Course Calendar

September

Wed 4 Lecture 1 Administrivia; Introduction: design and analysis of algorithms, insertion sort, mergesort Reading: Chapters 1-2.

Fri 6 Recitation 1 Correctness of algorithms PS 1 out
Mon 9 Lecture 2 Asymptotic notation. Recurrences: substitution, iteration, master method Reading: Chapters 3-4, excluding $\S 4.4$

Wed 11 Lecture 3 Divide and conquer: Strassen's algorithm, integer multiplication, polynomial multiplication Reading: $\S 28.2$ and $\S 30.1$

Fri 13 Recitation 2 Recurrences, sloppiness (Akra-Bazzi)
Reading: Akra-Bazzi handout
Mon 16 Lecture 4 Quicksort, randomized algorithms
PS 1 due Reading: §5.1-5.3, Chapter 7 PS 2 out

Wed 18 Lecture 5 Linear-time sorting, lower bounds, counting sort, radix sort
Reading: §8.1-§8.3
Fri 20 Recitation 3 Sorting: Heapsort, dynamic sets, priority queues Reading: Chapter 6

Mon 23 Student Holiday - No Classes
Wed 25 Lecture 6 Order statistics, median
Reading: Chapter 9 PS 3 out

Fri 27 Recitation 4 Applications of median, bucket sort Reading: §8.4

Mon 30 Lecture 7 Hashing, universal hashing Reading: §11.1-§11.3

October

Wed 2 Lecture 8 Hash functions, perfect hashing Reading: §11.5

Fri 4 Recitation 5 Quiz 1 review PS 3 due
Mon 7 Quiz 1 in class
Wed 9 Lecture 9 Relation of BST's to quicksort; analysis of random BST PS 4 out Reading: §12.4

Fri 11 Recitation 6 Binary search trees, tree walks Reading: §12.1-§12.3

Mon 14 Columbus Day - Vacation
Wed 16 Lecture 10 2-3 trees, B-trees
Reading: §18.1-18.2
Fri 18 Recitation 7 Red-black trees, rotations, insertions, deletions Reading: Chapter 13

Mon 21 Lecture 11 Skip lists PS 4 due
Reading: Possible handout PS 5 out

Wed 23 Lecture 12 Augmenting data structures, interval trees Reading: Chapter 14

Fri 25 Recitation 8 Examples of augmentation Reading: Chapter 14

Mon 28 Lecture 13 Computational geometry, range queries Reading: §33.1-33.2

Wed 30 Lecture 14 van Emde Boas, priority queues 5 due Reading: van Emde Boas handout
NovemberFri 1 Recitation 9 Convex hullsReading: §33.3Mon 4 Lecture 15 Dynamic programming, longest common subsequence,optimal BSTReading: Chapter 15Wed 6 Lecture 16 Greedy algorithms, minimum spanning treesReading: §16.1-16.3 and Chapter 23
Fri 8 Recitation 10 Examples of greedy algorithms and dynamic programming
Mon 11 Veterans Day - Holiday
Wed 13 Lecture 17 Fast Fourier transforms PS 6 due Reading: §30.1-30.2
Fri 15 Recitation 11 Quiz 2 review
Mon 18 Quiz 2 in class
Wed 20 Lecture 18 Amortized algorithms, table doubling, potential PS 7 out method Reading: Chapter 17
Fri 22 Recitation 12 Competitive analysis, self-organizing lists Reading: possible Sleator-Tarjan handout
Mon 25 Lecture 19 Shortest paths, Dijkstra's algorithm, breadth-first search
Reading: §22.1, §22.2; pp. 580-587, §24.3
Wed 27 Lecture 20 Shortest paths, Bellman-Ford, shortest paths in DAGs, PS 7 due difference constraints
Reading: §24.1, §24.2, §24.4, §24.5

Fri 29 Thanksgiving Vacation - No Classes

December

Mon 2 Lecture 21 All-pairs shortest paths, dynamic programming, PS 8 out Floyd-Warshall, Johnson's algorithm
Reading: Chapter 25
Wed 4 Lecture 22 Network flow, max-flow min-cut theorem, Ford-Fulkerson
Reading: §26.1-26.2
Fri 6 Recitation 13 Matchmaking
PS 8 due
Reading: §26.3 PS 9 out (optional)

Mon 9 Lecture 23 NP-completeness, polynomial-time reductions Reading: §34.1-34.2

Wed 11 Lecture 24 Approximation algorithms; discussion of follow-on

PS 9 solns out Reading: §34.3-34.5

