Introduction to Algorithms 6.046J/18.401J

Lecture 16

Prof. Piotr Indyk

• String Matching

- Input: Two strings T[1...n] and P[1...m], containing symbols from alphabet Σ
- Goal: find all "shifts" $1 \le s \le n-m$ such that T[s+1...s+m]=P
- Example:
 - $-\Sigma = \{ ,a,b,\ldots,z \}$
 - -T[1...18]="to be or not to be"
 - P[1..2]="be"
 - Shifts: 3, 16

Simple Algorithm

for $s \leftarrow 0$ to n-m $Match \leftarrow 1$ for $j \leftarrow 1$ to mif $T[s+j] \neq P[j]$ then $Match \leftarrow 0$ exit loop if Match=1 then output s

- Running time of the simple algorithm:
 - Worst-case: O(nm)
 - Average-case (random text): O(n)
- Is it possible to achieve O(n) for any input ?
 - Knuth-Morris-Pratt'77: deterministic
 - Karp-Rabin'81: randomized

Karp-Rabin Algorithm

• A very elegant use of an idea that we have encountered before, namely...

HASHING !

- Idea:
 - Hash all substrings T[1...m], T[2...m+1], T[3...m+2], etc.
 - Hash the pattern P[1...m]
 - Report the substrings that hash to the same value as **P**
- Problem: how to hash n-m substrings, each of length m, in O(n) time ?

Implementation

- Attempt I:
 - -Assume $\Sigma = \{0,1\}$
 - Think about each T^s=T[s+1...s+m] as a number in binary representation, i.e.,
 - $t_s = T[s+1]2^0 + T[s+2]2^1 + \ldots + T[s+m]2^{m-1}$
 - Find a fast way of computing t_{s+1} given t_s
 - Output all s such that t_s is equal to the number p represented by P

The great formula

• How to transform

 $t_s = T[s+1]2^0 + T[s+2]2^1 + ... + T[s+m]2^{m-1}$

into

 $t_{s+1} = T[s+2]2^0 + T[s+3]2^1 + \ldots + T[s+m+1]2^{m-1}?$

- Three steps:
 - Subtract T[s+1]2⁰
 - Divide by 2 (i.e., shift the bits by one position)
 - $\text{Add } T[s+m+1]2^{m-1}$
- Therefore: $t_{s+1} = (t_s T[s+1]2^0)/2 + T[s+m+1]2^{m-1}$

- Can compute t_{s+1} from t_s using 3 arithmetic operations
- Therefore, we can compute all t_0, t_1, \dots, t_{n-m} using O(n) arithmetic operations
- We can compute a number corresponding to P using O(m) arithmetic operations
- Are we done ?

- To get O(n) time, we would need to perform each arithmetic operation in O(1) time
- However, the arguments are m-bit long !
- It is unreasonable to assume that operations on such big numbers can be done in O(1) time
- We need to reduce the number range to something more managable

- We will instead compute
- t'_s=T[s+1]2⁰+T[s+2]2¹+...+T[s+m]2^{m-1} mod q where q is an "appropriate" prime number
- One can still compute t'_{s+1} from t'_s :
- $t'_{s+1} = (t'_s T[s+1]2^0) * 2^{-1} + T[s+m+1]2^{m-1} \mod q$
- If q is not large, i.e., has O(log n) bits, we can compute all t'_s (and p') in O(n) time

- Unfortunately, we can have false positives,
 i.e., T^s≠P but t'_s=p'
- Need to use a random q
- We will show that the probability of a false positive is small \rightarrow randomized algorithm

False positives

- Consider any t_s≠p. We know that both numbers are in the range {0...2^m-1}
- How many primes q are there such that $t_s \mod q = p \mod q \equiv (t_s - p) \equiv 0 \mod q$?
- Such prime has to divide $x=(t_s-p) \le 2^m$
- Represent $x=p_1^{e_1}p_2^{e_2}\dots p_k^{e_k}$, p_i prime, $e_i \ge 1$
- Since $2 \le p_i$, we have $2^k \le x \le 2^m \rightarrow k \le m$
- There are \leq m primes dividing x

Algorithm

- Let ∏ be a set of 2nm primes, each having O(log n) bits
- Choose q uniformly at random from \prod
- Compute t'₀, t'₁,, and p'
- For each s, the probability that $t'_s = p'$ while $T^s \neq P$ is at most m/2nm = 1/2n
- The probability of *any* false positive is at most $(n-m)/2n \le 1/2$

"Details"

- How do we know that such \prod exists ?
- How do we choose a random prime from ∏ in O(n) time ?

Prime density

• Primes are "dense". I.e., if **PRIMES(N)** is the set of primes smaller than **N**, then asymptotically

|PRIMES(N)|/N ~ 1/log N

• If N large enough, then $|PRIMES(N)| \ge N/(2\log N)$

Prime density continued

• If we set N=9mn log n, and N large enough, then

 $|PRIMES(N)| \ge N/(2\log N) \ge 2mn$

 All elements of PRIMES(N) are log N = O(log n) bits long

Prime selection

- Still need to find a random element of PRIMES(N)
- Solution:
 - Choose a random element from $\{1 \dots N\}$
 - Check if it is prime
 - If not, repeat

Prime selection analysis

- A random element q from {1...N} is prime with probability ~1/log N
- We can check if q is prime in time polynomial in log N (trust me J)
- Therefore, we can generate random prime q in o(n) time
- The rest of the algorithm takes O(n) time