n}}{ }^{0}\right), \mathrm{a}\left(\omega_{\mathrm{n}}{ }^{1}\right) \ldots \mathrm{a}\left(\omega_{\mathrm{n}}{ }^{\mathrm{n}-1}\right)$, ω_{n} is the "principal n-th root of unity"
- Challenge: Perform DFT in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time.

Motivation I: 6.003

- FFT is essential for digital signal processing
$-a_{0}, a_{1}, \ldots, a_{n-1}$: signal in the "time domain"
$-\mathrm{a}\left(\omega_{\mathrm{n}}{ }^{0}\right), \mathrm{a}\left(\omega_{\mathrm{n}}{ }^{1}\right) \ldots \mathrm{a}\left(\omega_{\mathrm{n}}{ }^{\mathrm{n}-1}\right)$: signal in the "frequency domain"
- FFT enables quick conversion from one domain to the other
- Used in Compact Disks, Digital Cameras, Synthesizers, etc, etc.

Example application: SETI

- Searching For Extraterrestial Intelligence (SETI):

"At each drift rate, the client searches for signals at one or more bandwidths between 0.075 and $1,221 \mathrm{~Hz}$. This is accomplished by using FFTs of length $2^{n}(n=3,4, \ldots, 17)$ to transform the data into a number of time-ordered power spectra."

FFT

- Very elaborate implementations (e.g., FFTW, "the Fastest Fourier Transform in the West", done at MIT)
- Hardware implementations

Motivation II: Computer Science

- We will see how to multiply two polynomials in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time using FFT
- Multiplication of polynomials \rightarrow mult. of (large) integers - cryptography
- Also: pattern matching, etc.

DFT

- Recall: want $\mathrm{a}\left(\omega_{\mathrm{n}}{ }^{0}\right), \mathrm{a}\left(\omega_{\mathrm{n}}{ }^{1}\right) \ldots \mathrm{a}\left(\omega_{\mathrm{n}}{ }^{\mathrm{n}-1}\right)$
- ω_{n} is the "principal n-th root of unity, i.e., for $\mathrm{j}=0 \ldots \mathrm{n}-1$ we have $\left(\omega_{\mathrm{n}}^{\mathrm{j}}\right)^{\mathrm{n}}=1$
- We will work in the field of complex numbers where

$$
\omega_{\mathrm{n}}=\mathrm{e}^{2 \pi i / n}=\cos (2 \pi / \mathrm{n})+\mathrm{i} \sin (2 \pi / \mathrm{n})
$$

- ω_{n} is indeed the principal n -th root of unity:

$$
\left(\omega_{\mathrm{n}}^{\mathrm{j}}\right)^{\mathrm{n}}=\mathrm{e}^{2 \pi \mathrm{ij}}=\cos (2 \pi \mathrm{j})+\mathrm{i} \sin (2 \pi \mathrm{j})=1
$$

Halving Lemma

- If $n>0$ is even, then the squares of the n complex n-th roots of unity are the $n / 2$ complex ($\mathrm{n} / 2$)-th roots of unity, i.e.:
$\left\{\left(\omega_{\mathrm{n}}{ }^{0}\right)^{2}, \ldots,\left(\omega_{\mathrm{n}}^{\mathrm{n}-1}\right)^{2}\right\}=\left\{\omega_{\mathrm{n} / 2}{ }^{0}, \ldots, \omega_{\mathrm{n} / 2}{ }^{\mathrm{n} / 2-1}\right\}$
- Proof: $\left(\omega_{\mathrm{n}}^{\mathrm{j}}\right)^{2}=\mathrm{e}^{2(2 \pi \mathrm{ij} / \mathrm{n})}=\mathrm{e}^{2 \pi \mathrm{ij} /(\mathrm{n} / 2)}=\omega_{\mathrm{n} / 2}{ }^{\mathrm{j}}$

FFT

- Divide-and-conquer algorithm
- "Split" $a(x)$ into $a^{[0]}(x)$ and $a^{[1]}(x)$:

$$
\begin{aligned}
& \mathrm{a}^{[0]}(\mathrm{x})=\mathrm{a}_{0}+\mathrm{a}_{2} \mathrm{x}+\ldots+\mathrm{a}_{\mathrm{n}-2} \mathrm{x}^{\mathrm{n} / 2-1} \\
& \mathrm{a}^{[1]}(\mathrm{x})=\mathrm{a}_{1}+\mathrm{a}_{3} \mathrm{x}+\ldots+\mathrm{a}_{\mathrm{n}-1} \mathrm{x}^{\mathrm{n} / 2-1}
\end{aligned}
$$

- Therefore

$$
\mathrm{a}^{[0]}\left(\mathrm{x}^{2}\right)+\mathrm{xa}^{[1]}\left(\mathrm{x}^{2}\right)=\mathrm{a}(\mathrm{x})
$$

FFT: the algorithm

- Recall we need to evaluate the polynomial a at points $\left\{\omega_{\mathrm{n}}{ }^{0}, \ldots, \omega_{\mathrm{n}}{ }^{\mathrm{n}-1}\right\}$
- Suffices to
- Evaluate polynomials $\mathrm{a}^{[0]}$ and $\mathrm{a}^{[1]}$ at points $\left\{\left(\omega_{\mathrm{n}}{ }^{0}\right)^{2} \ldots,\left(\omega_{\mathrm{n}}{ }^{\mathrm{n}-1}\right)^{2}\right\}=\mathrm{P}$
- Compute $\mathrm{a}\left(\omega_{\mathrm{n}}{ }^{\mathrm{j}}\right)=\mathrm{a}^{[0]}\left(\left(\omega_{\mathrm{n}}^{\mathrm{j}}\right)^{2}\right)+\omega_{\mathrm{n}}{ }^{\mathrm{j}} \mathrm{a}^{[1]}\left(\left(\omega_{\mathrm{n}}^{\mathrm{j}}\right)^{2}\right)$
- However, $\mathrm{P}=\left\{\omega_{\mathrm{n} / 2}{ }^{0}, \ldots, \omega_{\mathrm{n} / 2}{ }^{\mathrm{n} / 2-1}\right\},|\mathrm{P}|=\mathrm{n} / 2$
- Thus, we just need to recursively evaluate two polynomials with degree $n / 2-1$ at $n / 2$ points!
- Time: $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n}) \rightarrow \mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Comments

- We assumed that n is a power of 2
- This is NOT without loss of generality

Inverse DFT

- Given: the values $\mathrm{a}\left(\omega_{\mathrm{n}}{ }^{0}\right), \mathrm{a}\left(\omega_{\mathrm{n}}{ }^{1}\right) \ldots \mathrm{a}\left(\omega_{\mathrm{n}}{ }^{\mathrm{n}-1}\right)$, denoted by $\mathrm{y}_{0}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}-1}$.
- Goal: compute the coefficients $\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}-1}$
- Algorithm:
- "Observe" that $\mathrm{a}_{\mathrm{j}}=\mathrm{y}\left(\left(\omega_{\mathrm{n}}{ }^{-1}\right)^{\mathrm{j}}\right), \mathrm{y}(\mathrm{x})$ is a polynomial with coefficients $\mathrm{y}_{0}, \ldots, \mathrm{y}_{\mathrm{n}-1}$ (see CLRS for proof)
- Run FFT

Polynomial multiplication

Input: $a(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$,

$$
\mathrm{b}(\mathrm{x})=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}+\ldots+\mathrm{b}_{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}-1},
$$

Output: $c(x)=a(x) * b(x)=c_{0}+c_{1} x+\ldots+c_{2 n-2} x^{2 n-2}$

$$
c_{i}=a_{0} b_{i}+a_{1} b_{i-1}+\ldots+a_{i-1} b_{1}+a_{i} b_{0}
$$

How to solve it in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time ?

FFT-based algorithm

- Extend a,b to degree 2n-2 (by adding 0's)
- Compute $a\left(\omega_{2 n}{ }^{0}\right) \ldots a\left(\omega_{2 n}^{2 n-2}\right)$ and

$$
\mathrm{b}\left(\omega_{2 \mathrm{n}}^{0}\right) \ldots \mathrm{b}\left(\omega_{2 \mathrm{n}}{ }^{2 \mathrm{n}-2}\right)(\text { via FFT })
$$

- Compute $c\left(\omega_{2 n}{ }^{j}\right)=a\left(\omega_{2 n}{ }^{j}\right) * b\left(\omega_{2 n}{ }^{j}\right), j=0 \ldots 2 n-2$
- Compute $\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{2 \mathrm{n}-2}$ (via inverse FFT)
- Same time as FFT

Uniqueness of \mathbf{c}

- Can show (CLRS) that if we fix the values of a (d-1)-degree polynomial at d different points, then the polynomial is unique
- E.g., there is only one line passing through 2 points
- Therefore, the algorithm is correct

