6.045J/18.400J: Automata, Computability and Complexity

Prof. Nancy Lynch

Recitation 1: Math Review

February 3, 2005

Vinod Vaikuntanathan

Definitions and Notation

Problem 1: Define the following words, phrases and symbols.

- 1. Set $A = \{x, y\}$, subset $B \subseteq A$, proper subset $B \subset A$, multiset $\{x, y, y\}$, power set P(A), cardinality |A|, infinite set, natural numbers $\mathbb{N} = \{1, 2, 3, \ldots\}^1$, integers $\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$, empty set \emptyset , union $A \cup B$, intersection $A \cap B$, Cartesian product $A \times B$, complement \overline{A} , sequence (x, y), k-tuple (x_1, x_2, \ldots, x_k) .
- 2. Function $f: D \to R$, domain D, range R, mapping \to , one-to-one, onto, bijection (one-to-one, onto).
- 3. Relation $R = \{(d_1, r_1), (d_2, r_2), \dots, (d_i, r_i)\}$, reflexive $\forall x, xRx$, symmetric $\forall x, y, xRy$ iff yRx, transitive $\forall x, y, z, xRy \land yRz \Rightarrow xRz$, equivalence (reflexive, symmetric, transitive).
- 4. Graph G = (V, E), degree, path, simple path, cycle, strongly connected.
- 5. Alphabet (input/output) $\Sigma = \{a, b, c\}$, symbols *a*, string w = baac, length |w|, empty string ϵ , substring (consecutive) *baa*, concatenation w || w or ww, lexiographic ordering $(\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots)^2$, language $L = \{w_1, w_2, \ldots, w_\ell\}$.
- 6. Boolean logic $\{0, 1\}$, NOT $\neg p$, AND $p \land q$, OR $p \lor q$, XOR $p \oplus q$, implication $p \Rightarrow q$, equality $p \Leftrightarrow q$, distributive law $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$.
- 7. Theorem, lemma, corollary, proof, intuition, induction (assumes P(n)), strong induction (assumes $P(0), P(1), \ldots, P(n)$).
- 8. (*) Machine, string accepted by a machine, language recognized by a machine.

Proof Techniques

Problem 2: Set-Theoretic Equivalence: Recall that in order to prove two sets A, B are equivalent, one must show that $A \subseteq B$ and $B \subseteq A$. Prove De Morgan's Law that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Problem 3: **Proof by Contradiction**: If there are 6 people at a party shaking hands, then there must be at least two people who shook hands with the same number of other people.

Problem 4: **Proof by Induction (Base Case) (Induction Hypothesis) (Inductive Step)**: Problem 0.11 from Sipser's Text.

Find the error in the following proof that all horses are the same color.

Claim: In any set of h horses, all horses in the set are the same color.

Proof: By induction on *h*.

Basis: For h = 1. In any set containing just one horse, all horses clearly are the same color. **Inductive Step:** For $k \ge 1$, assume that the claim is true for h = k and prove that it is true for h = k + 1.

¹Sipser, pg 4. Zero can also be included in \mathbb{N} .

²Observe the anomaly that 11 preceeds 000; length takes precedence.

Take any set H of k + 1 horses. we will show that all horses in this set are the same color. Remove one horse from this set to obtain the set H_1 with just k horses. By the induction hypothesis, all the horses in H_1 are the same color. Now replace the removed horse and remove a different one to obtain the set H_2 . By the same argument, all the horses in H_2 are the same color. Therefore, all the horses in H must be the same color and the proof is complete.

Problem 5: Proof by Induction (Base Case) (Induction Hypothesis) (Inductive Step): Now *correctly* prove the following statement: $\forall n \in \mathbb{N}, n^3 - n$ is divisible by 6.

Problem 6: **Proof by Contradiction**: Give a proof by contradiction of the statement of Problem 5. (Start by assuming that for some $n \in \mathbb{N}$, $n^3 - n$ is not divisible by 6).

Problem 7: Double Induction:

Let the function R(s, t) (for $s, t \in \mathbb{N}$) be defined by the induction:

$$R(s,t) = R(s,t-1) + R(s-1,t)$$

and the base cases

$$R(s,2) = R(2,s) = s \quad (\text{ for all } s \in \mathbb{N})$$

Prove that $R(s,t) \leq {s+t-2 \choose s-1}$.