
Introduction to Algorithms November 29, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 26

Problem Set 7 Solutions
(Exercises were not to be turned in, but we’re providing the solutions for your own interest.)

Exercise 7-1. When � is a power of 3, we divide each polynomial into three parts, grouping
coefficients for those terms having degrees 0, 1, and 2 mod 3. Formally,

�������	� ��
������������������ � ��������� � �� � � , where
���

has the coefficients of
�

for only those terms have degrees that are�
mod 3. The recurrence for the new algorithm is � � � ����� � � �! �"�#�%$&� � � , which by the Master

Theorem solves to � � � �'�($)� �+*-,/.'� � .
Exercise 7-2. The total running time for the

�
th operations, where

�
is a power of 0 , is 1 � 0 �23232 � 0547698;:=< � 0�4>698;:=<@? �BA 1 �C$)� � � . The total running time of the other operations is � AED *F.G��H .

Therefore the amortized cost per operation is
$)� 1 � .

Exercise 7-3. The potential function is (a constant multiple I of) the sum of the depths of all the
nodes in the heap. We sketch why this works: for INSERT, the actual amount of work done is$)� *-,/.B� � , and the potential function increases by

$)� *F,J.G� � because a new element is added to the
tree. For DELETE-MIN , the actual work done is again

$)� *-,/.B� � plus K � 1 � . However, the potential
decreases by I *F,/.B� because an element is removed. If we choose I to match the constant hidden
in the

$)� *-,/.B� � , then the decrease in potential cancels out the real work that is done, leaving
$)� 1 �

amortized cost.

Note that this result is just the result of “clever accounting,” and not anything earth-shattering. In
any application of a min-heap, the number of INSERT operations must be at least the number of
DELETE-MIN operations, so the running time is dominated by the insertions.

Exercise 7-4. To compute the transpose for an adjacency-list representation, we make a new array
of adjacency lists for L+M .. We walk down each adjacency list of L . On the list for node N , when
encountering a node O , we add N to the front of O ’s list in L�M . Each step takes K � 1 � time, so the
total time is K �@P%�RQS�

.

For an adjacency-matrix representation, we merely need to compute the transpose matrix. This can
be done in K �@P��T� time.

Exercise 7-5. (Trivia: this problem is otherwise known as “testing whether a given graph is bipar-
tite.”) The wrestlers correspond to nodes in a graph, and their rivalries correspond to edges. Pick
an arbitrary vertex U and run a breadth-first search from U to produce a vector V of shortest path
lengths from U . (If the graph is unconnected, run BFS on each of its components.) Then iterate
over the edges: if

� N#W�O � is an edge and V5X7N�Y and V5X9O"Y have the same parity (i.e., both even or both
odd), then output “no designation.” If every edge passes this test, output all N such that V5X9N�Y is even
as the good guys, and all O such that V�X9O"Y is odd as the bad guys.

First, note that if all the edge tests are passed, then the designation is a proper one, because every
rivalry is between a good and bad guy. Now suppose some test is not passed for an edge

� N#W�O � : in

2 Handout 26: Problem Set 7 Solutions

any designation, N and O must be of the same type because they are the same number of “hops” fromU . But this means the rivalry between N and O is not satisfied. Thus, there is no valid designation.

The running time is clear: BFS takes linear time K � � ���J� , and iterating over the edges takes K ���J�
time, for K � � ���J� total.

Exercise 7-6. The graph is on four vertices U/W � W N W O , where � � U/W�N �����
, � � U"W � ��� 0 , � � N#W � ���A 0 , and � � � W�O �B� 1 . Starting from U , we set V5X � Y � 0 and V�X9N�Y ���

. Therefore
�

is extracted, so we
set V5X7O"Y � V�X � Y � 1 ���

. Next O is extracted, and no changes are made to V . Finally N is extracted,
and we set V5X � Y � V5X9N�Y � A 0 � 0 , then the algorithm terminates. Note that the shortest path to O
is U"W N W � W�O , and has length 3. However, at the end of the algorithm, V5X7O"Y ���

(corresponding to the
path U/W � W�O).

The proof of Theorem 24.6 fails where (on page 598, end of second paragraph) it claims that	 � U/W�
 ���	 � U"W N � “because
 occurs before N on a shortest path from U to N and all edge weights
are nonnegative.” In fact, we see in the above example that this is not the case: the shortest path
from U to

�
is U/W�N#W � and has length 0 , but the shortest path from U to N has length

�
. Therefore the

proof of correctness is no longer sound.

Problem 7-1. Maximum Spanning Tree

We note that this problem is very similar to the minimum spanning tree problem. One correct
solution involves a direct transformation, by negating all the edge weights of L and running Prim’s
(or Kruskal’s) algorithm on the resulting graph L�� . (These algorithms work properly even with
negative edge weights.) A minimum spanning tree on L�� is a maximum spanning tree on L ,
because a tree in L�� is a tree in L and vice versa, and because the weight of a tree in L�� is negated
in L .

Another way to solve this problem is by noticing a greedy-choice property, similar to that of the
minimum spanning tree (and proven in a very similar way): in any maximum spanning tree � , if
we remove an edge

� N#W�O � to yield two trees �SW�� , then � and � are maximum spanning trees on
their respective vertices, and

� N#W�O � is a heaviest edge crossing between those sets of vertices. With
this in mind, we can use Prim’s algorithm with a max-heap, or Kruskal’s algorithm with the edges
sorted in descending order of weights, to find a maximum spanning tree. The running times remain
unchanged.

Problem 7-2. Toeplitz Matrices

(a) The sum is Toeplitz. If we are adding matrices
�

and � (with entries � ��� � and � ��� � ,
respectively), then the sum � (with entries I ��� �) has

I ��� � � � ��� � � � ��� ��� � ������� ����� � � ������� �����B� I ������� �����
as desired.

Handout 26: Problem Set 7 Solutions 3

The product is not necessarily Toeplitz. Here is a counterexample:� 1 0� 1�� � 1 �
0 1�� � ��� 00 1��

(b) Note that there are only 0 � A 1 diagonals in an ��� � matrix, and the values on a
diagonal are all the same. Therefore we need only a

� 0 � A 1 � -coordinate vector to
represent an �	� � Toeplitz matrix. Specifically, the vector is a tuple of the elements
� ��� : W � ��� : ��� W�
�
�
�W � ���9� W�� � �9� W�
�
�
=W � : �9� . Adding two matrices is done by adding their rep-
resentative vectors, entry-by-entry. This takes only K � � � time (and space).

(c) Let the input vector be a column vector � � � � � W�
�
�
�W � : � M , and call the product I �� I � W�
�
�
�I : � M . Suppose also that we are representing the Toeplitz matrix
�

by the vector� described above. Then by the definition of Toeplitz and matrix multiplication, we
have

I � � :������ � :3? ��� � � ��� � : ��������� � :3? ��� � � � W
where we adopt the convention that � � � �

when ��� � , and � � � �
when � � �

.
But now we see that the coefficient I � is just the coefficient of the degree-

� � � � �
term

of the product of polynomials � and � , whose representations are given in coefficient
form by the vectors ��W�� . These polynomials have degree K � � � , so we can multiply
them in K � �+*F,J. � � time, as desired.

Problem 7-3. Amortized Queues

(a) The total work is
� �(��� � 0 �!� � �(� 1 ��� � 1 �'� 0/0 . At the end, � � has

�
elements,

and � � has 0 .
(b) An insertion always takes 1 unit, so our worst-case cost must be caused by a removal.

No more that � elements can ever be in � � , and no fewer than
�

elements can be in � � .
Therefore the worst-case cost is 0 � � 1 : 0 � units to dump, and one extra to pop from
� � . This bound is tight, as seen by the following sequence: perform � insertions, then� removals. The first removal will cause a dump of � elements plus a pop, for 0 � � 1
work.

(c) The tightest amortized upper bounds are 3 units per insertion, and 1 unit per removal.
We will prove this 2 ways (using the accounting and potential methods; the aggregate
method seems too weak to employ elegantly in this case). (We would also accept valid
proofs of 4 units per insertion and 0 per removal, although this answer is looser than
the one we give here.)

Here is an analysis using the accounting method: with every insertion we pay $3: $1
is used to push onto � � , and the remaining $2 remain attached to the element just
inserted. Therefore every element in � � has $2 attached to it. With every removal we
pay $1, which will (eventually) be used to pop the desired element off of � � . Before

4 Handout 26: Problem Set 7 Solutions

that, however, we may need to dump � � into � � ; this involves popping each element
off of � � and pushing it onto � � . We can pay for these pairs of operations with the $2
attached to each element in � � .
Now we analyze the structure using the potential method: let � �

�� � denote the number
of elements in � � after the

�
th operation. Then the potential function � on our structure� �

(the state of the queue after the
�
th operation) is defined to be � � � ��'� 0�� � �� � . Note

that � �
�� ��� �

at all times, so � � � ��� � �
. Also, � �

� � � �
initially, so � � �
T� � �

as
desired.

Now we compute the amortized costs: for an insertion, we have �
� ? �� � �

�� � 1 , and
the actual cost I � � 1 , so

�I � � I � � � � � � ? � �
A
� � � ��B� 1 � 0 � � �� � 1 � A 0 � � �� �B�(�

For a removal, we have two cases. First, when there is no dump from � � to � � , the
actual cost is 1 , and �

� ? �� � �
��
. Therefore

�I �'� 1 . When there is a dump, the actual
cost is 0�� � �� � � 1 , and we have �

� ? �� � �
. Therefore we get

�I � � � 0�� � �� � � 1 �!� � A 0�� � �� � � 1
as desired.

Problem 7-4. Shortest-Path Special Cases

(a) We make the following observation about Dijkstra’s algorithm in this case: if
�

is
the value returned by the most recent DELETE-MIN , then the priority queue only
contains keys

� W � � 1JW�
�
�
�W � � ��W	� . This is because each element in the queue has
key at least

�
, and is either not a neighbor of any vertex that has been removed from

the queue (in which case its key is still �), or it is a neighbor of a vertex that has
been removed. Such a neighbor is within

�
of the source vertex, so the vertex in

question would have key at most
� � � . Therefore by keeping an array as our priority

queue (with � P � K �@P � entries), we can implement DELETE-MIN in K � 1 � time by
straightforward search in the array, for a new total running time of K � P%� QS�

.

We can also make a direct transformation to a BFS problem, in the following way:
split each edge with weight � � � into � edges (by adding �

A 1 nodes in between).
Contract (i.e., merge) vertices connected by edges of weight

�
. This transformation

increases the size of the graph by a factor of at most � (a constant), so the number of
nodes in the new graph is still K �@P � , and the number of edges K � QS� . Therefore we
can run a breadth-first search in time K � P%� Q �

.

(b) (Note the correction to the original problem set: the desired time is K � �@P �+QS� *F.'*-. N � .)
Note that the priorities in the queue are the lengths of paths, so they may be up to
length N P . Use a van Emde Boas queue, with universe
 �
�
�
 N P�� , in Dijkstra’s al-
gorithm. Beacuse N � P

, the running time of a vEB operation is K � *F.B*-. N P � �K � *F.B*-. N � � � K � *-.B*F. N � ., Instead of decreasing keys (which we don’t know how to

Handout 26: Problem Set 7 Solutions 5

do for vEB queues), we simply remove the old key and insert the new one. This
is done at most � Q � times, so by modifying the analysis of the algorithm, we get aK � �@P%�RQS� *-.B*F. N � running time.

(c) Store a bit vector of length N , initially all zeros. To insert an element with key
�

, set bit�
to 1 (and update any pointers to auxiliary data). Maintain an index to which key the

last DELETE-MIN returned. The DELETE-MIN procedure works as follows: starting
from the current index, find the smallest key that exists in the queue (i.e., the index of
the first non-zero bit) and return its element. Update the index accordingly. The total
time over a sequence of � operations is K � N � to make at most one full pass over the
bit vector, plus K � �

�
to do the deletions, for K � N � �

�
as desired.

(d) We can use the monotone priority queue exactly as described above in Dijkstra’s al-
gorithm. We perform K � � P � � DELETE-MIN operations, so the running time becomesK � � P � � � Q � � N � .

