
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 14
Prof. Erik Demaine

Introduction to Algorithms October 30, 2002 L12.2© 2002 by Erik D. Demaine

Fixed-universe
successor problem

Goal: Maintain a dynamic subset S of size n
of the universe U = {0, 1, …, u – 1} of size u
subject to these operations:

• INSERT(x ∈ U \ S): Add x to S.
• DELETE(x ∈ S): Remove x from S.
• SUCCESSOR(x ∈ U): Find the next element in S

larger than any element x of the universe U.
• PREDECESSOR(x ∈ U): Find the previous

element in S smaller than x.

Introduction to Algorithms October 30, 2002 L12.3© 2002 by Erik D. Demaine

Solutions to fixed-universe
successor problem

Goal: Maintain a dynamic subset S of size n
of the universe U = {0, 1, …, u – 1} of size u
subject to INSERT, DELETE, SUCCESSOR, PREDECESSOR.
• Balanced search trees can implement operations in
O(lg n) time, without fixed-universe assumption.

• In 1975, Peter van Emde Boas solved this problem
in O(lg lg u) time per operation.

• If u is only polynomial in n, that is, u = O(nc),
then O(lg lg n) time per operation--
exponential speedup!

Introduction to Algorithms October 30, 2002 L12.4© 2002 by Erik D. Demaine

O(lg lg u)?!

Where could a bound of O(lg lg u) arise?
• Binary search over O(lg u) things

• T(u) = T() + O(1)
T’(lg u) = T’((lg u)/2) + O(1)

= O(lg lg u)

u

Introduction to Algorithms October 30, 2002 L12.5© 2002 by Erik D. Demaine

(1) Starting point: Bit vector

Bit vector v stores, for each x ∈ U,
1 if x ∈ S
0 if x ∉ Svx =

Example: u = 16; n = 4; S = {1, 9, 10, 15}.

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Insert/Delete run in O(1) time.
Successor/Predecessor run in O(u) worst-case time.

Introduction to Algorithms October 30, 2002 L12.6© 2002 by Erik D. Demaine

(2) Split universe into widgets

Carve universe of size u into widgetsu
W0, W1, …, W 1−u each of size u .

Example: u = 16, 4=u .

0 1 0 0
0 1 2 3

0 0 0 0
4 5 6 7

10 1 0
8 9 10 11

0 0 0 1
12 13 14 15

W0 W1 W2 W3

Introduction to Algorithms October 30, 2002 L12.7© 2002 by Erik D. Demaine

(2) Split universe into widgets

Carve universe of size u into widgetsu
W0, W1, …, W 1−u each of size u .

W0 represents 0, 1, …, 1−u ∈ U;
W1 represents 12 −u ∈ U;u , 1+u , …,

Wi represents 1)1(−+ ui ∈ U;ui , 1+ui , …,
:

:
W represents u – 1 ∈ U.uu − , 1+− uu , …,1−u

Introduction to Algorithms October 30, 2002 L12.8© 2002 by Erik D. Demaine

(2) Split universe into widgets
Define high(x) ≥ 0 and low(x) ≥ 0
so that x = high(x)
That is, if we write x ∈ U in binary,
high(x) is the high-order half of the bits,
and low(x) is the low-order half of the bits.
For x ∈ U, high(x) is index of widget containing x
and low(x) is the index of x within that widget.

u + low(x).

x = 9

high(x)
= 2

low(x)
= 1

1 0 0 1

0 1 0 0
0 1 2 3

0 0 0 0
4 5 6 7

0 1 1 0
8 9 10 11

0 0 0 1
12 13 14 15

W0 W1 W2 W3

Introduction to Algorithms October 30, 2002 L12.9© 2002 by Erik D. Demaine

(2) Split universe into widgets
INSERT(x)

insert x into widget Whigh(x) at position low(x).
mark Whigh(x) as nonempty.

Running time T(n) = O(1).

Introduction to Algorithms October 30, 2002 L12.10© 2002 by Erik D. Demaine

(2) Split universe into widgets
SUCCESSOR(x)

look for successor of x within widget Whigh(x)
starting after position low(x).

if successor found
then return it
else find smallest i > high(x)

for which Wi is nonempty.
return smallest element in Wi

O()u

O()u

O()u

Running time T(u) = O().u

Introduction to Algorithms October 30, 2002 L12.11© 2002 by Erik D. Demaine

Revelation
SUCCESSOR(x)

look for successor of x within widget Whigh(x)
starting after position low(x).

if successor found
then return it
else find smallest i > high(x)

for which Wi is nonempty.
return smallest element in Wi

recursive
successor

recursive
successor
recursive
successor

Introduction to Algorithms October 30, 2002 L12.12© 2002 by Erik D. Demaine

(3) Recursion
Represent universe by widget of size u.
Recursively split each widget W of size |W|
into
sub[W][

W subwidgets sub[W][0], sub[W][1], …,

Store a summary widget summary[W] of size
representing which subwidgets are nonempty.

W
1−W .] each of size W

W

summary[W]

W

sub[W][0]

W

sub[W][1]

W

sub[W][]

W

… 1−W

Introduction to Algorithms October 30, 2002 L12.13© 2002 by Erik D. Demaine

(3) Recursion
Define high(x) ≥ 0 and low(x) ≥ 0
so that x = high(x) W + low(x).

INSERT(x, W)
if sub[W][high(x)] is empty
then INSERT(high(x), summary[W])

INSERT(low(x), sub[W][high(x)])

Running time T(u) = 2 T() + O(1)
T’(lg u) = 2 T’((lg u) / 2) + O(1)

= O(lg u) .

u

Introduction to Algorithms October 30, 2002 L12.14© 2002 by Erik D. Demaine

(3) Recursion
SUCCESSOR(x, W)

j ← SUCCESSOR(low(x), sub[W][high(x)])
if j < ∞
then return high(x)
else i ← SUCCESSOR(high(x), summary[W])

j ← SUCCESSOR(– ∞, sub[W][i])
return i

Running time T(u) = 3 T() + O(1)
T’(lg u) = 3 T’((lg u) / 2) + O(1)

= O((lg u) lg 3) .

u

W + j

W + j

T()u

T()u
T()u

Introduction to Algorithms October 30, 2002 L12.15© 2002 by Erik D. Demaine

Improvements
Need to reduce INSERT and SUCCESSOR
down to 1 recursive call each.

• 2 calls: T(u) = 2 T() + O(1)
= O(lg n)

u

• 3 calls: T(u) = 3 T() + O(1)
= O((lg u) lg 3)

u

• 1 call: T(u) = 1 T() + O(1)
= O(lg lg n)

u

We’re closer to this goal than it may seem!

Introduction to Algorithms October 30, 2002 L12.16© 2002 by Erik D. Demaine

Recursive calls in successor
If x has a successor within sub[W][high(x)],
then there is only 1 recursive call to SUCCESSOR.
Otherwise, there are 3 recursive calls:

• SUCCESSOR(low(x), sub[W][high(x)])
discovers that sub[W][high(x)] hasn’t successor.

• SUCCESSOR(high(x), summary[W])
finds next nonempty subwidget sub[W][i].

• SUCCESSOR(– ∞, sub[W][i])
finds smallest element in subwidget sub[W][i].

Introduction to Algorithms October 30, 2002 L12.17© 2002 by Erik D. Demaine

Reducing recursive calls
in successor

If x has no successor within sub[W][high(x)],
there are 3 recursive calls:

• SUCCESSOR(low(x), sub[W][high(x)])
discovers that sub[W][high(x)] hasn’t successor.

• Could be determined using the maximum
value in the subwidget sub[W][high(x)].

• SUCCESSOR(high(x), summary[W])
finds next nonempty subwidget sub[W][i].

• SUCCESSOR(– ∞, sub[W][i])
finds minimum element in subwidget sub[W][i].

Introduction to Algorithms October 30, 2002 L12.18© 2002 by Erik D. Demaine

(4) Improved successor
INSERT(x, W)

if sub[W][high(x)] is empty
then INSERT(high(x), summary[W])

INSERT(low(x), sub[W][high(x)])
if x < min[W] then min[W] ← x
if x > max[W] then max[W] ← x new (augmentation)

Running time T(u) = 2 T() + O(1)
T’(lg u) = 2 T’((lg u) / 2) + O(1)

= O(lg u) .

u

Introduction to Algorithms October 30, 2002 L12.19© 2002 by Erik D. Demaine

(4) Improved successor
SUCCESSOR(x, W)

if low(x) < max[sub[W][high(x)]]
then j ← SUCCESSOR(low(x), sub[W][high(x)])

return high(x)
else i ← SUCCESSOR(high(x), summary[W])

j ← min[sub[W][i]]
return i

T()u

T()u
W + j

W + j

Running time T(u) = 1 T() + O(1)
= O(lg lg u) .

u

Introduction to Algorithms October 30, 2002 L12.20© 2002 by Erik D. Demaine

Recursive calls in insert
If sub[W][high(x)] is already in summary[W],
then there is only 1 recursive call to INSERT.
Otherwise, there are 2 recursive calls:

• INSERT(high(x), summary[W])
• INSERT(low(x), sub[W][high(x)])

Idea:We know that sub[W][high(x)]) is empty.
Avoid second recursive call by specially

storing a widget containing just 1 element.
Specifically, do not store min recursively.

Introduction to Algorithms October 30, 2002 L12.21© 2002 by Erik D. Demaine

(5) Improved insert
INSERT(x, W)

if x < min[W] then exchange x ↔ min[W]
if sub[W][high(x)] is nonempty, that is,

min[sub[W][high(x)] ≠ NIL

then INSERT(low(x), sub[W][high(x)])
else min[sub[W][high(x)]] ← low(x)

INSERT(high(x), summary[W])
if x > max[W] then max[W] ← x

Running time T(u) = 1 T() + O(1)
= O(lg lg u) .

u

Introduction to Algorithms October 30, 2002 L12.22© 2002 by Erik D. Demaine

(5) Improved insert
SUCCESSOR(x, W)

if x < min[W] then return min[W]
if low(x) < max[sub[W][high(x)]]
then j ← SUCCESSOR(low(x), sub[W][high(x)])

return high(x)
else i ← SUCCESSOR(high(x), summary[W])

j ← min[sub[W][i]]
return i

Running time T(u) = 1 T() + O(1)
= O(lg lg u) .

u

T()u

T()uW + j

W + j

new

Introduction to Algorithms October 30, 2002 L12.23© 2002 by Erik D. Demaine

Deletion
DELETE(x, W)

if min[W] = NIL or x < min[W] then return
if x = min[W]
then i ← min[summary[W]]

x ← i
min[W] ← x

DELETE(low(x), sub[W][high(x)])
if sub[W][high(x)] is now empty, that is,

min[sub[W][high(x)] = NIL

then DELETE(high(x), summary[W])
(in this case, the first recursive call was cheap)

+ min[sub[W][i]]W

	Introduction to Algorithms6.046J/18.401J/SMA5503
	Fixed-universesuccessor problem
	Solutions to fixed-universe successor problem
	O(lg lg u)?!
	(1) Starting point: Bit vector
	(2) Split universe into widgets
	(2) Split universe into widgets
	(2) Split universe into widgets
	(2) Split universe into widgets
	(2) Split universe into widgets
	Revelation
	(3) Recursion
	(3) Recursion
	(3) Recursion
	Improvements
	Recursive calls in successor
	Reducing recursive callsin successor
	(4) Improved successor
	(4) Improved successor
	Recursive calls in insert
	(5) Improved insert
	(5) Improved insert
	Deletion

