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Problem Set 1 Solutions
(Exercises were not to be turned in, but we’re providing the solutions for your own interest.)

Exercise 1-1. See problem 2 for binary search pseudocode.

Exercise 1-2. First sort the array
�

in �������	��
���
 time. Next, for each ����������������� , do a binary
search for ��� ��� ��� . If the search returns an index  , then

�!� ����" ���  ��#�$� as desired. If none of the
searches succeed, then no two elements in

�
sum to � .

Exercise 1-3. Note that, for all � ,

%'& �( ��)*�+��
,".-/�+��
0
 &214365 �7)*���,
8�9-����,
9
 & )*�+��
,".-/�+��
8�
By definition (with :<;=�>�@? ( , :8A��>� , and �/B��>� ): 1C3@5 ��)*�+��
8�0-/���,
0
D�E���7)*���,
,".-/���,
0
 .
Exercise 1-4. Translating FC�+� A 
 into words, the sentence reads (roughly): “the running time of
algorithm G is at least at most :H� A for sufficiently large � .” This is gibberish. To express “at
least,” use I notation.

Exercise 1-5. Let �J� (LK MCN O �P�Q
�� , so we get RS� (LK 
S� ( RS� (@K*T A 
="U� . Let
� � O 
S�

RS� (6K 
 , so
� � O 
�� ( � � O ? ( 
V"W� . Then

� � O 
=�E��� O 
 by the Master Theorem; RS���,
��$RS� (XK 
=�� � O 
��Y��� O 
Z�Y�����	
=��
 .

Problem 1-1. The functions, grouped asymptotically from largest to smallest, are as follows
(functions )#�0- on the same line are such that )*���,
=�E���[-����,
9
 ):
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�Q
��V� �	
��<���	
��,


(�� ;+B`B�������	 �

A few notes about how these results are obtained:

] ^�
�Y��� ( ^ 
 because their ratio is � ] ? ( 
 ^ , which grows without bound.

�+�Q
��,
 _ba ^ � � ( _baL_ba ^ 
 _ba ^ �>� ( _ba ^ 
 _baL_ba ^ �$� _baX_ba ^ .
� ^ e�f ; h �J�=�+�4"J�@
0? ( � ����� A 
 .
�D\�
 k (�� �*�+�,?��@
 ^ by Stirling’s approximation, so �	
��D\ �E�������	
=�,
 .
� k ( 
 _ba ^ � ( � _ba ^ 	 T A � � ; T A .
� ^ e�f ; �@? h 
E�	m � , which can be seen by approximating the integral from above and below.

�	
 � �+�	
=��
�� �	
 � � ( _ba ^ 
D� � �$�Q
 � � �2� �Y�����	
 � ��
 .
( � ;+B`B ����� 	 , despite being an unfathomably large number, is still a constant.

Problem 1-2. Binary search.

(a) Here is one possible pseudocode procedure, which searches for the element � in the
range of G � �9���������l � (on an array of � elements, it should initially be called with � �U�
and  � � ):

BINARY-SEARCH-REC �+GS���#�0�0�` 

1 if ���  � no elements left to search
2 return �
3 mid � � ���c"  
0? (��
4 if G �mid �c���
5 return mid
6 elseif G �mid �����
7 return BINARY-SEARCH-REC ��GS���i���9� mid � �@

8 else
9 return BINARY-SEARCH-REC ��GS���i� mid "J���` 


(b) Here is pseudocode for an iterative version of binary search:
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BINARY-SEARCH-ITER �+GS��� 

1 � � �
2  � length

� G �
3 while � &  
4 mid � � ���#"  
0? (��
5 if G �mid �c� �
6 return mid
7 elseif G �mid � � �
8  � mid �2�
9 else

10 � � mid "J�
11 return �

(c) The pre-condition is that G is sorted, i.e. G � ��� & G � ( � & ����� & G � �c� . The post-
condition of the loop is that there is no

h
such that G � h �/� � .

The loop invariant is that for all
h �W , G � h � ��� and for all

h � � , G � h � � � . This is
trivially true upon entry to the loop (when �D�U� and  '� � ). Notice that � & mid

&  .
Let � � and  � be the values of � and  , respectively, at the end of the loop.

If G �mid � � � , then � � � � , so for all
h � � � , G � h � � � by the inductive hypothesis.

Also,  � � mid �$� , so for all
h �. � � mid �2� , G � h ���JG �mid � � � by the inductive

hypothesis and the sorted-array pre-condition.

If G �mid � � � , then � � � mid " � , so for all
h � � � , G � h � & G �mid � � � by the inductive

hypothesis and sorted-array pre-condition. Also,  � �U , so for all
h �$ � , G � h � � �

by the inductive hypothesis. Therefore the loop invariant is correct by induction.

We also need to prove that the function terminates with the correct output, and that
the function always terminates. If the function ever returns an index

h
, then if must be

that G � h ��� � . If the loop terminates without returning an index, then ���  . Then for
any index

h
, either

h � � , which implies G � h � � � , or
h �. , which implies G � h � � �

(by the loop invariant). Therefore there is no such
h

such that G � h � � � , which is the
post-condition (and � is the correct output).

Finally, we prove termination: we claim that  �� � is strictly decreasing with each loop
iteration, therefore the loop terminates. Because � &  , mid "W� � � , and mid � � �  ,
so with each iteration  strictly decreases or � strictly increases, so  � � is strictly
decreasing. This completes the proof of correctness.

Problem 1-3. Solving recurrences.

(a) Case 3 of the Master Theorem applies ( )*���,
������S� I ��� A
	�� 
 for 
S� % �Q��� %
), so

RS�+��
��Y���+���8
 .
(b) The answer is RS�+�,
 � �������g
 . We can use the expansion technique to prove both

bounds. For the upper bound, note that R ���,
=� � A "J�+�C� ( 
 A " ����� " � & � A " � A "
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����� "J� A & � � � A � � ��� FC�+���H
 . For the lower bound, take the first �[��? � � terms,
which are all at least ��� � �,? ( 
 A �$� A ? � , so RS���,
 �2� �8? ��� � I �+� �8
 .

(c) Here we must compare � _��`a��	� �U� _��`a�

� and )*�+��
n�U� � T A . In fact,
] ? ( �$�	�X
 �

� M4N
] � T A � � M4N k (�� � �

, which is true. Therefore Case 3 of the Master Theorem
applies, and RS�+�,
=�Y����� k �,
 .

(d) Here �'� (
, �n��� (so �	�X
����'�>�<? ] ), and )*�+��
=� 
k ���Qmn� . Note that none of the three

cases of the Master Theorem holds1, because )*���,
 
� ���+� ; T �8
 and )D�+�,
 
� I �+� ; T � 	�� 

for any constant 
 � %

. We use the Akra-Bazzi theorem instead:
( � �@?�� 
���� � implies� �U�@? ] , so the solution is:

RS���,
=�E���+� ; T � 
," ���+� ; T �
� ^
;
� ; T �#�	m �
��� T � � �c
8�

Using integration by parts, we find that the integral evaluates to _� "! ^A , so RS�+�,
 �
���+� ; T �c�Qm A �,
 .

(e) Here we use substitution. Let �W� ]XK
, yielding RS� ]LK 
 � ] RS� ]6K*T �8
*" O

. Next, let� � O 
��>RS� ] K 
��>RS�+�,
 , yielding
� � O 
 � ] R � O ? ] 
 " O

. By the Master Theorem,� � O 
!�>��� O �Q��
 O 
 . Since RS�+��
n� � � O 
 , we substitute
O �>�	�X
 � � to get RS�+�,
n�

���+�Q��
=���	�X
Z�Q��
��,
 .
(f) Here we can use a recursion tree. The leaves of the tree sum to ��� ( ^ 
 , so R ���,
'�

I � ( ^ 
 . In fact, we claim also that RS�+�,
�� FC� ( ^ 
 , so RS�+��
��U��� ( ^ 
 . Specifically, we
will prove (by induction) that there exist positive constants �<�g:6�0� B such that RS�+�,
 &
� ( ^ �.:L�+��"J�@
�# whenever � �J�/B .
First we will handle the inductive case, choosing : and � B appropriately so that the
proof goes through, then choosing � so that the base case of �W� � B holds. Assume
RS�+��
 & � ( ^ �.:X����"$�@
 # for all � , �/B & � & � . Then

RS���#"$�@
 � ( RS�+�l
,"Y���#"$�@
 #& ( �$� (
% �.:X���#"$�@
 # 
,"Y�+�#"J�@
 #
� � ( % 	c; �$� ( :Z�2�@
����#"$�@
 # �

Now it is enough to show that � ( :n�J�@
�����"$�@
 # � :L�+�/" ( 
 # M4N A'&�(V;& � � % 	 A% 	c; 
 # . If
we set �/B � (X%

, then � % 	 A% 	c; 
 # � �X� � because � � �/B . Then setting :�� � ? ] means thatA'&�(V;& � ��� � �P� % 	 A% 	c; 
 # , as desired. Finally, we handle the base case of � � �,BS� (X%
:

note that RS� (X% 
 is a constant, so we simply choose � to be a large enough constant
such that R � (X% 
 & � ( A`B � :X� ( � # 
 M4N � � �[RS� (X% 
 "2:X� ( � # 
9
0? ( A`B . This completes
the proof.

Problem 1-4. Monge arrays.
1the version of the Master Theorem presented in lecture is stronger and does apply here, but the version in CLRS

does not
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(a) First we prove the “only if” part, i.e. we may assume that array G is Monge. We
simply set

h � � " � and ���  " � , and by the Monge property, we have G � �9�` ��i"
G � �c"$�X�` "J��� & G � �0�l "$� � " G � �c"$�X�` �� as desired.

Now we prove the “if” part, i.e. we may assume that G � �0�` �� " G � �Z" ���l C" ��� &
G � �9�` " ���i"2G � � "U�X�` �� and we want to prove that the array is Monge. First we do
induction on the rows, that is, we will prove that for any

h � � ,
G � �9�` �� " G � h �` "J��� & G � �0�` "$��� ".G � h �` �� (1)

For the base case, equation (1) is true when
h �$� ".� by our original assumption. For

the inductive case, assume that equation (1) is true for some
h � � � �W� ; we will prove

it true for
h � ��� � "$�@
 . By the original hypothesis, we have

G � � � �` �� " G � � � "$���` "$� � & G � � � �` "$��� " G � � � "J���` ��MCN ��G � � � �` "J��� " G � � � "$���` "$� � & ��G � � � �` �� " G � � � "J���` ���� (2)

Because (1) is true for
h � � � , we can replace

h
by � � and add equation (2), yielding:

G � �0�` �� ".G � � � "$���l "$� � & G � �0�` "$��� ".G � � � "$�X�` ��
so equation (1) is also true for

h �$� � "J� (and therefore all
h �W� ) as desired.

A similar argument (induction on the columns) proves that for any
h �>� , � �E we

have G � �0�` �� ".G � h ���8� & G � �0���8� ".G � h �` �� . Therefore, G is indeed Monge.

(b) Assume by contradiction that the property is untrue. Then let � be the smallest value
for which )D�+�`
 �2)*�+� ".�@
 . Let  '� )*�+� "W�<
 , h �$� ".� , and � � )*�+�l
 . Then � � h

and
 ��� as required by the Monge property. Also, G � �9�` �� �JG � �0��� � because G � �9���8� is the
leftmost minimum element of row � , and  � � . Likewise, G � h ���8� � G � h �` �� because
G � h �l � is a minimum element of row

h � �D" � . Then we have G � �0�` ��#"JG � h ���8� �
G � �9���8� " G � h �l � , in contradiction of the Monge property.

(c) Say the previous step returns an array � � � ��������� � � O ? ( � � in which � � � �+�Z� )��	�l�+�l
 , for
all � �U�X������� � � O ? (�� . Our algorithm will produce � � ���������8� O � such that � � �+�c�E)
�D�+�`

for all � �U�X������� � O . The algorithm works as follows:

For � � ��������� � O : if � is even, let � � ���4� � � � �l? ( � . Else, scan elements
G � �0��� � � �+� �2�@
9? ( � � through G � �0��� � � ���c" �@
0? ( �Q� to discover the leftmost mini-
mum, then set � � �+� to be its column index.

By the property in part (c), correctness is clear. For the running time, note that the
outer loop is executed FC� O 
 times (once for each odd � ), and a total of at most

( �
array elements are examined by the inner loop over the entire run of the algorithm
(column � � � ��� is examined twice for each � ). Therefore the running time is FC� O " ��
 .

(d) Let RS� O ����
 be the running time of the algorithm on an
O
� � array. Then

RS� O ����
=�$RS� O ? ( �0�,
�" FC� O " ��
 N RS� O �0�,
 & RS� O ? ( �0�,
,"W:L� O " ��
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for some constant : � %
, and R � ������
 � F �+��
 for all � . By expansion, we get a

FC�+�	�X
 O 
 factor of :H� , and an additional term of :L� O " O ? ( " ����� " �@
 & ( : O , so
RS� O �0�,
�� FC� O " ���	�X
 O 
 .


