Definitions and Notation

Problem 1: Define the following words, phrases and symbols.

1. Set $A=\{x, y\}$, subset $B \subseteq A$, proper subset $B \subset A$, multiset $\{x, y, y\}$, power set $P(A)$, cardinality $|A|$, infinite set, natural numbers $\mathbb{N}=\{1,2,3, \ldots\}^{1}$, integers $\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$, empty set \emptyset, union $A \cup B$, intersection $A \cap B$, Cartesian product $A \times B$, complement \bar{A}, sequence (x, y), k-tuple $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$.
2. Function $f: D \rightarrow R$, domain D, range R, mapping \rightarrow, one-to-one, onto, bijection (one-to-one, onto).
3. Relation $R=\left\{\left(d_{1}, r_{1}\right),\left(d_{2}, r_{2}\right), \ldots,\left(d_{i}, r_{i}\right)\right\}$, reflexive $\forall x, x R x$, symmetric $\forall x, y, x R y$ iff $y R x$, transitive $\forall x, y, z, x R y \wedge y R z \Rightarrow x R z$, equivalence (reflexive, symmetric, transitive).
4. Graph $G=(V, E)$, degree, path, simple path, cycle, strongly connected.
5. Alphabet (input/output) $\Sigma=\{a, b, c\}$, symbols a, string $w=b a a c$, length $|w|$, empty string ϵ, substring (consecutive) $b a a$, concatenation $w \| w$ or $w w$, lexiographic ordering $(\epsilon, 0,1,00,01,10,11,000, \ldots)^{2}$, language $L=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}$.
6. Boolean logic $\{0,1\}$, NOT $\neg p$, AND $p \wedge q$, OR $p \vee q$, XOR $p \oplus q$, implication $p \Rightarrow q$, equality $p \Leftrightarrow q$, distributive law $p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$.
7. Theorem, lemma, corollary, proof, intuition, induction (assumes $P(n)$), strong induction (assumes $P(0), P(1), \ldots, P(n))$.
8. (*) Machine, string accepted by a machine, language recognized by a machine.

Proof Techniques

Problem 2: Set-Theoretic Equivalence: Recall that in order to prove two sets A, B are equivalent, one must show that $A \subseteq B$ and $B \subseteq A$. Prove De Morgan's Law that $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

Problem 3: Proof by Contradiction: If there are 6 people at a party shaking hands, then there must be at least two people who shook hands with the same number of other people.

Problem 4: Proof by Induction (Base Case) (Induction Hypothesis) (Inductive Step): Problem 0.11 from Sipser's Text.
Find the error in the following proof that all horses are the same color.
Claim: In any set of h horses, all horses in the set are the same color.
Proof: By induction on h.
Basis: For $h=1$. In any set containing just one horse, all horses clearly are the same color. Inductive Step: For $k \geq 1$, assume that the claim is true for $h=k$ and prove that it is true for $h=k+1$.

[^0]Take any set H of $k+1$ horses. we will show that all horses in this set are the same color. Remove one horse from this set to obtain the set H_{1} with just k horses. By the induction hypothesis, all the horses in H_{1} are the same color. Now replace the removed horse and remove a different one to obtain the set H_{2}. By the same argument, all the horses in H_{2} are the same color. Therefore, all the horses in H must be the same color and the proof is complete.

Problem 5: Proof by Induction (Base Case) (Induction Hypothesis) (Inductive Step): Now correctly prove the following statement: $\forall n \in \mathbb{N}, n^{3}-n$ is divisible by 6 .

Problem 6: Proof by Contradiction: Give a proof by contradiction of the statement of Problem 5. (Start by assuming that for some $n \in \mathbb{N}, n^{3}-n$ is not divisible by 6).

Problem 7: Double Induction:

Let the function $R(s, t)$ (for $s, t \in \mathbb{N}$) be defined by the induction:

$$
R(s, t)=R(s, t-1)+R(s-1, t)
$$

and the base cases

$$
R(s, 2)=R(2, s)=s \quad(\text { for all } s \in \mathbb{N})
$$

Prove that $R(s, t) \leq\binom{ s+t-2}{s-1}$.

[^0]: ${ }^{1}$ Sipser, pg 4. Zero can also be included in \mathbb{N}.
 ${ }^{2}$ Observe the anomaly that 11 preceeds 000 ; length takes precedence.

