
Introduction to Algorithms October 4, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 14

Problem Set 3 Solutions
(Exercises were not to be turned in, but we’re providing the solutions for your own interest.)

Exercise 3-1. With groups of 3, the median-of-medians is larger than (about) ����� of the elements,
and smaller than (about) ����� of the elements. Thus, the recursive call is on at most � ����� elements.
The recurrence is then �
	 ���� ��	 ��������� ��	�� ����������� 	 ��� ; solving it by Akra-Bazzi, we get only
that ��	 ������� 	 ����������� . So in fact with groups of 3, selection may not complete in ��	 ��� time.

With groups of 7, the median-of-medians is larger than (about) � ����� elements. Thus, the recursive
call is on at most ����� elements. The recurrence is then ��	 ���!� ��	 ��������� ��	� ���������"� 	 ��� , which
we solve as ��	 ����#� 	 ��� .
Exercise 3-2. Suppose we are given a “black-box” linear-time algorithm to find the median. We
will describe an algorithm to select the $ th element out of � unordered elements: first we use the
black-box to find the median, then we partition around it, yielding a lower half and upper half. If$ �&%'��� �)(, then we are done (the median is the element we want). If $+* %'��� �)(, we recursively
select the $ th element from the lower half. If $�, %'��� �)(, we recursively select the 	-$/. %'��� �0(� th
element from the upper half (which is the $ th element of the entire array). A recurrence for the
running time of this procedure is ��	 ���1� ��	 ��� � �2� �3	 ��� , which we solve as �
	 ���1� ��	 ��� , as
desired.

Exercise 3-3. We define an indicator random variable 46567 8 to be 1 if 9:	-; �!� 9:	=< � , and 0 otherwise.
Then the number of collisions is the sum of random variables: > 5�?@ 8 4A567 8 , and we want to know
what its expectation is. Using linearity of expectation, we get

BDCEGF5�?@ 8 4A567 8IHJ � F5�?@ 8 B3K 4L567 8NM � F5�?@ 8POQ K 9:	-; ��� 9:	-< � M�R
Because we are assuming uniform hashing, OQ K 9:	-; �S� 9:	-< � M �UT0�)V for every pair ;XW� < . There
are Y[Z \I] such pairs, so the expected number of collisions is � 	 � . T0�^� � V .

Exercise 3-4. We prove correctness of RADIX-SORT by induction on the digit positions, from
least- to most-significant. When we say the numbers are “sorted by their last $ digits,” we mean that
they are sorted if one only considers their values modulo _a` (where _ is the base we’re using). Upon
initialization, the numbers are trivially sorted by their last 0 digits. Now suppose the numbers are
sorted by their last $ digits, and we then we run COUNTING-SORT by their $ �bT st digits. Consider
the last $ �cT digits of any two elements ; and < , where ;�d �fe _a`hgji
,k<�d �fe _f`lgji (we need to
prove that ; now follows <). If the $ �mT st digit of ; is larger than that of < , then indeed the sort we
just performed put ; after < . If their $ �nT st digits are equal, then ;�d �fe _a`o,X<�d �fe _p` , so by the
inductive assumption ; appeared after < before we sorted by the $ ��T st digits. By the stability of
the sorting subroutine, ; still follows < . Therefore the elements are sorted by their last $ �mT digits.
By induction, after sorting by the most significant digit, the elements are completely sorted.

2 Handout 14: Problem Set 3 Solutions

Problem 3-1. RADIX-SORT on larger ranges

(a) The $ th digit is % ; ��� `�� i (d �fe�� . To see this, note that dividing by � `�� i and taking the
floor is just “shifting right” the base- � representation of ; by $I. T digits, and taking that
value d �fe�� is just keeping the least significant remaining digit. If we can compute� `�� i in ��	 T0� time, then an algorithm for computing the $ th digit is straightforward.
Alterately, we can get the digits in sequence by computing T����	��� \ ����
�� R6R6R , which yields��	 T0� time per digit.

(b) Using base 10, the numbers have
 � � ������ � ������ digits. Each COUNTING-SORT

call takes � 	 ��� T���� � � 	 ��� time, so the running time of RADIX-SORT is � 	 � � �� 	 ���������� .
(c) If we use base � , the numbers have

 � ����� Z ��� � digits, and by part (a) we
can compute each digit in �3	 T0� time. Therefore each COUNTING-SORT call takes� 	 � �m�����#� 	 ��� time, so the running time of RADIX-SORT is � 	 � ���#� 	 ��� . This
method extends to numbers in the range � � R6R6R �I��� . T for any constant � .

Problem 3-2. Majority and plurality elements

(a) If a majority element exists, then it must by the median of the elements in the array.
To see this, note that if the array were in sorted order, and the median were some other
element, then there would not be enough room on either side of the median for all the
copies of the majority element. Therefore we simply SELECT the median ; , and then
pass over the array to count the number of times ; appears. If it appears more than��� � times, we output ; , otherwise we output � (because ; is not a majority element,
and no other element can be either). The running time of this algorithm is ��	 ��� for
SELECT, and �3	 ��� to pass over the array again, for ��	 ��� total.

(b) By the above reasoning, any T0� _ -plurality element must have rank $ ��� _ for some $ inT�� R6R6R � _ . Therefore, our algorithm works as follows: for each $ in T�� R6R R � _ , SELECT

the $ ��� _ th order statistic ; , then pass over the entire array and output ; if ; appears at
least ��� _ times.

Each iteration of algorithm takes �3	 ��� time, and there are _ iterations, for a running
time of �3	 � _ � .

Problem 3-3. Set operations

(a) We use any universal hash family � we have seen in lecture. First, choose a random9���� , and construct a hash table with � � slots. Then insert every element of � into
the hash table using 9 . Next, for each element ����� (where �bW� ; � �), search for� � ; .�� in the hash table. If it exists, then � W� ;3. � � � , so output � � � (since both

Handout 14: Problem Set 3 Solutions 3

� and
�

are in � and sum to ;). If � � ; � � ��� , then it only occurs once because � is
a set, so there is no other element

� ��� such that � � � � ; . If all the searches fail,
then output � , because there is no pair of elements in � that sum to ; .

Constructing the hash table takes �3	 ��� expected time, because each hash operation
takes �3	 T ���2�+� �3	 T � T0� � �+� �3	 T � expected time and we can sum the times by
linearity of expectation. The running time of the search stage is again ��	 ��� , because
each search takes ��	 T0� expected time.

(b) This solution again uses a universal hash family � . We describe an algorithm to
determine if � � � ; this can be used once in each direction to determine whether the
sets are equal.

First choose a random 9�� � . Next, build a hash table of size � � and hash all of � ’s
elements into it. Then, for each � � � , search for � in the hash table. If all the searches
succeed, then � � � , otherwise not.

Building the hash table takes �3	 ��� expected time, and so do all the searches.

Problem 3-4. Universal and 2-universal hashing

(a) If � is 2-universal, then for every pair of distinct keys ; � < and for every $ ��� � � R6R R �IV . T�� ,
OQ�
	�� K� 9o	'; � � 9:	-< ���!� $ � $ � M � T0��V \ R

The only way for ; and < to collide is if they both take on the same value $. Then

OQ K 9:	-; � � 9:	=< � M � >�� � i` @�� OQ K� 9o	'; � � 9:	-< ��� � $ � $ � M �#V"��V \ �kT0��V , so � is univer-
sal by definition.

(b) We set VD� � , the number of keys to be 2, and � will have 2 hash functions. Here is
the family � :; <9 i 0 09 \ 1 0

It is easy to see that � is universal, because ; and < collide only under 9 i , which
is selected with probability T0� � � T0�)V . However, � is not 2-universal, because 9:	'; � � 9:	=< ��� never equals the pair

 � �6T�� or
 T��6T�� for any 9 � � .

(c) The adversary can in fact force a collision. We modify the above hash family by
adding a key � as follows:; < �9 i 0 0 19 \ 1 0 1
Note that this family is still universal: ; and � only collide under 9 \ , and < and � never
collide (this is allowed by the definition of universality). Here is how the adversary
can force a collision: first we choose a random hash function 9 ��� , which is either

4 Handout 14: Problem Set 3 Solutions

9 i or 9 \ . The adversary gives us ; to hash, and learns the value 9o	'; � . If 9o	'; �1�DT ,
the adversary knows that 9 � 9 \ , and can force a collision by making us hash � . If9:	-; ��� � , then 9 � 9 i and the adversary forces a collision by making us hash < .

(d) With a 2-universal hash family, the adversary cannot force a collision with probability
better than T0��V . Essentially, knowing 9:	-; � gives the adversary no information about9:	=< � for any other key < . We can prove this formally using conditional probabilities.
Suppose we choose a random hash function 9 � � , then the adversary forces us to
hash some key ; and learns the value 9:	-; � ��� . Then the adversary gives us a key< , hoping to cause a collision. By definition of 2-universal, we have for any ; � < with; W� < :

O�Q�
	 � K 9:	=< �� 9:	-; ��� 9:	-; �!��� M � OQ � K 9o	-< �� 9o	'; ��� 9:	-; ����� M
OQ � K 9:	-; ����� M

� T0��V \T0��V � T0�)V R
Therefore, no matter which ; the adversary first chooses, and which 9:	-; � ��� value
it learns, the probability of any particular < colliding with ; is only T0��V .

Problem 3-5. Weighted 3-median.

(a) First, we compute 	 by adding all the weights. Then we sort the ; ` elements. Finally,
for
 � T�� R6R6R �I� , we maintain the running sum � � > 5���p5���� ` by adding the weight of
the previous element ;�� � i with each iteration. As soon as 	 .���. � ������	 ��� (which
must happen before � ,�	 ���), we output ;�� as the weighted 3-median element.

(b) Assume the elements are given to us in an array � , and their weights in an array�
. Every time we move elements within � , we will make identical moves in

�
, to

maintain the correspondence between elements and their weights.

We use a divide-and-conquer algorithm to essentially perform a binary search for the
proper ;�� . The algorithm maintains a “window”

K � � � M , with the invariant that all el-
ements with ranks � through

�
are contained in � K ��R6R � M , and the weighted 3-median;�� is somewhere in � K �!R R � M . It also maintains two sums � and � , where � is the

total weight of all elements whose ranks are less than � (i.e., � � > 5���p5�� � �), and �
is the total weight of all elements whose ranks are greater than

�
. At the start of the

algorithm,
K � � � M � K T��I� M and � � � ��� (with these values, the invariants are clearly

true). The algorithm then proceeds as follows:

When searching window
K � � � M with � and � , we first find the median ; ` of � K ��R6R � M and

partition � K ��R6R � M around ; ` . We then compute � to be the total weight of all elements
less than ; ` in the window � K �!R6R � M , and � to be the total weight of all elements greater
than ; ` in the window. There are three cases:
 If � � �!�"	 ��� and � � �#� �$	 ��� , then ; ` is the weighted 3-median and we

return it.
 If � � � ,%	 ��� , then we let �'& � � � � � ` and loop on the lower half of� K �!R6R � M (that is, all elements in the window smaller than ; `).

Handout 14: Problem Set 3 Solutions 5

 If � � � , ��	 ��� , then we let ��& � � � � � ` and loop on the upper half of� K �!R6R � M (all elements in the window greater than ; `).
Given the invariant, the correctness of the first case is apparent (this case also acts as
the base case, if the window shrinks down to one element). It is also clear that the
final two cases preserve the invariant.

We now analyze the running time of the algorithm: each iteration takes time linear
in the size of the window to find the median, partition, and compute � and � . Each
iteration halves the size of the window, therefore a recurrence for the running time is��	 ����� ��	 ��� � ��� ��	 ��� , which solves to �
	 ����� ��	 ��� . This completes the proof.

