Introduction to Algorithms 6.046J/18.401

Lecture 17

Prof. Piotr Indyk

Fast Fourier Transform

- Discrete Fourier Transform (DFT):

 Given: coefficients of a polynomial
 a(x)=a₀+a₁x+...+a_{n-1}xⁿ⁻¹

 Goal: compute a(ω_n⁰), a(ω_n⁻¹) ... a(ω_nⁿ⁻¹), ω_n is the "principal n-th root of unity"
- Challenge: Perform DFT in O(n log n) time.

Motivation I: 6.003

- FFT is essential for digital signal processing
 - $-a_0, a_1, \ldots, a_{n-1}$: signal in the "time domain"
 - $a(\omega_n^{0}), a(\omega_n^{1}) \dots a(\omega_n^{n-1})$: signal in the "frequency domain"
 - FFT enables quick conversion from one domain to the other
- Used in Compact Disks, Digital Cameras, Synthesizers, etc, etc.

Example application: SETI

• Searching For Extraterrestial Intelligence (SETI):

"At each drift rate, the client searches for signals at one or more bandwidths between 0.075 and 1,221 Hz. This is accomplished by using FFTs of length 2^n (n = 3, 4, ..., 17) to transform the data into a number of time-ordered power spectra."

© 2003 by Piotr Indyk

Introduction to Algorithms

- Very elaborate implementations (e.g., FFTW, "the Fastest Fourier Transform in the West", done at MIT)
- Hardware implementations

Motivation II: Computer Science

- We will see how to multiply two polynomials in O(n log n) time using FFT
- Multiplication of polynomials → mult. of (large) integers - cryptography
- Also: pattern matching, etc.

- Recall: want $a(\omega_n^{0}), a(\omega_n^{-1}) \dots a(\omega_n^{n-1})$
- ω_n is the "principal n-th root of unity, i.e., for j=0...n-1 we have $(\omega_n^{j})^n=1$
- We will work in the field of complex numbers where

 $\omega_n = e^{2\pi i/n} = \cos(2\pi/n) + i \sin(2\pi/n)$

• ω_n is indeed the principal n-th root of unity:

 $(\omega_n^{j})^n = e^{2\pi i j} = \cos(2\pi j) + i \sin(2\pi j) = 1$

© 2003 by Piotr Indyk

Halving Lemma

- If n>0 is even, then the squares of the n complex n-th roots of unity are the n/2 complex (n/2)-th roots of unity, i.e.:
- { $(\omega_n^{0})^2, \ldots, (\omega_n^{n-1})^2$ } = { $\omega_{n/2}^{0}, \ldots, \omega_{n/2}^{n/2-1}$ }
- Proof: $(\omega_n^j)^2 = e^{2(2\pi i j/n)} = e^{2\pi i j/(n/2)} = \omega_{n/2}^j$

- Divide-and-conquer algorithm
- "Split" a(x) into $a^{[0]}(x)$ and $a^{[1]}(x)$:

$$a^{[0]}(x) = a_0 + a_2 x + \dots + a_{n-2} x^{n/2-1}$$

 $a^{[1]}(x) = a_1 + a_3 x + \dots + a_{n-1} x^{n/2-1}$

• Therefore

$$a^{[0]}(x^2) + x a^{[1]}(x^2) = a(x)$$

FFT: the algorithm

- Recall we need to evaluate the polynomial a at points $\{\omega_n^{0}, \dots, \omega_n^{n-1}\}$
- Suffices to
 - Evaluate polynomials $a^{[0]}$ and $a^{[1]}$ at points $\{(\omega_n^{0})^2 \dots, (\omega_n^{n-1})^2\} = P$
 - Compute $a(\omega_n^{j}) = a^{[0]}((\omega_n^{j})^2) + \omega_n^{j} a^{[1]}((\omega_n^{j})^2)$
- However, $P = \{\omega_{n/2}^{0}, \dots, \omega_{n/2}^{n/2-1}\}, |P| = n/2$
- Thus, we just need to recursively evaluate two polynomials with degree n/2-1 at n/2 points!
- Time: $T(n)=2 T(n/2) + O(n) \rightarrow T(n)=O(n \log n)$

- We assumed that **n** is a power of 2
- This is **NOT** without loss of generality

Inverse DFT

- Given: the values $a(\omega_n^{0}), a(\omega_n^{-1}) \dots a(\omega_n^{n-1}),$ denoted by y_0, y_1, \dots, y_{n-1} .
- Goal: compute the coefficients a_0, a_1, \dots, a_{n-1}
- Algorithm:
 - "Observe" that $a_j = y((\omega_n^{-1})^j), y(x)$ is a polynomial with coefficients y_0, \dots, y_{n-1} (see CLRS for proof)
 - Run FFT

Polynomial multiplication

Input: $a(x)=a_0+a_1x+...+a_{n-1}x^{n-1}$, $b(x)=b_0+b_1x+...+b_{n-1}x^{n-1}$, Output: $c(x)=a(x)*b(x)=c_0+c_1x+...+c_{2n-2}x^{2n-2}$ $c_i=a_0b_i+a_1b_{i-1}+...+a_{i-1}b_1+a_ib_0$

How to solve it in O(n log n) time ?

FFT-based algorithm

- Extend a,b to degree 2n-2 (by adding 0's)
- Compute $a(\omega_{2n}^{0})...a(\omega_{2n}^{2n-2})$ and $b(\omega_{2n}^{0})...b(\omega_{2n}^{2n-2})$ (via FFT)
- Compute $c(\omega_{2n}^{j}) = a(\omega_{2n}^{j}) * b(\omega_{2n}^{j}), j=0...2n-2$
- Compute $c_0, c_1, \dots, c_{2n-2}$ (via inverse FFT)
- Same time as FFT

Uniqueness of c

- Can show (CLRS) that if we fix the values of a (d-1)-degree polynomial at d different points, then the polynomial is unique
- E.g., there is only one line passing through 2 points
- Therefore, the algorithm is correct