6.045J/18.400J: Automata, Computability and Complexity

Prof. Nancy Lynch

Recitation 3: Solution Sketches

February 17, 2005

Vinod Vaikuntanathan

Problem 1: True or False?

- 1. If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular. **True**
- 2. If L_1 and L_2 are non-regular, then $L_1 \cap L_2$ is non-regular. **False**. Consider $L_1 = \{0^n 1^n \mid n \ge 0\}$ and $L_2 = \{0^{n+1} 1^n \mid n \ge 0\}$.
- 3. If L_1 is regular and L_2 is non-regular, then $L_1 \cup L_2$ is non-regular. False. $L_1 = \Sigma^*$ and L_2 any non-regular language.
- 4. If L_1 is regular, L_2 is non-regular, and $L_1 \cap L_2$ is regular, than $L_1 \cup L_2$ is non-regular. **True**. Write $L_2 = \{(L_1 \cup L_2) - L_1\} \cup (L_1 \cap L_2)$.
- The following language is regular: The set of strings in {0,1}* having the property that the number of 0's and the number of 1's differ by no more than 2.
 False.
- 6. The following language is regular: The set of strings in {0,1}* having the property that in every prefix, the number of 0's and the number of 1's differ by no more than 2.
 True. A simple 5-state DFA accepts this language.

Problem 2: Regular Expressions. Write regular expressions for the following languages. The alphabet is $\{0,1\}^*$.

- 1. $A_1 = \{w | w \text{ contains at least two 0's} \}.$ Solution: $(0 \cup 1)^* 0 (0 \cup 1)^* 0 (0 \cup 1)^*.$
- 2. $A_2 = \{w | w \text{ contains an even number of 0's} \}.$ Solution: $1^* (01^* 01^*)^*$.

Problem 3: **Proving non-regularity: the Pumping Lemma.** Prove that the following languages are not regular.

1. $L_4 = \{0^i 1^j 2^k \mid i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k\}.$ **Solution:** Define $L'_4 = \{1^j 2^k \mid j, k \ge 0\} \cup \{0^i 1^j 2^k \mid i > 1, j, k \ge 0\}.$ It is easily seen that L'_4 is regular. Now, observe that $L_4 - L'_4 = \{01^j 2^j \mid j \ge 0\}$ is not regular.

Problem 4: The size of the minimal DFA for a regular language L. Consider the regular language $L = \{w \mid w \text{ contains at least three } 1's\}$. Prove that any DFA for this language has at least 4 states.

Solution: The crucial fact to use is that, if strings x and y lead from the start state to the same state q, then for every string $z, xz \in L$ if and only if $yz \in L$. More formally, $\delta^*(q_0, x) = \delta^*(q_0, y)$ implies $\forall z \in \Sigma^*, xz \in L$ if and only if $yz \in L$. (Think about it and convince yourself that this is true).

Now, note that strings ϵ , 1, 11, 111 must lead to different states. For instance, suppose $\delta(q_0, \epsilon) = \delta(q_0, 1)$. Then, setting z = 11, we see that $11 \notin L$ whereas $111 \in L$. This is a contradiction, and therefore the strings ϵ and 1 lead to different states.