Note: Recitation meets on Thursday, Feb 3 at 10am in 34-302 and 1pm and 4pm in 34-304.
Problem 1: Let \mathbf{Z} be the set of Integers. Let R be the binary relation on \mathbf{Z} such that $\{a, b\} \in R$ if and only if $a b \geq 0$.
(a) Is R reflexive? Explain.
(b) Is R symmetric? Explain.
(c) Is R transitive? Explain.
(d) Define a relation $R_{1} \subseteq R$ that is reflexive and symmetric but not transitive.
(e) Define a relation $R_{2} \subseteq R$ that is reflexive and transitive but not symmetric.
(f) Define a relation $R_{3} \subseteq R$ that is symmetric and transitive but not reflexive.
(g) Define a relation $R_{4} \subseteq R$ that is an equivalence relation.

Problem 2: Construct truth tables for each of the following formulas. Also, for each pair of formulas, state which of the following holds:

- They are equivalent,
- They are not equivalent, but one implies the other (say which is which), or
- Neither of the above.
(i) $p \oplus(q \Rightarrow \neg p)$
(ii) $(q \Rightarrow \neg p) \Rightarrow \neg p$
(iii) $(p \Rightarrow q) \Rightarrow \neg p$
(iv) $p \wedge \neg q \wedge(p \Rightarrow q)$

Problem 3:

(a) Prove that for every natural number $n \geq 12$, there exist integers a, b such that $n=$ $3 a+7 b$.
(b) A Hamiltonian cycle in an undirected graph is a cycle that goes through every vertex in the graph exactly once.
Suppose that G is an undirected graph that has a Hamiltonian cycle. Suppose that H is another undirected graph that is obtained from G by adding one node at a time,
along with some edges between the new node and some of the old nodes.
More precisely, we have a sequence of graphs $G=G_{0}, G_{1}, G_{2}, \ldots, G_{k}=H$, where each graph G_{i+1} is obtained from the previous graph G_{i} by adding one node n_{i+1}, together with edges connecting the new node n_{i+1} to strictly more than half of the nodes in the previous graph G_{i}. Prove that if G has a Hamiltonian cycle, H also must have a Hamiltonian cycle.

