Introduction to Algorithms 6.046J/18.401J

Lecture 16
Prof. Piotr Indyk

String Matching

- Input: Two strings T[1...n] and P[1...m], containing symbols from alphabet Σ
- Goal: find all "shifts" $1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{m}$ such that $\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]=\mathrm{P}$
- Example:
$-\Sigma=\{$,a,b,...,z\}
- T[1...18]="to be or not to be"
- P[1..2]="be"
- Shifts: 3, 16

Simple Algorithm

for $s \leftarrow 0$ to $n-m$
Match $\leftarrow 1$
for $j \leftarrow 1$ to m
if $\mathrm{T}[s+j] \neq \mathrm{P}[j]$ then
Match $\leftarrow 0$ exit loop
if Match=1 then output s

Results

- Running time of the simple algorithm:
- Worst-case: O(nm)
- Average-case (random text): O(n)
- Is it possible to achieve $\mathrm{O}(\mathrm{n})$ for any input ?
- Knuth-Morris-Pratt'77: deterministic
- Karp-Rabin'81: randomized

Karp-Rabin Algorithm

- A very elegant use of an idea that we have encountered before, namely...

HASHING!

- Idea:
- Hash all substrings T[1...m], T[2 ...m+1], T[3...m+2], etc.
- Hash the pattern P[1...m]
- Report the substrings that hash to the same value as P
- Problem: how to hash n-m substrings, each of length m, in $\mathrm{O}(\mathrm{n})$ time ?

Implementation

- Attempt I:
- Assume $\Sigma=\{0,1\}$
- Think about each $\mathrm{T}^{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]$ as a number in binary representation, i.e.,

$$
\mathrm{t}_{\mathrm{s}}=\mathrm{T}[\mathrm{~s}+1] 2^{0}+\mathrm{T}[\mathrm{~s}+2] 2^{1}+\ldots+\mathrm{T}[\mathrm{~s}+\mathrm{m}] 2^{\mathrm{m}-1}
$$

- Find a fast way of computing $\mathrm{t}_{\mathrm{s}+1}$ given t_{s}
- Output all s such that t_{s} is equal to the number p represented by P

The great formula

- How to transform

$$
\mathrm{t}_{\mathrm{s}}=\mathrm{T}[\mathrm{~s}+1] 2^{0}+\mathrm{T}[\mathrm{~s}+2] 2^{1}+\ldots+\mathrm{T}[\mathrm{~s}+\mathrm{m}] 2^{\mathrm{m}-1}
$$

into

$$
\mathrm{t}_{\mathrm{s}+1}=\mathrm{T}[\mathrm{~s}+2] 2^{0}+\mathrm{T}[\mathrm{~s}+3] 2^{1}+\ldots+\mathrm{T}[\mathrm{~s}+\mathrm{m}+1] 2^{\mathrm{m}-1} ?
$$

- Three steps:
- Subtract T[s+1]2 ${ }^{0}$
- Divide by 2 (i.e., shift the bits by one position)
- Add T[s+m+1]2 $2^{\mathrm{m}-1}$
- Therefore: $\mathrm{t}_{\mathrm{s}+1}=\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] 2^{0}\right) / 2+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{\mathrm{m}-1}$
- Can compute $\mathrm{t}_{\mathrm{s}+1}$ from t_{s} using 3 arithmetic operations
- Therefore, we can compute all $\mathrm{t}_{0}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}-\mathrm{m}}$ using $\mathrm{O}(\mathrm{n})$ arithmetic operations
- We can compute a number corresponding to P using $\mathrm{O}(\mathrm{m})$ arithmetic operations
- Are we done?

Problem

- To get $O(n)$ time, we would need to perform each arithmetic operation in $\mathrm{O}(1)$ time
- However, the arguments are m-bit long!
- It is unreasonable to assume that operations on such big numbers can be done in $\mathrm{O}(1)$ time
- We need to reduce the number range to something more managable

Hashing

- We will instead compute
$\mathrm{t}^{\prime}{ }_{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1] 2^{0}+\mathrm{T}[\mathrm{s}+2] 2^{1}+\ldots+\mathrm{T}[\mathrm{s}+\mathrm{m}] 2^{\mathrm{m}-1} \bmod \mathrm{q}$ where q is an "appropriate" prime number
- One can still compute $t^{\prime}{ }_{s+1}$ from $t^{\prime}{ }_{s}$:
$\mathrm{t}^{\prime}{ }_{\mathrm{s}+1}=\left(\mathrm{t}^{\prime}{ }_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] 2^{0}\right)^{*} 2^{-1}+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{\mathrm{m}-1} \bmod \mathrm{q}$
- If q is not large, i.e., has $\mathrm{O}(\log \mathrm{n})$ bits, we can compute all t^{s} (and p ') in $\mathrm{O}(\mathrm{n})$ time

Problem

- Unfortunately, we can have false positives, i.e., $\mathrm{T}^{\mathrm{s}} \neq \mathrm{P}$ but $\mathrm{t}_{\mathrm{s}}=\mathrm{p}$ '
- Need to use a random q
- We will show that the probability of a false positive is small \rightarrow randomized algorithm

False positives

- Consider any $\mathrm{t}_{\mathrm{s}} \neq \mathrm{p}$. We know that both numbers are in the range $\left\{0 \ldots 2^{\mathrm{m}}-1\right\}$
- How many primes q are there such that $\mathrm{t}_{\mathrm{s}} \bmod \mathrm{q}=\mathrm{p} \bmod \mathrm{q} \equiv\left(\mathrm{t}_{\mathrm{s}}-\mathrm{p}\right)=0 \bmod \mathrm{q} ?$
- Such prime has to divide $x=\left(\mathrm{t}_{\mathrm{s}}-\mathrm{p}\right) \leq 2^{\mathrm{m}}$
- Represent $x=p_{1}{ }^{e 1} p_{2}{ }^{e 2} \ldots p_{k}{ }^{\text {ek }}, p_{i}$ prime, $e_{i} \geq 1$
- Since $2 \leq p_{i}$, we have $2^{k} \leq x \leq 2^{m} \rightarrow k \leq m$
- There are $\leq \mathrm{m}$ primes dividing x

Algorithm

- Let Π be a set of 2 nm primes, each having O(log n) bits
- Choose q uniformly at random from Π
- Compute $\mathrm{t}^{\prime}{ }_{0}, \mathrm{t}^{\prime}{ }_{1}, \ldots$, and p'
- For each s , the probability that $\mathrm{t}^{\prime}{ }_{\mathrm{s}}=\mathrm{p}$ ' while $\mathrm{T}^{\mathrm{s}} \neq \mathrm{P}$ is at most $\mathrm{m} / 2 \mathrm{~nm}=1 / 2 \mathrm{n}$
- The probability of any false positive is at most ($\mathrm{n}-\mathrm{m}$)/2n $\leq 1 / 2$

"Details"

- How do we know that such Π exists ?
- How do we choose a random prime from Π in $\mathrm{O}(\mathrm{n})$ time ?

Prime density

- Primes are "dense". I.e., if PRIMES(N) is the set of primes smaller than N , then asymptotically
\mid PRIMES(N)|/N ~ 1/log N
- If N large enough, then

$$
|\operatorname{PRIMES}(\mathrm{N})| \geq \mathrm{N} /(2 \log \mathrm{~N})
$$

Prime density continued

- If we set $\mathrm{N}=9 \mathrm{mn} \log \mathrm{n}$, and N large enough, then
$|\operatorname{PRIMES}(\mathrm{N})| \geq \mathrm{N} /(2 \log \mathrm{~N}) \geq 2 \mathrm{mn}$
- All elements of PRIMES(N) are $\log \mathrm{N}=$ $\mathrm{O}(\log \mathrm{n})$ bits long

Prime selection

- Still need to find a random element of PRIMES(N)
- Solution:
- Choose a random element from $\{1 \ldots \mathrm{~N}\}$
- Check if it is prime
- If not, repeat

Prime selection analysis

- A random element q from $\{1 \ldots \mathrm{~N}\}$ is prime with probability $\sim 1 / \log \mathrm{N}$
- We can check if q is prime in time polynomial in $\log \mathrm{N}$ (trust me J)
- Therefore, we can generate random prime q in o(n) time
- The rest of the algorithm takes $\mathrm{O}(\mathrm{n})$ time

