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Problem Set 9 Solutions

MIT students. This problemsetis duein lectureon Wednesday, November 21.

SMA students: This problemsetis dueafterrecitationon Friday, November 23.

Reading: Chapter22 and24.

Both exercisesand problemsshould be solved, but only the problems shouldbe turnedin.
Exercisesareintendedo helpyou masterthe coursematerial.Eventhoughyou shouldnotturnin
the exercisesolutions,you areresponsibldor materialcoveredby the exercises.

Mark the top of eachsheetwith your name,the coursenumber the problemnumber your
recitationinstructorandtime, thedate ,andthenamesof any studentsvith whomyoucollaborated.

MIT students. Eachproblemshouldbedoneonaseparatshee{or sheetspf three-holgounched
paper

SMA students. Eachproblemshouldbedoneon aseparatsheefor sheetspf two-holepunched

paper

Youwill oftenbecalleduponto “give analgorithm”to solve a certainproblem.Your write-up
shouldtake the form of a shortessay A topic paragraprshouldsummarizethe problemyou are
solvingandwhatyour resultsare. The body of your essayshouldprovide thefollowing:

1. A descriptionof thealgorithmin Englishand,if helpful, pseudocode.

2. At leastoneworkedexampleor diagramto shav morepreciselyhow your algorithmworks.
3. A proof (or indication)of the correctnessf thealgorithm.

4. An analysisof therunningtime of thealgorithm.

Rememberyour goalis to communicate Graderswill be instructedto take off pointsfor corvo-
lutedandobtusedescriptions.
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Exercise 9-1. Do exercise22.2-7on page539of CLRS.

Solution:

RunBFSon ary nodes in thegraph,rememberinghe nodeu discoveredlast. Run BFS from u
rememberinghe nodev discoveredlast. d(u, v) is thediameterof thetree.

Correctnesstet a andb be ary two nodessuchthatd(a, b) is the diameterof thetree. Thereis a
uniquepathfrom a to b. Let t bethefirst nodeonthatpathdiscoseredby BFS.

If thepathsp; from s to v andp, from a to b do notshareedgesthenthe pathfrom ¢ to « includes
5 S0

d(t,u) > d(s,u)
d(t,u) > d(s,a)
d(t,u) > d(t,a)

d(b,u) > d(b,a).

Sinced(a, b) > d(u,b), d(a,b) = d(u,b).

If the pathsp; andp, do shareedgesthent is onp;. Sinceu wasthelastnodefoundby BF'S,
d(t,u) > d(t,a). Sincep, is thelongestpath,d(t,a) > d(t,u). Thusd(t,a) = d(t,u) and
d(u,b) = d(a,b).

d(a,b) > d(u,v) andd(u,v) > d(u,b) soall threeareequal. Thusd(u,v) is the diameterof the
tree.
Exercise 9-2. Do exercise22.3-12on page549of CLRS.

Solution:

RunDFSoncefrom eachvertex. Thegraphis singly connectedff all edgesaretreeor back.Time
isO(VE).

Exercise 9-3. Do exercise22.4-3on pageb52of CLRS.

Solution: Runamodifiedversionof DFSwhereoneteststo seeif the edge(u, v) leadsto agray
nodev whichis notu’s parent.

Alternatively, onecouldrun a modifiedDFSwhich only allows anedgeto be examinedonce.i.e.,
once(u,v) hasbeenexamined,eliminatethe edge(u, v) or (v, u) (the sameedge)andcontinue
looking for thegraynodein the DFS.Essentiallythis is the samemethodasthefirst procedure.

If thegraphdoescontaina cyclethenE = O(V') andtherunningtimeis O(V). If G doescontain
acycle, it will befoundafterat mostl edgesandverticeshave beenexamined.Thustherunning
timeis alwaysO(V).

Exercise 9-4. Do exercise24.1-4on page591of CLRS.

Solution: Thereis asimpleranswetthanthisone. ..
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The ideais to find a nodein the negative-weightcycle, to setits weightto —oo andto run a
BFS-like procedureonthatnodesettingthe d valuesof reachablenodesto —co.

BELLMAN-FORD-NEGATIVE-CYCLE-INFINITY (G, w, 5)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori«+ 1to|V[G]| -1
do for eachedge(u,v) € E[G]
do RELAX(u,v,w)
for eachedge(u, v) € E[G]
do if d[v] > d[u] + w(u,v)
then d[v] + —oc0
BFS (G, v)

0O ~NO O~ W

TheBFS proceduras thesameastheordinaryBFS exceptthatwheneeranodeis placedin the
gueuejt alsohasits d valuesetto —cc.

Exercise 9-5. Do exercise24.3-6on page6000of CLRS.

Solution: Maintainanarray A indexedfrom 0 to W. The A[i] aredoublylinkedlists. If i < W
then A[:] containsthe verticeswith distance; from S. A[W] containsverticesnot reachabldrom
S. Extractthe minimum elementfrom A by searchinghe elementsof A in turn for anonempty
list andextractinganelementrom thatlist. O(17) time. Relaxinganedgecanbedonein constant
time. Thealgorithmrunsin O(VW + E) time.

DIKSTRA' (G, w, s)
INITIALIZE-SINGLE-SOURCE(G, s)
S0
AW] + VIG] — {s}
A[0] + s
while @ # 0
do u + EXTRACT-MIN(A)
S+ Su{u}
for eachvertex v € Adj[u]
do RELAX(u,v,w)

O©oO~NOULAWNPE

Exercise 9-6. Do exercise24.5-7on page614of CLRS.

Solution:

The appropriatesequencef stepsrelaxesthe |[V| — 1 edgesof the predecessosubgraphG, in
theorderof aDFSor BFS. Theproofis by contradiction.If this sequencef relaxationsdoesnot
resultin d[v] = d(s,v), thenthereis a shorterpathfrom s to v. However, this pathmustbe of
length< |V, becausehereare no negative-weightcycles. Thus,the predecessaubgrapmust
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includethis pathwhich is doesnt because¢henthe relaxationson the graphwould have giventhe
optimalsolution.

Problem 9-1. Running in Boston

To getin shapeyou have decidedto startrunningto work. You wanta routethat goesentirely
uphill andthenentirely downhill sothatyou canwork up a sweatgoinguphill andthengetanice

breezeat the endof your run asyou run fasterdownhill. Your run will startathomeandendat

work andyou have amapdetailingtheroadswith m roadsegmentgary existingroadbetweertwo

intersectionspndn intersectionsEachroadsegmenthasa positive length,andeachintersection
hasa distinctelevation.

(a) Assumingthatevery roadsegmentis eitheruphill or downhill, give anefficient algo-
rithm to find the shortestoutethatmeetsyour specifications.

Solution: Dijkstra’s algorithmsolvesthe single sourceshortest-pathproblemon a
generagraphwith non-ngyativeedgeweightsin O(m+nlogn) time. In thisproblem
we canactuallydo betterandsolveit in O(m + n) time.

The differenceis thatwe mustgo uphill beforewe go downhill. With this constraint
we know we have somavherealongtheoptimalpaththerewill beahighestpoint. Call
it h. A consequencef this pathbeingoptimalis thatthereexist no otherpointsfor
which thelengthof the bestuphill pathfrom hometo the point plusthelengthof the
bestdownhill pathfrom the pointto work is shorterthanthe bestpathsto andfrom .
Soif we couldfind the bestuphill pathto eachpoint andthe bestdownhill pathfrom
eachpoint, we cando alinearscanthroughthe pointsto find theonewith thesmallest
sumandthistells usthe optimalpath.

Now we just have two subproblem®f finding the single sourceshortestuphill paths
to eachpointandthesinglegoalshortespathsdownhill from eachpoint. Consideithe
uphill problem.We cansolve this by throwing away all downhill edgesthenbecause
the path always movesuphill therecanno longerbe ary cycles (sincethereareno
level edges).Thereforewe aredealingwith a DAG andwe discussedn classhow to
find the singlesourceshortesipathsin a DAG in lineartime. Basicallythis involves
putting a topologicalorderingon the verticiesandthenjust computingthe bestpaths
in order We cansimilarly solve the samedownhill problem.

Thetotal runtime is O(m) to produceeachDAG. Thenwe solve two singlesource
shortespathin a DAG problemswhicheachrunin O(m+ n) time. Finally, traversing
the verticiesto find the optimal peakvertex takesO(n) time. Thusthe total time is
O(m+n).

(b) Giveanefficientalgorithmto solvethe problemif someroadsmaybelevel (i.e., both
intersectionsat the endof the roadseggmentsareat the sameelevation) andtherefore
canbetakenatany point.
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Solution: In this casewe canno longerreplaceeachedgewith a directededgethat
assuresisthatno cyclesexist. Thereforeour bestmethodin this generakases to use
Dijkstra’s algorithmafter transformingthe graphsasabove replacingeachlevel road
with two directedarrows.

Problem 9-2. Karp’s minimum mean-weight cycle algorithm

Let G = (V, F) beadirectedgraphwith weightfunctionw : E — R, andletn = |V|. We define
themean weight of acyclec = (ej, es, .. ., ex) Of edgesn E to be

o) = 1 wle).

Let x* = min, u(c), wherec rangesover all directedcyclesin G. A cycle ¢ for which u(c) = p*
is called a minimum mean-weight cycle. This probleminvestigatesan efficient algorithm for
computingu*.

Assumewithoutlossof generalitythateveryvertex v € V' isreachablérom asourcevertex s € V.
Letd(s,v) betheweightof ashortespathfrom s to v, andlet &, (s, v) betheweightof ashortest
pathfrom s to v consistingof exactly k& edgeslf thereis no pathfrom s to v with exactly £ edges,
thend (s, v) = oo.

(@) Shaw thatif u* = 0, thenG containsno negative-weightcycles and 6(s,v) =
ming<,<n—1 9% (s, v) for all verticesv € V.

Solution: If therewerea negative-weightcycle, theny* < 0 becausehe minimum
would have to be negative, thereforethereareno negative weightcycles. Giventhat
thereareno negative weightcycles,thentheshortespathwill nottake ary cyclesand
canonly beatmostn — 1 edgedong.

(b) Shaw thatif p* = 0, then
e On(s,v) — 0k (s, v) >0
0<k<n-1 n—=~k

for all verticesv € V. (Hint: Usebothpropertiesrom part(a).)

Solution: First,weknow n—k is strictly positvebecausé < n—1. Thend, (s, v) —
d(s,v) > 0 becausehe shortestpathwhenno negative weight cyclesexist is going
to costmorewith n nodesthanthe shortesipathwith fewer nodesthatis the actual
shortespath.

(c) Letc bea0-weightcycle,andlet v andv beary two verticeson c. Supposehatthe
weightof the pathfrom « to v alongthecycle is z. Prove thatd(s,v) = (s, u) + =.
(Hint: Theweightof the pathfrom v to u alongthecycleis —z.)

Solution: Weknow 6(s,u) < 6(s,v) + x becaus¢heshortespathfrom s to u might
usev. Alternatively we alsoknow thatd(s, v) < (s, u) — z because¢heshortespath
to v from s might go throughu andaroundthe zeroweight cycle for a costof —z.
Thereforewith thesetwo inequalitiesve know 6 (s, v) = 6(s, u) + .
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(d) Shaw thatif p* = 0, thenthereexistsa vertex v onthe minimum mean-weightycle

suchthat 5 5
max n($,9) = 0(s, ) =0.
0<k<n-—1 n—=k
(Hint: Shaw thata shortespathto ary vertex ontheminimummean-weightycle can

be extendedalongthe cycle to make a shortespathto the next vertex onthecycle.)

Solution: Getto the cycle alongsomeshortespathandthenextendthe pathalong
the cycle to make a shortestpath of lengthn. If v is the vertex we endup at, then
dn(s,v) = d(s,v). Thensincefor we took the shortespossiblepathto thecycle, there
cannotexist arny shorterpathto the nodewith fewer stepsonly equalpathlengths.

(e) Show thatif y* = 0, then

min max 5n(S,U)—5k(8,U)

=0.
VeV 0<k<n—1 n—k

Solution: We know that thereexists somevertex with a maximumdifferenceof 0,
andall differencesaregreaterthan0, sothe minimummustbeO.

(f) Show thatif we addaconstant to theweightof eachedgeof G, theny* is increased
by ¢. Usethis to show that

. On(s,v) — 0k (s,v)
#* = min max .
veV 0<k<n—1 n—k

Solution: Addingt to eachedgeincreases* by ¢. It alsoincreases, (s, v) by nt and
decreases-i; (s, v) by kt. Manipulate andbothsidesincreaseby ¢t andthe equation
is maintained.Thus,by pickingt = —u*, we canusethe previouspart.

(9) GiveanO(V E)-time algorithmto computey*.
Solution: Computedy(s,v) for k = 0,1,...,n in O(VE) time by evaluatingthe

recurrencéy (s, v) = min,, 0 (s, u) + w(u,v). In O(V?) time, determinethe mini-
mumof the maximumof thefraction.



