
Introduction to Algorithms
6.046J/18.401J

Lecture 16
Prof. Piotr Indyk

Introduction to Algorithms April 10, 2003 L16.2© Piotr Indyk

Str ing Matching

• Input: Two strings T[1…n] and P[1…m],
containing symbols from alphabet Σ

• Goal: find all “shifts” 1 s n-m such that
T[s+1…s+m]=P

• Example:
– Σ={ ,a,b,…,z}
– T[1…18]=“ to be or not to be”
– P[1..2]=“be”
– Shifts: 3, 16

Introduction to Algorithms April 10, 2003 L16.3© Piotr Indyk

Simple Algor ithm

for s ← 0 to n-m

Match ← 1

for j ← 1 to m

if T[s+j] P[j] then

Match ← 0

exit loop
if Match=1 then output s

Introduction to Algorithms April 10, 2003 L16.4© Piotr Indyk

Results

• Running time of the simple algorithm:

– Worst-case: O(nm)

– Average-case (random text): O(n)

• Is it possible to achieve O(n) for any input ?

– Knuth-Morris-Pratt’77: deterministic

– Karp-Rabin’81: randomized

Introduction to Algorithms April 10, 2003 L16.5© Piotr Indyk

Karp-Rabin Algor ithm

• A very elegant use of an idea that we have encountered
before, namely…

HASHING !
• Idea:

– Hash all substrings T[1…m], T[2…m+1], T[3…m+2],
etc.

– Hash the pattern P[1…m]
– Report the substrings that hash to the same value as P

• Problem: how to hash n-m substrings, each of length m, in
O(n) time ?

Introduction to Algorithms April 10, 2003 L16.6© Piotr Indyk

Implementation

• Attempt I:
– Assume Σ={ 0,1}
– Think about each Ts=T[s+1…s+m] as a

number in binary representation, i.e.,
ts=T[s+1]20+T[s+2]21+…+T[s+m]2m-1

– Find a fast way of computing ts+1 given ts
– Output all s such that ts is equal to the

number p represented by P

Introduction to Algorithms April 10, 2003 L16.7© Piotr Indyk

The great formula

• How to transform
ts=T[s+1]20+T[s+2]21+…+T[s+m]2m-1

into
ts+1=T[s+2]20+T[s+3]21+…+T[s+m+1]2m-1 ?

• Three steps:
– Subtract T[s+1]20

– Divide by 2 (i.e., shift the bits by one position)
– Add T[s+m+1]2m-1

• Therefore: ts+1= (ts- T[s+1]20)/2 + T[s+m+1]2m-1

Introduction to Algorithms April 10, 2003 L16.8© Piotr Indyk

Algor ithm

• Can compute ts+1 from ts using 3 arithmetic
operations

• Therefore, we can compute all t0,t1,…,tn-m
using O(n) arithmetic operations

• We can compute a number corresponding to
Pusing O(m) arithmetic operations

• Are we done ?

Introduction to Algorithms April 10, 2003 L16.9© Piotr Indyk

Problem

• To get O(n) time, we would need to perform
each arithmetic operation in O(1) time

• However, the arguments are m-bit long !

• It is unreasonable to assume that operations
on such big numbers can be done in O(1)
time

• We need to reduce the number range to
something more managable

Introduction to Algorithms April 10, 2003 L16.10© Piotr Indyk

Hashing

• We will instead compute

t’ s=T[s+1]20+T[s+2]21+…+T[s+m]2m-1 mod q

where q is an “appropriate” prime number

• One can still compute t’ s+1 from t’ s :

t’ s+1= (t’ s- T[s+1]20)*2-1+T[s+m+1]2m-1 mod q

• If q is not large, i.e., has O(log n) bits, we
can compute all t’ s (and p’) in O(n) time

Introduction to Algorithms April 10, 2003 L16.11© Piotr Indyk

Problem

• Unfortunately, we can have false positives,
i.e., Ts Pbut t’ s=p’

• Need to use a random q

• We will show that the probability of a false
positive is small randomized algorithm

Introduction to Algorithms April 10, 2003 L16.12© Piotr Indyk

False positives

• Consider any ts p. We know that both
numbers are in the range { 0…2m-1}

• How many primes q are there such that
ts mod q = p mod q (ts-p) =0 mod q ?

• Such prime has to divide x=(ts-p) 2m

• Represent x=p1
e1p2

e2…pk
ek, pi prime, ei 1

• Since 2 pi , we have 2k x 2m k m
• There are m primes dividing x

Introduction to Algorithms April 10, 2003 L16.13© Piotr Indyk

Algor ithm

• Let be a set of 2nm primes, each having
O(log n) bits

• Choose q uniformly at random from
• Compute t’ 0, t’ 1, …., and p’
• For each s, the probability that t’ s=p’ while

Ts P is at most m/2nm = 1/2n
• The probability of any false positive is at

most (n-m)/2n 1/2

Introduction to Algorithms April 10, 2003 L16.14© Piotr Indyk

“ Details”

• How do we know that such exists ?

• How do we choose a random prime from
in O(n) time ?

Introduction to Algorithms April 10, 2003 L16.15© Piotr Indyk

Pr ime density

• Primes are “dense” . I.e., if PRIMES(N) is
the set of primes smaller than N, then
asymptotically

|PRIMES(N)|/N ~ 1/log N

• If N large enough, then

|PRIMES(N)| N/(2log N)

Introduction to Algorithms April 10, 2003 L16.16© Piotr Indyk

Pr ime density continued

• If we set N=9mn log n, and N large enough,
then

|PRIMES(N)| N/(2log N) 2mn

• All elements of PRIMES(N) are log N =
O(log n) bits long

Introduction to Algorithms April 10, 2003 L16.17© Piotr Indyk

Pr ime selection

• Still need to find a random element of
PRIMES(N)

• Solution:

– Choose a random element from { 1 … N}

– Check if it is prime

– If not, repeat

Introduction to Algorithms April 10, 2003 L16.18© Piotr Indyk

Pr ime selection analysis

• A random element q from { 1…N} is prime
with probability ~1/log N

• We can check if q is prime in time
polynomial in log N (trust me J)

• Therefore, we can generate random prime q
in o(n) time

• The rest of the algorithm takes O(n) time

