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I. Introduction

In thic thesis ue Stﬁdgfalgorithms fof string séarching."
That is, mu-5tuﬂg'aigorifhms'uhfch, uhon'givén tud_strfngs of
'._¢haracters, the pattern and the text, détérmiﬁe.uhére in the te#f".
the pattern ocours as a supsfring. Uuﬁ'pariicu!aremphasis is oﬁ_
“the nvérage amount of time used hg.thésé algOFithms.

String 9nébﬁhing algorithns are in uide use today, and
their use uill increase in the future.V:Afi té#t edfting.sysfems
have soms fnciiitgffof finding a pattern in thé‘fext being
proacessed, As\cdhpp{ers are uSed\ﬁore-and moré-jn offices,
nﬂpuuiﬁ!lg.fAF frxt prnmnSSing.'the.usc.of strihgfsearching."
algorithms will increase.  The goal of our thesié research is to
_‘furthnr thu ~earch for nfficient algorithms fhrough_theoretica{:
uﬁnig;iS.

e Aaton dinpiy to fnmrnhae our undérstaﬁdfng of the'dmsign ,
antl an&!Qais of algorithws in genera!; Bur téﬁhﬁiqués of
Canalisis may ﬁn Apprl tcable té'ofher prnbiéms.' The issues of
fimn—space trada-offs and local versus globaf information are
impartant in Qtring searching,  and our incroésed understanding of

these inoues may aid in the study of other problems. .
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I.A Formé! Statement of the Prﬂblem

ot

A stfing—sedrcﬁing élgorithmlhas as'fhpﬁt a haftern
pzplpzi-epmfzm and te#t t=t1t2{--tnc2“ for éome ffgéd, finite
:alphabet Z. -~ (Throughout this_theéis the_letters‘p.;t. m, and n -
will be ue el only as defired abdve. 1AIs0._He uifl assume that T
does not contaiﬁ * and 8, so that ue may USe7theée chéracters'fob

cpecial purposes.}) We say that p occurs in t at j if for all i,

1<iz<m,

_tj_1+i¥pi.,ﬂhn al l-occurrences aigorithm*fihds all 5.

1<j<m-n+}, such that p occurs in t.at j. A first-occurrence

QLUQEi?hﬁ finds the jeast such j-\iUhlesslstated otheruise ue . .':V ;, .; E
il aiung9 p% Lnncidgrihg.nfl—pccurréncaé afﬁnr}thms.' Thié_

alloug Uﬁ to prreﬁs'thﬁ time Qsed by anlalgofifhﬁ ih'terﬁs.of m

Hnd n i thout uorrging.ﬂbout-UHnré the pattérh fifst-oﬁéurs;A ". ‘ . '-“
HﬂHJQUP' nlllthé algorithms ue studg:cén bhe ﬁodifichtb find;the
firat nnﬁ”rrnnnn, ant! most of our anaigsis.}é'applicablé to this
AL,

- There a;n tiio definitions of “timé" thaf'ue uiil s tudy.
Uitimately un‘unﬁ|d like time to mean actuai.timé 0n.a real - S
Cﬂmpntor; For our purposes ue i tl assume that our algofithms
aro Qyuuhtud on rome randon access machine on which one might run

progeams written in Algol or PASCAL, for example. Our times uill
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“bhe sfatnd u;ing the O, é. fl notation as déscribéﬁgbglkﬁﬁth
(Kn3l, which neatig sidesteﬁs the issue 0* pérficular compﬁtefs
and'thcir'spends.
o In mosf:of*bdrlanafgéfs‘ué'Ose a;éimﬁ[éF-défihitfon'for"

tfﬁé ~-= the number'of timné toxt cha}actefs'are exaﬁfhed; This
simplifies the énglgais great!g;' This_énéfgsisldoes.aid in the
B "comefer time" analysis, houever, sincd'aii the éigqpitﬁms ue

| siﬁdg have the property that if k‘is'the numﬁér-of5téx{-.
examinatibns madeg thén.ﬁéxémpt'féfféoﬁo préproceSéing ofjthe
‘-pattmrﬁ. the running {ime:ié é(g). |
| Fina!lg. Hhen ue'speak bffggggggg'iiﬁé ﬁé aré_éséuﬁiné

that the test string is random, but the pattern may not be.

Either the pattern uill be fixed, or ue will be interested in the

average time fof the: porst pétferﬁ{, Initially bhé can'aésumé_:
that all tevt ntrfhga Bf 1ungfﬁ n are‘equa!]g {fkéig; -In fact,
©conr rezults ho!ﬂ.fﬁf A gﬁnera! clasé of probébilitg
dictributions, but Assum i ng "edﬁailg Likely" mag aid in

unclerstanding the proofs,
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1.B Susmary of Rasults

rDur.feqndrch has_prdeCmd results_in'three prinﬁfpal
afeas;, Firﬁt. we hove dofined a restricted modef'for‘a
stringnsearching'aigorithm. a finite-state machine called. a
string—sﬁarching-automatdn (SSA}Q--FOr this model e have
deVQiﬂpéd'techniques for computing the e#acf aVErageftime
behav?br ﬁf'an algorithmn, for computing the_asgmptotic
average-time behaviof..and for finding an optimal'algdrfthm'for_a
given pattern,: The ana!gsfs.iechniques use the thebrgxof Harkov ;
cﬁains. vhile the eptimization teéﬁnique'uses Markov cha?n5. - 
Pinear prngféﬁning; and a kind of randomization. -

The.second focus of our stuﬁg has been a neu algorifhm_l
for &triﬁg“fwnﬁching.:‘The aigoriih&'is aﬁlciabofaiion'of an idea
of Ynruth [kHPi; .Hm-nnn.prnve-thﬁt the-avmrége'number of text : 
charactor s evaainod By this alghr}thm is within a.conétént factor
of optimal. A variation of the algorithm can be used to solve a
rolated prouten, finding aﬁg of a set of patterns.

_Uur-{hird area of studg"has_beén into the simples{
cpecial case of airing cearching, shen 2-10,11 and p-0". In this
cuse e can prove that the averdge humber of tharacters examined

gy o nen algoriths io minieum, ‘éven uhen a very general model
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for an algorithm is considered. MWe get an interesting time-space

trade-off a- a corollary of this résult.'ahd also see one
ihstancémuhere anAfnterestiné new conjecture is true; The
cnnjntfurn'is';hat-an optimal all-occurrence a&gdrithm can be
found.bg.extending.an dpfimai firSt—occUﬁrencéa{gorithh so tha{

it continues on to find all occurrences.

J.C Previous Research

There are three widely knoun algorithms for string
searching. They all use the'folloﬁihg outline:
Lo A gindow of tength mois placed over the text, initially over

et

' , :

2. The characters in the Hindou are.examihed and'cnmpared uithr
the cnrrnsponding-ﬁatfern chﬁrabtébs in 5omé ordéf;:as“long as-
."Hu“!':] mateis, |

3. 1 ali the characters'match..thé pattefn'hés-beén'foundf

ﬁ. When atl the chmrabteré have beenrexamined,-br a.mismatch

found, the window is shifted to the right, and the procedure

continued, i f mote text remains.

Each particular algorithn determines the order in which

charncters are ovamined in step 2, the distance the window is
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shifted in 5tnp.ﬁ, and the'characters remembeéed ﬁhén.the Hindou
islﬁhiftﬁd.f_uote that if the uindob is eyer?placed err an .
Oﬁcurrénce»ﬂf.iho pattérn,_tﬁen fhe'a!gerithm uTiIVfiﬁﬂ tﬁat
occurbmncé.:_Therefﬂre._ﬁn a!gbrithﬁ*uaing tﬁié 0uf|ihe5uilI be' 
| correct if ihe windou is never'shiftéd péét“an occUrfénce of_{hé
patfﬂrh.?,h

r 4.Thb particulars_pf the threé algorithms'are'désﬁribeﬁ V_f

below, -

The Naive'AigDrJthml

This'is-thé-obvioUs algof%{hm;' In-stéb-?-the_cﬁaracteré'
a e mdtﬁhed froh left to right. ;uhen_a mismatch.bc¢Ur5;rthe
uirukuJ'fs chifted right by one position. and atl=characteré in
the nei windon are forgotten. This algorithm.is_cdéréct; S§ncé -
the ﬁindnﬁ.ia jrlared ﬁvnr overy toxt positfoﬁ;g The uqrst-case
nunber nf tesvt character examinations happeﬁsiuheﬁ the.pattérn.
is, hng;_n".uaﬂd thn=t§xt is é”. Then - the numbcr'of-nxaminations
IS n-m;m:{m. Flajoicet [Flal has shoun that the averége number of
nharnutnrczpynminnd i G(n);=éfhe‘norst—case-and aVefagé times.

are Otnem) and aln) respectively.
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The Knuth-Morric-Pratt Algorithm (KMP] -

Knuth, Morrie, and Pratt daSCOVQreﬁ an’ a*gortthm utth
lirear worst-case Funning time, In qtep 2 the charactcrs are
matﬁﬁed from Ie t to right.. .Uhen a mismatch'ls'found_thek
;algdrithm shifts'aq fér és‘pdséfble based oh‘tﬁe characteﬁ§'
alrracy matched. That is, if tﬁc u}ndou ?5 dvef t.'--t jam-1 and
a mismatch ;Q found Letucen t and p .ﬁ then the: algorlthm can

rhlft to t.---t uhere i is the Ieast number such that |>j,

fm-]"

‘ l?]'f'ljp-}:t;"’tp._l‘. and Py ]f the.a:'gm‘ithm ;‘Shifted R

SR |
hese, then it uould diroadg "know" that there uas a mlsmatch If
-thp a!gnrntlm qhiftnd morp lt.mlght-m155-an-OCCurrence of the

Cpattern, After thn shift, the algorcthm contlnuos 50dnﬁang the

tewt at tk, since the prprpd|ngrcharﬁut9r5 in the uandou are
knotn tn miatch thm”pﬁtiern. | |

Thn anott o be shiffed Hhen thérp is a mn match uith pn
hoparnd nnlu ori the patiern, “not the twyt rThererre,-it'can be
precomputed, and in IKMPY it is shoun hnu thefﬁreproéeéSan can
be dote in .timn an}, |

-The-nignrithm'can be'pfngramﬁed €0 tﬁat the'unfst—cése |
noamber nf test nhnynctﬁrs axa i ned is‘n.-and the average is
betueen p-nsl and n, The worst-case and avefage times are both

kY

Oluens) . Calil and Selferas 1G8S] have discovered a spectrum of
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refated algorithms with time complexity better than the naive

algorithm And space conplexity better than KMP.

The Hoyer-Moore Algorithy (08M]

Boger and lloore noted tﬁat a great deal of timé can
usual 1y he caved by scénning'thé windou backuardé.-‘lﬁ.siep‘Z the
charocters dre examined from'right to left, jUhen a mismatch is:
found the uiﬁdnu is 5ﬁifted in a nay simi|ar.£§ KMP. . As an édded
heuristic the_aigbritﬁm shifis.even-furfﬁer..if.possiblé. when -
the mismatehed text character dbés not occur in_tge patfern at
alt, -Aftéf'-_ the shi.f’c. all characters lirls .‘tﬁé l.ri..n.dou -aég"

Mfargotten” and thn'prﬁcbss restarted.  As in kNP'thétshifts can
Lo precomﬁutea in time.G(ml.- o |

Thie algﬁrithm is.faQter'than'KﬁP for tuo reasons. -
Firet, bﬁcuﬁ;o of the right-to-feft scan, thé sﬁifts may be
hignifiunntlg.inugur.thﬁn in KM'. - More iwportant, houever, is
the fact that most of the time some of the ﬁharécteré shifted out
of ‘the windoms will H§VHr.bm.éxamined at all. This gives rise to
the hoaéihiiitg of a 5ubiinear avéfage runﬁing time.

The analysis of thia afgﬁrithm is greatlg-muddied'bg its

"forgetfulness,”  Tuo complex proofs have been hubliéhed that

chnw that thie the number of times text characters are examined is
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@(n) in the uorst case ff'thg pattéfn'does not'othr in the téxt.
KMP.G&RD]. Galil has shoun that the éigorifhm ban-be'modi%ied in
; a éimple'uagrso'thatlthe uorét—case time is 6(n) even if p
Ceoccurs in t. Analysis of the average-running time is also
conplex. - No good closed-form bound fbf'tﬁe tiﬁe_is knoun, but

Qfn-togim)/m éeeﬁs'likeig.

'VIThé KNP and Bnger4ﬂéoré aTgorithﬁs éhbuéd tuo important
fab%s about stfihg ééafching; KMp éhaued thét'nb éharabter ﬁeed
bé exanined tuiée; and Boyer-Moore éﬁougd that soﬁe characters
:need never be exaMinéd at all. Tﬁié-led té éome interesting
results on Lower bounds. Rivest [HiQ] has shoun that for‘éng
' pattcrn.'nng-algbrithm, and.ang n there existS'a-t(Eﬁ for uhich
the algorithn eramines at least n;m+l characters. theover. for
infinitely wany h; ﬁii M chmfﬂctcrs must be éxamincd in.the uﬁhst
case,  This author found an infinite sei of patterns for uhich
‘_{hn'mutst caﬁn-fdr'ang'algorifhm is n for all but finitelg many-
-ﬁ. even uhen the.pattern‘does not occur in the text. (Note that

"onem, all positions must be examined by any

for p=a", t-a
nigoﬁithm.] Tuza [Tuzl found this independently, and proved the

stronger rooslt, that this is the case for most patterns.

For the average case Yao (Yaol derived a lower bound of
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Q(n-logq(m)/m)'charactcrs examincd. vhere qnlzl;’kor éfmost ali
patterns. His proof, in fact, 5Hnus that this is a lower bound.
for evory text string, not qutra randomfu éelebted-stﬁing.
Knuth {KNP]_Sketched an algorithm théf‘éxamines 9(n?lﬁgq(m1/m}
charactéré on the average.  Thus the optimal average number of
characterc examinéd is knoun to=uithin:é-constant factor.
Houevor..Knuth did hbt déscfibe-éh'imp1cméhiat}oﬁ of Hiéiséheﬁe
thét vould take tfme"G!n-JUQGTﬁ]/ml on a computer. -
Théam'baunds“érﬁ summar i zed below, atong uifh the resulfs.

for out new Algorithm, -

norst-case  uorsi-case | dverage’ - average
charagters  Lime characters o time
Fouer n-mil f{m Un-togy(m}/m) - {n- logg (m) /m)

bounds [ n for mnet patterns

prive w3 Bem @ - 8
K n . Bt ﬁ--fl(m] | .. - Binem)
B An , @ (nam} ? ?
Fruth s T n ? . Q{n' logq(m fml l- ?

Our Aladfn 8 {rami - dogg ()} /40 (n/m) - B {mene logq.(m)/m)
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.0 Related Prol;ié:ini‘w' :

]He string—scérching-prﬁb!om as ué have ﬂcfincd ff is fhé
simplest of a large number of ﬁatfern.mafching'problems‘fhat :;
_ pebpte have studied.  Most of thé othér ﬁfobléms are siﬁﬁle-r
generalizations of fhé string—ﬁearching prpbiemf A nUﬁbér ﬁf the. :
'problems are described in [AHU). These inciude séarching'for any
of a 5et of st}énQS'[A&E]-and ma{ch{ng é regufar'expreSSion._
Fischer and Paterson.conéider patterns uith:”don't careéﬁ [F&Pl.. 
Generalizations to ather combiﬁatohiél objecfs:érepresenfed in
[KMR1. Another ﬁﬁhﬁnach to the pﬁbblém;ih thch-{hejtégf.is
proprocesced bas been studied bg Hafbisdn-THéE]; ;"
One might argue'tﬁaf theéé geheralizationélﬁosermore '
interesfihg qué;tions fhaﬁ:ﬁhé problem ué'éfé éthiﬂering: but
this thesic uiii shou that abundant queéfidﬁé Fémain evéh foh.the _

Simple case,

-9
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11. Theoretical Madels for Algorithms

JThe.Knuthmﬁorris—Prdtt-éhd Boger—ﬁééﬁe*aTgorithmé operéte E
in tuo phasés#;pfeprdcessing the'pattern énd sCahﬁinQVthe téxt.
In most uses of string search%ngithe'téxt is éignificaﬁtlglonger
.thaﬁ the pattern, oo the second'phaseataKEqufe iime; Hith this
i mind, our fheoretical study focuses on the QUesfioﬁ: ngen a
fixed patf&rn p.uhat are efficient algorithﬁé-for-ffndfng*p? e
“might hobe that there:iS'én efficieht brehrodessingISEHemé mﬁich
produces‘é nearQOﬁtimai algorithm'for{each p. ﬁﬂéﬁeVer;fﬁé.uifl
mainly be concerned in .this thesiéTﬁffh the'efficiehcgnof'the_

algorithne for each'p, not the preprocessing time.
FT.A Time

by p ia.fiyed.the‘number of text chafaéfers-examined is
an accurate measure'for-ihe~time-that‘aneatgorithm uses. - {At.
teact this is true of all the real and theoretical aigorithms
that ue have s{udied.) Therefore, ue fix.updﬁ this as our
definition of finn,

e now formalize our notion of average time. Let T8

brer the time uond by algorithe A on text 1. For each t, et
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probit) be the'probnbfiitg thatlt_islthe=téxf ﬁeing searched.
Then the.nveragc'tihe TA:E%nprob(tl;TA(tl. Allouiﬁg éﬁg
probability distribution would hake'our.pﬁoblém intractable, but
‘He can be mare general fhan siﬁb!g assuming tﬁat each t_is
equal!g likely. Let P:Ee(D,ll'be a pfobébilitg distribufibn on
2. (e Assume that for all acE P(a);O ‘since otheruise: e could
fakn -lel as the Iphabpt ) The probabtlttg d:strlbut:ons on E"'
-thqt He will study are those for uhrch the characters t are .
'lﬁdependent. identically dlstrlbuted random-variables uith

- probability distfihutibh P. (In lnformatlon theorg terms He

tou | o qqg that the text is from a dlqcrete memorgless source, )
This is nqu;vnlcntoto defining prob(t]f[]?(til.

i=l

IT.B DNecicion Trens

Sinee peare assuming that the pattern and text are given
to an algorithm simply as strings of characters, we can represent
an atgorithu as a'decision tree. This is the ‘most general mode!

e witl stady,

be define a decicion tree algorithm A for finding a
(Fived) pcI™ in text sfring: tcI™ to be a rooted |Z]-ary tree.

Farh (intereald node is Tabeled with an integer i, I<i<n. From



s
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each node descend |Z] branches, each labéled thh4é distinﬁt oz,
Every branch leads either to another ‘mode or to a'Ieaf. Each
leaf.is fabeled with a set Scll.;--.n}.. The opération‘of A on
input tcZ" is
1. Start at the root.
2. When at a node labeled i, A éxamines tiiand moves along
fhe hranﬁﬁ labeled uitH ii to {he'next.ndde.br Ieaf.
3. 14 the.branch leéas to a node, go.back to 2.
b, If the branch |eads to a leaf, theh A halts and declares
the «nt 5 Iabe!?ng'tﬁe'leaf to be the set of ﬁbéifions
where p occurs in t.
We: &DHTF’.“LE;HEE- refoer to an (:xr—:r‘;ution.-ﬂf astep 2 as a pr'ob'c_'.r We
define the time for A on t to-be-tﬁe'number of.prohés.médeh_.

Example A decizion tree for Z:10,11, p-01, n=4 is diagrammed in

Figure II.I..
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Figure TI.1

In order to prove |ouer bdund5'dﬁ fhe {iﬁe-an aigori{hﬁ _
must take it isinecessarg to determine the mihgmﬁm amount of uofk
that an nignritﬂm must do to be correct. We formalize this
“notion pﬁ!ﬁw.

Mefinition A partinl certificate (poe.) is a string ue (U )1,

Definition A partial certificate for t is a p.c. in uhich for

all i, u =% or u=t..  {In a sense, u matches t if you consider

*¥ % to be "don't cores.")

Definition In ap.oe., u, aposition i such that u.=x is called

unknnung one ouch - that U is knotn.

Uefinition A iigyplﬁtel cerdificate for p is ap.c. u such that
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for all j. l<j<m-n+l, either

(1} u =p, for 1< <m p pceurs in u a{ jl

j-l+i B
or (2) u, , .#%au- =p; for some'i, l<i<m (p-dods not match
-1+ j-lein Vi _ - : .

u at jl.

Claim .If'é p.c., u, for t is a complete cerfiffcate for-p{tﬁen
the‘set S of positions in t whore p occurs fs préciselghthe set
of j for-ﬁhich (1) ie satisfied.” o

Proof 1If p'occur5 1n:t-at j, then (Zj cannot be satiéfied ?of-j
| . t. =p, from

since for all i, l<i<m, either u, , .=¥ ar u, .
_ j-14i -1+

j-leis
the definition of partial certificate for t. Therefore. (1) must
bJ“sntfefied._benvarseig. if T])'is’sﬁtisfied.'thén'forial! [

I<izm, p,-u s0 proceurs in t at j.¢

IR
ggtgljarg £ partial certificate u for t is a complete
certificate for p iff the set of positions in t uhere p occurs

can be determined from u. e

flefinition The partial cortificate u associated nith node or
leaf » af & ic defined recursively as follous. 1 x is the root

theru=#". Otheruiin, x is the o-child of some node y uith

partial cortificate voand label j.° Then we define uj=c;and u,=v,
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T

 an ij,

VC!qu IfA visiés x then the tc#i fs t. tﬁen the p;c. assde18ted
with x is a p.c. for t. . e

Proof Follous easily from the operation 6f A-a;d'the definitions
-above, ¢ |

~Befinition A node or leaf x of A is reachable if there is some t

such that A visits x at some pofnt-uhén given text t.

'Eigim_ A decisioﬁ tféé é!gdrithm {é.correcf‘iff for ali reachébfg
. leavgs.r._the p.c. Associated with x is a cﬁmpfé£é ceriificéte
and the set § iabelihg x is the set of j“éatisfging.(ll in the
) ﬂefihition of cémhlete certificate. | |

Froaf Tolious from previous claims. o

The Above dn%ivation can be'summérizéd 35 f0|’0N5-: For
an algorithm to be correct, it must examiﬁe sﬁffibient chafacteré
of t to ronstruct ﬁ'{cnmhlnte! cortificate for p which ﬁétches t.
For an algorithm uhich never examines a tert character tuice, the
time taken by thé'aignri{hm'on t is sinply- the nunber of knouns

inthe cortificate found.,  Therafore, ue can shift our vieupoint
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slightly and define the output of a8 string-searching algorithm to
be a certificate, rather ‘than a list of positions where the

patiern occurs,
11.C  String-Searching Automata

~There are tuo problens Qith stUdgiﬁg dec?sioﬁ?tfée
alg0rfthms.' First, the class iSJSOfiarge'that ue'miGht“have a.
hard time ¥inding optimal'algo%ithms.f Second; the'é1gor§thﬁs are
so large that it would not be'pféc%icél.td-conétrUCt one for
arbitrary patterns. Also, it should be clear that a
preprocessing algorithm of bouriced compiexitg can only buiid .
decisiﬁn trees vhich ére"fépreséﬁ{abie'in a bounded amopnf of
cpace.  Therefore, insteard of studying decision trees, we will
define a finite-ctate nodel fof a string-searching éigbriéhm.
Tﬁis model Las first propoééd'bg;knuth {KMPT, |

Informal ly, e define a sifihg—séarching automaton (55A)

.for a pattern pcE” to be a machine'uith'a one-Hay, read only
input tapoe, a finite-<tate control unit, and a memory of m-ceils
cal led the window,  The windod can be randomly read by the
contral unit, but is changed only by shifting text charactérs

from the tape through the memory (it acts like a shift register).
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The machine startc uith the first m characters of text in the
tindou. At any step, an unknokn character An the u:ndom is
exanined an rnmpnrpd tiith the rorrespondfng pattern character.

\r
This cont:nues until all characters in the HIthN are knoun, or a

Smismatch occurs, In either case, the window is shifted.,uith new

.textrenterﬁng at the right., {0One can vieu thns aa the windou
shifting across the'iéxt.“or the text thfting into the windou.)
“The doscriptron abOVe is verg 5|mt!ar-to the-outllne for
the afgorithms described in Chapter 1. Houever. we put further

'r

U'}

rictions on SSA &, First.rthég'never fofgef: all relevant
characters knoun befare a sﬁift agé«ﬁémembéred'aftér the shift
{in their ncu tncations).  Second, each shift js as far-as
pbésiblé;-_Third, ué require the S5A to operatp based only upon
the knoun characterc in the window -- evnrg time any particular
set of knoun= and annnuns i% present in the window, the SSA must
exanine fhﬁ ;nwn pnjition.-.ﬁll of these rmstriétions seem
~consistent with the goal of finding fast algorithms, This is
clearly true of the first {uo-rnstrictiohs. When we argue that
the third restriction yields fast algorithﬁs. ue relg on the
ntuition thnt_th& Leet pogsition to examihe in sﬁme configuration
is the ﬁest poeitipn‘uhenever that configurétion recurs.

Hith tho-n pestrictions We can construct a simple formal
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“tefinition for an SSA. For a fixed pattgfh'przm, define-alstate
snt as S=fuc (50U 1™ Vi, I<i<m, u =k or u=p.l-ipl. (That is, S

is the set of partial certificates for p with at least one -

unknoun. ) A siring-searching automaton A is defined by a probe‘i'

.=*. The

functign A:S={1,-++ ml such that for all u5, Uy (o)

“operation of A on input 3" is the follouing

1. 't["'tm‘is read into the windouw ul---um.' If men Arhalts.
2. UWhen in state u, A exanines W, .. -
Alu)
’ . Y m . ' ’ ._' F . _ .
3. ‘Let_u‘<(EUl*l} bg defined by Ur (i)=Y (0 ® and U=y, if

iwﬁ(u).

4. If u =[3

Alu)

Al and u’ has at least one unknoun, set the .

current state to u” and go to 2.

Al T a gy and u’ has no unknouns, then the pattern has

5. Ifu
Lt faund,
E. Let o be the least numbor, 1<d<n=1, such that for all i,

] <icm-d, “iT”&{i' I1f no such f exists, let d-m.

7. Shift the characters in the uindou to the left by d
positiens (e, SUT.Mi=Hd“l and move the next d text

chiaracters into u cerit . 1f insufficient text
m-el4l mo

character « rewain, A halts,

S, Define 117G by H?rU; for l<igm-d and u¥=# for i»m-d,

I+

—
a
—

Set the cureent otate to u” and gn to 2.
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It should be noted that an SSA never examines the same character _

tuice. The time for A on text t is the number of times step 2 is

- exectterd.

We will diagran SSA"s as il lustrated in Figure I1.2,-

Each state is represented by an oval containing the state name.
The probe position Alu) is underlined in the name. For each ¢¢Z

there s an arrou fraom ihe,statejfo théﬁnext'state. Iabeiéd Wi th

a/d if.o catces a shift of length d, and 1abeléd.uith'o/d0 if the
pattern is fOUﬂd.-:Ih'Some (maybe at1?) SS5A's certain states are

unreachab e, Thnse.statGS are omitted in the diagram.

Exomple Belou are three S5A°s for 2=10,11, bsOOl;'

Figure 11.2 (8)
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1/3¢

. Figure 11.2 (b)

Figure 11.2 (c)

For a given pattern ue give names to tuo SSA'%. The
Kruth_tarr io-Pratt S5A (MP-SSA) is the onc in vhich the Teftmost
tmknoun is examined in each state.  Figure IILZ (a) shous a
KIi-G5A. Hntn_that.n KMP-SSA always has w-i states. e say that

“an S5A i a redoced-Roger-Moore SSA (FBR-GSA) if in each state



Chapter 2
i

R A |
oo

the rightmost unknoun is examined. (Mo use the term "reduced"
because, unlike the original Doyer-Moore algorithm, an rBM-GSA
never oxaminen the sane character tuice.)  Figure [1.2 (b) shous

an rBM-554,

We gohjéctﬂrn-fhat the class of S5A's contains éh_optimal'

algorithm for evefg pattern;.optiﬁai in the sense of examinihg
the feurst text characters on the average‘of any algorithm} We
cannot prové this in geﬁéﬁal.'but for.thé éase of,p¥0m'if is
true, as shoun in Chapter 5. Nevertheloes, fof any offthe knoun.
aigorithms‘ue can_finﬂ-anlSSA which is-at least as good. In
additinn, the anrﬁge time for thése éigérftﬁmé can he:anajgzéd

Cin detail, as illustrated.in the next chapter.
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111, HMarkov Ann{lggﬂig af SSA" g

{n this éhapter He uill_ﬁhop how the cénétfafﬁéd
strunture of SSA'S-Ieads'ib a mefhbd.for aﬁafgzing their avefage.
time in'de{ail.' Thrnugh:é friyial trénsfo%matinh.an SSA.Can.be'_
mace into a Markov thain;"Then ajl the'techniqdéé'of ﬂafk@v
analysis cﬁnrﬁe veed, Most of the:facfs thét.ué_ﬁéé abbut Harkov '
chains are ffom Fé1joF [Feld.

~ The Markov chain éssoéiated'uitﬁ aﬁ SSAVA conéisfé §f {Hé
states of A anrt the transifibh1pfobébiIftieév; | . |
- d>w. - fthe probability that A uill move to state v after the
next probe, givnn that-A'ié.jn staiéTU!.'u_
In other words, if 'ti‘ar,a.!;ee"ﬂr_; arrﬁl-_!é lab.ni(.ad Ul.'#Z-'._”‘gk from u
to v, then d'ljvzrf’(d]_j'-iﬁ- -'-+'P.(tr}‘(:1 . 'FOT":.E!.E?.CH étfate u !et ¢lj(k}'={th'e:-
prhbuhi??tg nt being-in.sféfﬂ u éftéf k.probési; “He ﬁan cnﬁpute
éu(kl frnmffhﬁ-rncurrenneﬁé- |

I f u=%" L .

éu(Oi =
0 othnruise _
éu(k! - % éV(k—1}-¢VU for k>0,

Let s be the ovpected nunber of shifts on the arrous

feaving u. Then the average nunber of characters shifted in
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doing thp f;raL K probes is Q(k.—mggi¢ (j) 5 {ve inéludé the
initial loading of the Hindol) . Th; quantltg sik) .is esseﬁfia!ig
" the inverze of the’ quantity that we are reallg |ntere¢ted in ~-
thp a&nragh nwfhér i rharartorg examined in dOIng the first n

ehifte. He will shou later exactly hoi these'quantitiés are

related,

Example  In Figure m I 1o have an S5A for 2-10, 1z p -001.

Figure 111,]

- A55ume that F(0) -P(1}-0,5. Then ue have
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u Y 0% ﬁOl'r 00x%

(g
jam)
g
o
)

RS 3R 0.
#0% | 0 0 0.5 Q..S'
«00 |1 0 0 0

0.5

agl
o
[em}

00 0.

In Figure 111.2 we diagranm the Markov chain with the arrous .

labeled with the transition probabilities.

Figure 111.2
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vk 01 2 3 4
w1 0.5 025 0.5 0.5
x0% | 0 0.5 0.25 0,125 0.25
«01 | 0 0 025 0.125 0.0525
0ox | 0 0 025 0.25 0.1875
| b (k)

s, 1 05 3 2
k0 1z 3 4 5
e(k) |3 4 6.75 B.375 7.8125 9

I'f a flarkov chain has certain nice properties, it can be

Canalyzad in an elegant way. A subchain is a subset of the sets’

of a lMarkov chain, A subchain is closed if every state reachable

from o ctate in the subehain fs in that subchain, A subchain is

irreducible if every state in the subchain is reachable from

overiy nther cstate of the aubchain.
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Lesma 111.] ° The Markov chain for an SSA” contaln exactly one

irredué?hiﬁ. c!oséd subchain,

Proof’ lct f e the state éntéréd.mﬁenlfﬁé'paftcrnﬂis found (if
is unique]. Thﬂ qef of states rpdﬁhablp from § is closed .bg
definitiun‘of_clusnd. State f 15 reachable from everg stafe.
éince an occurrence of fhe pattern Will take the SSA to f.
Finnlig. fhé ctatns rnachabie from f must form the onlg‘clcsqd
subchain, since ang‘ciosed subchain must_contéfn.f.  Therefore;

the states reachable from f constitute the one irredﬁc?ble.

closerd subchain of the Markov chain.®

In Figmwe 1.3 ic the rBM- SQA for 0100 thich has an irredUCIble.

clozed subchain of 108w, 0#*0 0#00 wl*w %1%0, *100 *10x%,
O s, Olmﬂi. fin alt our othcr examples. the entire chatn-ls

irtedtciblie, )
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1/3¢

o 113/ w3
- (Ao
o
013 073

|

#%00)

. | Figure 111.3 -

Nerause the Harkov chain has one irreducible, closed
~oubchain, we get from Felier [Fell that there exists an invariant
provability dictribution ¢ such that ¢ - % t‘_b_vévu and % dJU:l.
Moreover, the distribution'¢u_is the unique solution to those

equations,  Thus, we have a methed of computing ¢U. I1f A
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csatisfies arother nice property (aperiodicity), then

¢

U:iim é ki, tlde conjecture that A is never poriodic, but have

been unable to prove it.)

et s=3 ¢ 5 . the avarage number of cﬁaréctcrs'5hifted

t) i - ..

per chardcter examined given the invariant distribution. Then if
A is aperiodic, this is the asymptotic numberof'charécters
shifted.per.character examinetl, - (If A is periodi?,vthis is_stili
true, bDut éhnufng-it is not so nasy.) Houevér; uhét_ﬁe are
really interested in is the number of characters examined per
5hi%t.- 1t is true, but not obvious, that this ié 1/s. He shou

this later.
I11.A  Tuo Other ﬂafkov Model s

We are intorested in thﬁ numbcr.of cﬁa;actefé examined
ﬁur character hifted, but this cannot bm.cnthtnd dirnctly from
the Markov wordel.  We need fhn dﬁai of the Markov modet,
reversing the roles of hhiffS'and probes. To gt this dué! it is

carnvoenient to uce an intermediate model.

The rorplete Markay chain for an SS5A A is derived from A
by adding o otate for cach shift,  The most concise way of doing

toe vr, U, for each state u for which

this s tn il states by,
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d is the maximum nuhbﬁr'bf characters shlfted on tﬁe'arrous
“entering u. Then it is assumed that the text is shifted bg:one
prosition when any of these shift statcs_fs entered. -There are
frnhéitinng uith pr0babﬁiitu J from u;+j to u; ahd u}.tn u, and a

jransition from v to u with @ ehift of k is redirected to u

e :In

addition, if u=x" there uill be shift states u .-4-.um,_and u

i
‘431‘ be the new initial otate.  An exanple of a complete Markov
chain is given in Figure 111.4 with shift states draun as

rectanglos,

Figuore 111.4

We can formulate the average time for an algorithm in

terme of the conplote Markov chiin. That is, Ttn) is the
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expectod nuster of probe otates visited bcfore reaéhing the
n+l';t shift state (that is when the GSA halts). Again, it is
not nﬁvious how to conpute this vaiue;‘eo.ue consfruot'a third
Harkov mﬁﬂel. |

The dual Markov chdin is constructed from the complete

chain by deleting the probe states., The transition probabilities

¢ii are determined by finding ‘all paths in the complete chain

5

from 5h;ft state i to shift state '} containing no intermediate
chift states. (e nou assume that the shift states are numbered
1.2,+++ with 1 being the initfal sté{e.} Theﬁ the {ransifion
probability ¢ij is the sum nf.therprobabilities of these paths.
‘Note that every path from i to j includes ai most m probe states,
since the windou is of length m and no character is examined
tuice, Thic makes the procedure for constructing tﬁe dual chain
effactive (nwﬂ nffiuivnt3f It is also ﬁanenient to define c, as
the average nucher of probo 5tatmslon_the paths leavirg state i.

The dual chain for our example is illustrated in Figure [11.5.



Chapter 3 ' 35

Figﬁre I11.5

-'Froﬁ the dual Mjrkdv chain we can'(fina1lg) comhute‘T(nl;
As in.the origiha[ chain ue dcfine-wihﬂ-to'be.ihe'pféﬁab?litg of
: béihﬁ inistate i'af{er'n.shifts. Thus‘ue'ﬁéyé - |
. Dithiel
¥, (1) =

0 ntheruwise

i nel) = zl,’/.(ﬂ}'lﬁ..-..
1 . i I )1 .

Then Tin) - :’}%izl.dfi(.k)'r_;i. Ue have rédu;:p.d the []rOIJt:E!m- to that
‘ Y B _ : ‘ :
fof:compUting v,

A nualieg- ﬂf properties of the.anE:Chain atlow us to
f-qoncisélgfamalgze:¢ilnl.' As before, the dua| chain héa one
irreducible, closed subehain, Noreovgr. the anI_chéin has the-
property that ue could not prove for the original chain -- it is
np@riodin. A ntafe i in this chain is ug:indiﬁ if it is a menber
6f the cloced cubchain, and if there exists a k>1 such that each

cipele fron | back to iteelf ie of length -k for some integer 9.
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The Harkov chain is periodic if it tohtains- a periodic state,

otherwize it is apuriodic,

Lemma | LI: Ther dual chain is a;')r)ridtlic.l
Egggf_ Let f he the shiff{étaté enfereﬂ 1hen thegpéttern.ié-
found, Frow {Fell ue knou thétfif.the chain is periodic, then f
must be perindic. Also from (Fell, ue gnoﬁ that if wve can find
tuo ugﬁina from f back tn:f uifh_1éﬁgths*iﬁat-aré réiétive!g:
prime, then f cannot be periodic, In fact there.aré'090195 frdm'
£ to f.oof lengthe » and nal aa”uitneésnd ﬁg'thé téxf'sfrings pp
and pep where p is the pattern and o is ang'character. .Since m |
and m;] are alpays relatively prime. f musf'bc.aperiodicras must

Le the vhole chain, ¢

With these results ue can nod employ all the algebraic

tochniques of Feller [Fell to produce the following results:

Lemaa 111,

.

1. There cviats an invariant distribution ¢i such that

B ‘? Lo Y H . M = i
v, = Yivie 2 oo b and d=lin @ k),
2. the generating functions \Ifi‘(z) = 2 ¥ (k- z% satisfy the
k> '
eouations Wo(z)y, (1)-z+ > Z\I'j{z];lij.'. |
]
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_E:ﬂ*il:}nz+zz+23};-~=z/(j~z).
i o
3.  The equations of (2} can be solved giéjding'wi(z}=fi(z)/g(z)
| .fbr come pofgnpmiuis f. and G
4. Using pnftial frncfinn techniqﬁes. be find théf

LR ENETEI TS a, /=) ) ¥+ h(2)
j

there the a, are complex constants, the e, are non-negative

Sinteyers, the‘hi(z]1aré po!gnomials._and'the.hj_are thé

R corplex roots of giz) with |Aj|<1.  ‘ ” D

".5;_ The form of W}lz] in (5} fmplies'thét.¢;(nl=wi}ﬂfkh} there A
is any pnsitiye real number sucﬁ_that A<l and X>|X}| fcr”all
Aj. Thus, tﬁé differenée bgtﬁeen ¢i{h] andv¢; decrea5eS
-Exponantia!fg;f

S.' In thc.(Unfortuhatclg féu] Cases uhereltﬁé rqofs Aj éah be

- exautig:nnﬁﬁutud. Le cén find explicit fdrmﬁlaS'fnr v.(n).
quﬁf"gnﬁ Faller [Fell. Fof moro on gencrating'functiﬂns see

[Ffu}j .0

Using Lemma I11.3 ue can derive @ concise form for the

asymptotic average time for any S5A,

Ilyqujﬁn“}il,{ For an 55A the average time T{n) satisfies

ST e DO phere cs 5 die. is the evpected number of
i -
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characters examinad per text character for the invariant

distribution, and o and A are constants with 0<h«l.

froof -
&)
T} = 2 ¥ (klc
"Z:I ID.
- Te T (k)
A
- n v
= >, > [P 400"
SR S _
= ne Z¥c + 2ot +00"N) for some ¢
i i : '

1

cn+d+0 O™ for some d.¢

E_.y._é_::_wp_!ls_g._ We will use our usual -cséxmuple to illustrété a comblete--
derivation of T{n). Recall that Z=10,11, P{0) =P (11=0.5, p=001.
The SSA. Markov chain, c;ompler’-cé Markbv c:.h.ain. ari_d .dual Markov
chain are choun in Figures [11.1, T11.2, III'..li..<.and I11.5.

Frrom the dual Markav chain we .

i1 z 3 4

A R
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c. [0 0 1.75 1

The invariant probabilities satisfy

1l

\f)_,:{/ b+ /2
"”1 + ng/2

¥ =

> «

#/a =-|}Ij‘/"| + ¢/2

L4

RIS *I"“z‘““'a*“l -.

-
J
I

The colution to these equations is

i 1z 34

v. | 1/6 1/3 1/3 1/6

The generating functions satisfy

¥, =z + z?\Ir?M + oz, 2

Voo o=z 4ozl /2

.

"}’_'-‘1:

]

N\
Y, o= 2V /w2 /2

£}

Y, + V. + ¥+ ¥, - 2/l-2)
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They have =olutions

9 e 12(2-20) (0= 1/ 10U e2) (Z42) ]

1
V. = (227 (2-2)1/12(1-2) (2+2))
¥, - [22712-2)1/1241-2) (242))
¥, = 1217120 -2) (2+2)]

They can be expressed in partial fractions as

¥, - U/I600-2)1 + 4/(3(142/2)) - (22-3243)/2
¥, = 1/13(1-2)) + 8/(3(1+2/2)] + 7 - 3

Y, = 1/71300-z1) - 167130+42/21) + 22 - 3z + 5§

= 1/61-211 + 4/13(142/2)) - (22—z+3l/2'

n - ' S
If ue let ¢iin)= 2 ¥, k), then the generating function satisfies
: - k=l _
\If’:le = \L'Tfr'r}"z” =-\I'i"|2}/‘]—21
a2l
For our exasplo,-a partial fraction representation of‘WT is:
U = z/[661-2)1 4 5/{3U-2}] 4 6/19(142/2)) + (2-2}/2

Yo z/130-207 4 1/{300-2)) + 8/19042/2)} - |

e
)
i
il
N

W; = z/[30-2)-1-- 271300 -2)) - 16/[9(142/2)1 -z + 2

-y
=
L3
|
|
..
—
1
T
—
|
u.
!

G713 -2)) 4+ 4718 +2/2)1 + 2/2
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Let T(z) = rgJT(n)-z'1 = c'l‘lf’l*‘ + Cz‘l'g_*‘ 03‘3’5 + Caq't
For our example _
T(z) = 32/14(1-204 - 5/16(1-2)] - 8/13{142/2)) - 52/4 4+ 7/2
This leads to the explicit form
_ _ 0 if n<3

Tn) = _ ' - : _ -
' 3n/4 - /6 - & (-1/2Y"/3 for n2 3 -

The coefficient of n can be more easily computed as

os T, - (1/B):0 + {1/31:0 + (1/3)+(7/4) + (1/6)+1 = 374,
1118 The Griginaf Markov Chain Revisited

1t voutd be niée if thc'dﬁminénf Gdéf%icient.c in
Tin)=crn+d+all) rould be f,:ﬁhz|_.1U’tr:d directiy frbn; '.’('he of" iginal
Markov morde |, =aving the CUmplaxitg of constructing the.dﬁql
- chain., He decscribed’ iﬁ the beginning of this':chapter hour to
“conphote e, the asymptotic average numbef of: text .characters
shifted per character "r-_+><:aminr».ul.. He will nou shau fhat c=1/s,

Con-ider, onne angain, the complete Markov chain,  Assume
that ﬂm cintes are nunbered 1,2,-++ and let X denote the set of.

probe ctates and Y othe aet of chift states, UHe will use LI to
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denptm the transition probabilfties and 7. to denote the
iﬁvarénnt diﬁfributiun. Note that the humber: ¢ in uhiéh ve are
interested can be defined as ¢- tthe expectéd numbet.of X stétes
visited betueen tuo ? statésl. Simitarly, s-{the cypected number
of Y states visited bntuﬁﬁn tuo X statest. Ue nlli_shou that

c=1/s by prnving the fnlfnuing theoren.

Thearen 11].2 = 0om /(3 T, ) nnd symmetrically,

S Uk u iy

s = (S )/{ Zm ).

T wer Y _ : R S
Proof The theorem holds in general for irreducible Markoy
chains, but ue_ui!lfuse a property of this Markov chain to
simplify the proof.

Note that in the complete chain there is no path nith
more than m cnnsecut?ve probe states or shift states. This is
dur to the fact that an SSA rever examines the same character
tuice and muct examine at least one of every m consecutive text
character e, ]hnreforn,,the set of X states or Y states forms an
acyclic graph. This nuﬂieﬂ that for ucX, r-z,w > problu)

iy uddi,u .
nhere Wi w) is the sot of paths from | to u camposed only of
probe stiates,  The probability of getting to a sﬁift state from u

ie 1 fberav.e of the acyclic nature of ¥), so ue could just as

el have defined Wi, u) to be the set of paths frrom i through u
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back to A chift ctate,  Alternatively, if ue fet Wi} be the set

of all paths fram i thrdugh probe states back te a shift state, -

then

'WU‘T_}2fwﬂ§ﬁlprDb{”}'{l if uis Uﬁ:”- U otherﬁisei'
Thus, ' !

l?&wu = igYwﬁgiHi)prmJ““tggll ifuis on Hf O otheruisel.
Uut | '

cfrlthe averarge number of probe states on the pafhs teaving il
= 3 prob{u} 3 11 if u is on u, O otheruisel,
o ucl i) ek _ o ‘
co S7 = Sw.c. The probability #./ 3 7 is the invariant
ueX UV ey ' : jer ) . .
probabitity of Leing in state i given that the chain is in a
chift state, uhich is ¢..  Thercfore,
A E&wui/(_z ) ".2.¢;¢} = c¢. The formula for o follows by
v re iy

ggmmgfrg.o

We bave now come full circle,  To compute the asymptotic
average time for an 55A the following procedure is used.
1. Compute the invariant probabilities ¢ from the

. tr:'—_]n;‘i t l n[]C.‘, (]f thF’ SSA-

r)

& .= _
Compute ‘ f‘ qb”.r_',”,
|

4. tet - 1/5. Then Tl = ensD(1Y,



P
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'EiﬂﬂﬂiﬁA-ﬁetur”iﬁg to our usual example (Figures 111.1 and

T2, oe hﬁvn

U soRE _ﬁU?I'HUI_ 00s -

¢, (979 273 173 /3
sy [V 122z

so ==4/3 and c=3/4 las ue discovered before).

Ue Hoﬁ Havé éimethod.foé comﬁuting the'asgmptofic.aveFage'
time used bg a SSA; Thfs also givﬁs us a way ﬁf compar ing tuo
SGA's - ue'compute {he respective ¢'s and the'algbrithmrufth the
nmnllnr'valﬁn in tﬁe factof aignrithm. {(1f there is é tie, we
musf go bué? to the.géneréfing fuﬁbtions to computé iHe'Constant
d. ﬂnMQVHr. thie should usually be a tefm uﬁich éan be ignored.}
He can now find an optimal SSA for a given patfernL Thié wilt be

treated 1o the nest aection,
TTT1.C Optimat S5A's
e roy address the problem of determining the fastest S5A

for g particalar pattern. He uill ignore the leuer order terms

and sinply optimize the parancter ¢ in Tinb-un4001). . There is an
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. obvious algorithm for finding an optimal SSA -- construct all
possible S5A s, analyze their nvérége time, and find the fastest

one.  Houovear, thrrw are UM

possihle“sétés ﬁith-i‘umkhonhs, an&

'in.eaéﬁ nf thﬁ;e e nnuid_éxamine i pnssﬁble pésitiuhs;- Thus,

the total numhcr of 5SS A is roughly [tj i >(m/¢)‘ —1, For m=10;
. :

ve get roughly IO"Q pnffab1p S5A° &, (Note that therp'are

nvorn:tfmqton nhrn one conf‘irlr\r¢ unreachdble states, but the

nuwber of possible 55A7s should still be a troﬁnmacal l

He prﬁtont a proredure for flndtng opttm al SGA%s, uhf;h
- is certaihly better than the brute force method. but:ié stfll

onig practical for chort patterns.  Houever, the technique has

some interesting points in its development.
[17.0 Randawm S5A's

Our procedure fof finding ohtimal §Sﬁ'é invofveé defining'
a more general class of atgorithns, deflgnlng a proccdure for
finding dﬁfima} aigbrithhs in this cléss and qhonlng that the
optinal algarithe found s, in fact, an SSA.  The more generaf
Tgpn.nf nlgorithm'ié a kind of prohabiiésti? algnrithm; A

[ﬁhdun:,rf SOAMSSAY R operates just like an SS5A, except that

thetead of cvamining a fiwed position in cach state, the RSSA
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nxaminéé'ﬁ pn&i{inn i, selectod randumlg; Specifically, for eéch
state u, the RSSA R defines o probability dfstribution Hu on the

S unknoun pesitions 6f u.  Then when R is in state u, the position
eyamiﬁod, i, is chosén Hith prnbébilfty Ru(if. It is clear that
an SGA is a special case. of an RSSA in uhiéh.ﬂu(il is aluays

cither 0 or 1.

Examplo Let E:{O.ii. p=001. In Figure 111.6 let H#**(3);0;5.'

R***(Z}zO.G. and all the other arrous have probébilitg 1.

(21172

[310/]

{311

Figure 111.6

the techniques of Markov analysis generalize ecasily to
FES5A"s.  Onty the transition probabilities change. . The results

af the HMackov analysis hotd alse for RSS5AT«:
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1. The averige number of characters examined satisfies
T =cn<d+n (1),
2. “The asymptotic number of characters ehifted per character

exanined s satiofics e=1/c.

The value s can be easily cowputed. Let ¢, be the invariant -

distribution far the RSSA, and fet su{i) be the average number of

chararters shifted uhen position @ is examined in state u. = then

Ui

T(n) =3n/440141) .

e= T 3 6R (i)s (i), For the RSSA of Figure 111.6, 5-4/3 and

To find an optimal RSSA, we must maximize s. We will set

up a Iineaf‘progrhm to do>fhis. A linear program- (LP} is
compnsnd of A nnt offvaﬁiablcs HhiChICﬂﬂ toke onlndn—negative
real values, 3 sdt.of [ fnear eqﬁationé on those'vafiaﬁles. called
coﬁﬁtrninta.,nnd a linear function of the variables, call the
nhjrctive. A iﬁ??jb}gwgbiﬁjjggAto an LP is an assignment of
Vﬁlupﬁ‘tn ﬁhb Vntinbf&a thi e 5a{i&fiﬂs'thn nonétrﬁints. Ta
ggjxg-é [incar program means to find a ?eaéfﬁ[c-solution which
mavimizes the nbjn&tive. The principal algnrithm'fnr solving
L1 s b= the sisplex method, Its time complexity is exponential
mothe =ize nf the LP in the vorst case, but for most practical
probleme, ito time is very saticfactory, See [Luc]'for the basic

definitions and resnlts about LP s and the simplex method,



Chapter 3 ' 5l

We can state the problem of finding an optimal RSSA as
Im.';bf.inn‘ze 5_—_% %(ﬁuﬂuhlsuhl

subjenct to z@uzl
' i o

D RU(iizl
i
e % ¢.9,,
¢ . R (i120.
Houever, this is not a Iinéar'program since ¢uﬂu{i)suti} is not a
linear term. Fortunately, we can change variables and get a

Pinear program., He substitute the variables "Qi for ¢URUH) and

get

| z P;]i’: 2‘ z ijijl_] ‘.
1 v i

tihere pvj'irifhﬁ probabi ity of-.goihg from v t.o u when p(.asitionlj
is ovamined!,  (Hote that su(fl an Py -;jre not var‘iables..but
are determined by the pattern and the |*Jl_"0babiiit_ic'3 of the
charactors,)  Any feasible solution to ‘(h.e L.P.Lli H.defihe an RSSA
i th |

b -0

ﬂ”(iﬁrn”.}/é” i f nbU:.-O. ‘

!

] £ é"J-_D then H”(%} could be anything, but for definiteness we
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|Jill'dnfinn R”(il-tnfbe i iSlthe"Fighfﬁost unknoun of u, and
0 othoruise. Conversely, any RSGA de*inés a fea5ib|e'501ution to
the LP uith pué;éuﬂu(i]. since.fhe equatioﬁsnhich_ﬁonsfrain'¢u-
are equivialent. teo the edﬁations 1hich ponétrainrpugi' Thus, we
“have the fof!duing prnceﬂure for-finding*anroptimal RSSA:

1. Construct the LP'as tlescr ibed ﬁbd&e.'

2. Snlve'the:L?.

'3._ Compute'ﬂu(i} from the solution.

In general, LP's do not necessarilg'HéVe‘ahg feaéfblél__.
solutions, 3nd eycn if they do;'the objéctiverfUﬁction még-not be
bounder, .Thé LP's described abové aluays have a feasible
';nlution lize the KMP-SSA for insténcé]; and thé'objecfiVé.;l
function is aluays bounted since_the“vériabies are bounded. )

Thus, . there i aluays an eptimal solution.

Exaople Lot 21011, p=0], P(0)-P(1)=0.5. We will find an

opfmal RSSA, Thé;génerai'RSSA is shoun bhelou,
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(11171 (11172

(71071 (21071

[(211/2¢

Figﬁre_lll.?

Let U=sk, v~;1 u=0%.  Then puld%pulu=pu2v:pu2u:pu2U*Pu2h=0 5
p"’}‘-’:l. 5‘.1“):8”(2]=0'5' Sv{]']=2' Su‘Z}:l-S.' Thﬂ LP is

maximize érpul/2+pua/2+2pvl+3p“2/2.
subject to b“1+pug+ﬂvi+ﬂ”2ﬁ}  ‘
| _ Pu1-+puz—pu.1/2+pv_1+p“2/2
PP/ 2 _ |
p e A 2 o2
P Py Py p”;_.:“.o. :

The simplex method yields the optimal 50!ut¥0n'pU1=0.,pué=O;4.

pvle.Z{_puzuO.h. s=1.2. This impi(es that the follouing SSA is

an optimat RSSA uith T{n)=bn/6+011),
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Figure 111.8

II1.E G5A’s as Optimal RGSA's
The example above'was a case where an SSA was an optimal =
RSS5A. This uas not a coincidence, as ue shou belou.
The zet of feasible salutions to an LP is a convex set,
. . '.. . ..A L . '. !
A feazible caolution uhich corresponds to an éxtreme point of this |
. . _ |
. . .
convex ot is called basic, |
.

llggwa"ilj.é_ The RSSA defined by a basic feﬁsiblc solution to the
LP is an SSA (that is.‘Ru(i) is aluays 0 or .

Proof. uu till ehou the converse -- if bui.ié a feasible sotution
to the LP such thét iﬁ the corresponding RSSA 0<R”fk)<l for some
tioared k, then thé fracible soluffnn to the LPAES ho{ basic,

Aszrme that the | P has a feasibile solution p,, with

01 fk) -] in tho corresponding RSSA, Lot A:ﬂu(kl. flnfine tuwo
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other ﬁSSA's at and R® such thét
H”(i) Pf Ul
Fitll{il - 0 if u=u, ik
1 if ou=u, =k
B Qf um
[T .
RO = Rummm P ou=u. izk
0 if u=mw, i:K

(Note that SR (i)=1-A, so 3 RY(i)=] as required.} These RSSA’s
1 N ° . L

=k

“determine the corresponding ¢i, ¢8, pii, pgi. Let

| a=1/t(1-m¢}'/¢ﬁ41). |

Note that in an RSSA, ¢ 30 {£f u is reachable from the
state f entered dhen the pattern fs.found.‘_ln bartiéutar._¢H>0.
because of the uay that R iG.ﬂGFiVGd from'pui. s0 1 is reachable
fram f. Moreaver, the shnrtésf patﬁ fromlthe_fﬁund state to u
o nnt rontain o, oo oo oiG rnachabio in both Al and RO, also.
Therefore, éipo anel ¢:>0 and e is'uéil defined and nﬁt equal to
1. Alco, if ¢¥>O in 1, then either

1. u iz reachable from f uithout passing through u, in which

Cann ¢i>0 and ¢2>0:'0r

2, o is reachable through wouhen position i=k is examined, in
shich rane éﬂhU; or
2. 1 is reachable through withen position k is exanined, in
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which Ao d)i]l:;g.
Thus. ¢”>O implies that at least one of ¢5 or ég 1s. non-zerao.
Convercely, if ¢ =0 then ¢lr¢8=0. |
. cicder " eonl 2 (1oala0 and & endlefl 140  Tr.
VNDH consicler pui‘“”ui+(1 alpui and ¢u—a¢u+(1 a)¢y. The
values p;i are a solution to the LP, sihtn'theg are a convex
comhination of tuo other solutions. We wifl shou ’that'p;i=pui by
- shouning that the derived R;(il=ﬂu(il. lFirSt..if ¢u=0,then
¢1-40-0, &0 ¢,=0 and R"(i)-R (i) as explained in the derivation
of R.  So, assume thnt.éuﬁﬂ. and so, from the noté_above,'ue must
have at least one 0f7¢h>0 or ¢8>0. S0 ¢;>0.':Theré”are.tﬁreé
cases.
Y. If usi then R:{i)"b:i/¢: A
=lapl +(1-a) 0 )/ (adl+ 1100 60)
Houever, BLGY-ROGD AR 1) i usu, o
RO = fad s D-ad 8" IR ()7 (adle (1-a) $P1=R (i),
U Ty ST 1 u e , :
Z. If u-u, ik, ue have 'H;'J(i}-*{np?”#(lmn!pgi)/(a¢3’+(l—a1¢2i.-
But pﬁi=o if t#k, so
RO 1= PR G /LA (edte (1-ad ®) | ‘
i Ir 1! ¥ 9] - .
hut €1~a}¢ﬂ/{a¢h+fl—a}¢21=1—A (as can be verified with
ctedions algotral, co UG -R ().,
° 1t 1

For wu.u, ik we hive

)

- 1 EWRL ] 0
iﬁl(k}~fnpnk+(l—n]p”Ll/(a¢”+(i—n)¢”]
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1 z 0)_y..
~aéu/(a¢“+(l-a1¢u)fAfH“(k].

We ronclude that p".=(np1.+{1-alp0.l=p . Thefefore.,p . is a
(VR (3 0] (W (VN ut

1

convex cotbination of i

and pgi. which implies that P is not
an extreme point of the convex set, i.e. it is not a basic

feasiblie solution. ¢

With this lemma ue can now use a fundamenta! theorem of

Fimear programming to get our final result.

Theoren 1711.3 For every pattern there exists an GGA nhich-is an
optimal HSSA', Morecover, when tﬁeHSimblex method is uaed_{o éolve
the [P, thé.rpau!ting RS5A s ar SSA.

Moot The fundamental theorem of LP s that if there exists an
optimal 9n?utibn. then there evists an nptimal'snjution which is
basic. Moreaver, the zalntions found bg the simplex méthod are
Aluays basir,  Since the basic sﬁlutinna correspontd to S5A"s, the

thoaro 1o proverd, ¢

Thus we have a procedure for finding optimal GSA's,  In
the warzt rane the simplex method takes time exponential in the
2" 5. However, it

rumber of variabies (hich in our cdse ison

usual by is ruch facter,  Also, the added structure of our
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particuiar [P way make it easier to solve using a specially

designed algorithm. We leave this as an open problem,
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IV. A New Algorithm

In this:5ectioﬁ Hé‘pfesentra neﬂ.afor}thm for'étring
searching,  We can prove that this élghrithm ha§ good average and
uorsf—case running time. Knuth [kHP] proposed the baéié.idea of
the aigoFfthﬁ. but did not uofk onjaIl the aétaiis._

'The éIgoﬁithm is simfiéﬁ fowthelBoger—ﬂoore'algbrithm in

that it scans the characters in the window from right to left.

Houever, insteard of stopping when a mismatch is found, the

algorithm continues scanning as long aé'tho'piccé if'hés found
ocolrs someuhere in thé pbtterﬁ. }lntuitivelg;‘one may feel that
thiz sirategy is nnf,aé good as fhe Bngér—ﬁoore s{fatégg ofl
shifting uhen a mismatch.is'founa.hbuf aé He ui1| shou;'it is
possible with this strategy tﬁ:"rnmémbnf" ali rnlevaht”théracters
i thout pvoeaaive nvéfhéad. 'Aﬁ a fesu!t..this nehlalgnrithm
never examines the SQMH.ﬁHﬁFHﬁférjtﬁiﬁé. which aids the
effidinncg of the'a!gori{hm'énd'its-ana!gsis. The algorithm is

described belou,

Algorithe B ITrnput: pattern p‘nf length m and text { of !éhgth
n.

1. Flace o windod of mocharacters over tl'“'tm and set § to 0.
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2.

At thic point the window is in the folfouing configuration:

: 0 knouns - m-f unknouns
tj-m'tj—mi] R j-m+0+3_.“"tj 75
' Hindot
.fnr'enmﬁ j- The algorithm exanines tj"tj~1' e tj—m+0+1'

stopping if it is found that t;"'tj is & substring of p, but

ti—l"°tj s not a substring of p, for some ivj-m+f4l, 1f

such an i exists, go to 3a; otheruwise, go to 3h.

At this paint it is knoun that t,y"++t, is not a substring

'rof p.  This implies that p does not occur in t at positions

]
ab,

'j?m+1. jemd, e, j—1.  Therefore, the uindow can be shifted

at least to position i, In fact, the windouw can be shifted

“to position i defined as the least i'2i, such that

t.—---tjvpl---p; . Go to 4.

; j-i 41
At thic point afl~the characters in the uindou ére knbun,
lrut tﬂnu'might'hpt-match the pattofn. ‘This cén be chegked
edsily bg fe;cunning the window. In ang'caﬁe, the élgorfthm
5hifts the windou to the next possible ocburfence:of the

pattern, a position i', where i’ is the least i’>j-m+l such

Go ton 4,

thnt ti---'tj’hl"'pj‘r*l.
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4. The vindaw ic actually shifted by setting 0=j-i"+1 and

j=i 4m-1. If jon the algorithm.halté: otheruise._QO'back to

-
—

The correcfness of Algorithm B ié'ﬁue fo
1. if the window is eQQr pfaced gver an dccurrencé of p, theﬁ
B finrds 1t:
2. B only shifts the window past;ﬁosifions'uﬁefe b cannot

ococur.,

Example We iliustrate the operation of Algorithm B for p=abca :.—

and t=asbeoasbedabe,  Initially ne have:

0=0 j=4 t=aabcaabedabe
B find- that tq---tdumbc is inp, but'tl---tﬁ=aabc is not. B

aehifta tao:

=3 j=H t=asbcaabodabe
B finds that t.=a is in p and determines that toee s to=p. B

ehift= to:
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0=1  j-8 t-anbeaabedabe

B finds that {R?--t3=abt is in p, but ts-f-téxp.,'ﬂ shifts to:

2=3  j=9 t=asbraabordabe

B finds that tg=d is not inp. B shifts to:

0=0 jélﬁ'.t=aﬁbéanbcdabc_

and halts,
CIV.A Implementation

The keg‘tb impleménfjng Algoriiﬁm B efffﬁi;nt!g is the
use of tuo other aigdrithms. Weiner's algorithm'[Néf,NcC] and the
Kﬁuth-ﬂorris—Pratt.algofithm [KMPY. Neiner's-élgofithm-caa be
used to preprorogs therpattern from right ta-left to:prdduce a
compact pocition tree [AHU), . From this tree, B can aﬁsuef the
guestion "t= ti---tj-a substring of p?";ih fime which i's cons?ant
for pach character:examinéd. KIMP can be uéed io find "the least

h

i euch that ti----tj=ﬁi--?p. . (This is in fact uhat is

i-i 41
~done in the inner Joop of KNMPL) The time used by KMP s

proportinnal to the number of characters processed.

Wee now proaont the algorithe in more detail.
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Algorithm B:  Trput: pcE and t(E";
1. initialize the next array of KMP on the st}ing ps
2. initinlize-{he positioh tree'on'ﬁb from right té teft
3. j:-m ! the ond of the ufndou I- 
4. $:=0 1 the number of knowun characteﬁs 
at the Irft of the Hindoﬁ ]
5. uhiierjsn do
6. r:=0 1 the number of knoun ghéractérs'__

at the righ{ of the windou |

- 7. resnt trnc-pointﬁr to'the-top.of'thc positfon tree
&. found: =true |
3. hile §+ran do
10. _ X::tjmr .1 get the next tharacter,l':3.r"
1]. aﬁ;r:ry 1 sgve.if for later uée bg.KﬂP.I  .
12. e wep o then fnuﬁd'fz'fﬁ!se
13. o if w does not come noaxt in tﬁo position treé

then go to 15

14. r:=r+l { end of loop |

15, if found then print " found atlj-m+1"

16. Pf faram thmn.Q::O [ the left part can be ignored |
17. . for y:”am-wuﬁ;%pr+2"';'dm=d0 Q:=KMP (0, %)

jrej+m=0 1 end of Toop |

—r
0D
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vher e KMP O, ») s
¢ =041
while 050 A pd;wx do §':=next(@’)

Cif 9 = then Q'::ﬁext(m+1)—1

return 9’

this is not an optimal form for fhe élgorithmr ‘We leave -

the various optimizations to the programmer.

"IV.B Tiwe Analysis of Algorithm B

Theoren IV.1 Algorithm B can be implemented on a random access
machine with uniform cost criterion to run in time @ (m+k), uwhere

k is the number of times xr=tjﬂ

"

is executed,
“Pronf Stope 1 and 2 can be done in tine @f{ml as outlined in
[KMP, Uei, McC]. Stéps-Brandlﬁ take constant time.. If j<n then |

step 10 must be executed at least once. Therefore, the number of

times that cteps 5-8, 15-16, and 18 are executed is 0(k) and each

stap takas constant time. Cleariy, the inner loop (steps 9-14)

is evecuted ko times. Since the position tree step can be done in

constant time, the total time for the loop is @{k). Finally,

the analysic in [KMP)] shous that the total time for the loop of
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step 17 is B(k). Thus, the time for the entire algorithm is

O lm+k) .o

With this thoorem we have reduced the time anélgsis of
Algorithm B to determining the nunber of times that the text is

examincd,  We study the worst-case and average-case times belou.

Theorem 1V, 2 Algorithm B never examines a text chafaﬁter more
than once. _. | | |

Proof UWe simhlg note that befﬁrelsfop 18.bf B, é!f_féxt.
characters examined have been ih ﬁﬁsitions iﬁj (the old j)}, and
after otep 18, no.position i<j-m+d (thefncu_jl uill bé.examined

in the’future; However, lold jl={new jl-m+l, so the characters

previnualy exanined cannot be examined again.¢

We can conclude from these tu6 throrems that the worst-case time
i Otm+en). UWhen cowbined uith the lower bound of Rivest [Rivl ue

see that the worst-cace time must be Olmen},
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IV.C Aveorage Time -

Phe analgqi of average time is more complex Let T{n)
 be thp average n:nber ot characters anmlned bg Aigorlthm B on

toxt strings of~length n.  He first analyze ihé simplest case.

' lhggggw;Lgig For Z=10.11 and P{(0)=P{11=0,5, g
T(n}:n-!g(m)/m+ﬂ(nfmi. ~(ig(m}=log2(mf¥ |
Egggi In the smquej let k=[2 lgim) ] and aséuﬁeP5218; 50 m22k.
CLet T be ‘the average numbef'df chéaracters get_to-bé
examined. given that Algorithm B has just shifted the window,.
there are § knoun chafacters at the‘léft of theiuindou. and n is
the total numirer of'éﬁaractﬂrf remaining. lnrfudlng tho entire
vindow., 1f 9<m-k then we say that B is in qtatp 1, otherulse ué
sy that fie in ctate 2. Let T (n)-nax. AT () and

f<m-k
Tt emas T8 () 1o Hote that Tinl= 10 () <7, (n)

IR
Y e M

Clain 1'% mm‘ g

Procf B operatQS'exactlg the'samé on stringé of tength k and
-: k+l until it trirs to examine teg- In the fbrmer case, B

bBalts, =o ife time must be lass on these strings,é

Cornitarice T (el)aT (kb T ()T, () L and T0ke1)2T (k).

flle will vze these farts implicitly in the rest of the
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T
“d

preanf.le
To prove the theorem ve dill prove Sg Iﬂductioh that
1 (nl<n(lg{u}+d)/m and T fn)(n{lg(m)+d1/m+¢k for snmc constant a
(1ndepcndcnt of m and . o
| _'If ngm.then Tlln)sz{n!=0. so ue have the basis‘for'our
{hduﬁtion. Acsume, theﬁ. that nzm. |
Concider the nperétion bf B when it ié in.stafe l.f:]t .
‘Pydmlﬁﬁr pn*rtlnnr'ln the windou from rlght to left untll the
cubstring found does not occur in p, or untli all poqltlons in
the uindon.ﬁrn knotn, Then the Uindou.is shifted. Let r be the
number of characferé examinedﬂ exétﬁding the.iast'character-if
the fir&tlsinpping condition halds. Lét P, bg thé probébflitg
that r is this number. |
Claim p?F(m-r+])/2r..
Proof ‘The string of length r must occur somenhere in the
|1nttﬁrn; There are 27 stfing$ of iength r, buf.at most-m-r+1
oc.cHr in p.¢ | |
When the next shift oncurs.:thore are fdur.cases; a-d,
uhich ocour uith prqhabiiitglpé;pd;- The time.Ti{n) uilt be equal
to T.-1+T11+T.—+Tg|' Wes .'m.nll.:;ze thase cr-lser;; |
a. a-i[jglm}]. H.must be.in state 1 aftfer the'éhift. and the

chift must be by at least w-rze-T gl ], Thus,
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Taspa—(rlg(m;1+1+T1(n-m+rlg(m111)

b, ;flg{mT1<r<r2'lg(m}1—P B must enter statn I after the shlft .

and shift the dindon bg at !east m-r. Thus.
k - |
T2 P -(r+1+T1(n-m+r}3.
! r={ lgm) ]+ T S :
c. r>k and B enters state 1. The shift is by at least k.
TtSpr-(m+Tl(n-k));

d. B oenters state 2. The shift is by at least 1. Thus,

Tlfpd-(m+T?{n~ll). Note that for either;!c)'br (d), r>k..

Thus,

50
(p +p, ) mekal) /2 An=[2 Ig(m) To1) /202 19t gy,
Summing the cases, we flnd that - :
.T (n}<p (fig(m)]*]+T (n- m+[fg(ml]})+ :
) ﬁ p_(r+l+7. tn=-m+r) )+
Fallgtm e 1 |
_ p‘[m+T fn-kl?+p {m+T (n-131.
From thp anductfon huhoth99fq He get
T, {n)«p A gt Tl 4 0ne n+||g(m111(tg(m)+n}/m1)+' o
) 2P, (r+l+(n—m+r!(lg(m]+d}/m)+ | |
pr(m+{n kl{lg(nl+d}/m}+p (m+(n—ll{!g(m!+d)/m+¢k)
Ua?nq 2 ' =P, “and’ PP +p +p =1 and :ome algebra. ve gef

- flq{m)]+l P
T {n]<n(Ig{m3+d¥/m4p (“—d+‘fg(ml+]){1g(ml+d}/ml+

P, (]—iqu! =+ 1+ g m)+e) /m) s 5 p_r+
r

pr!m4k{Ig(m!+di/mi+pdlm—(lg(m)+d}/m+2k].

- For re[igtm 1, prf{m—r+1}/2r<m/2r51/25'f””m’1. s0 With a change
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;.

of index, > pr
rel oty 741 7 SRR

k;r[g(m)1 ] e : L ..

:’:rt,\;‘=1 pr'-;rig:_(m}-l(r +r|g(m] —l) )

ko[ Tgimi) ’
r/z2"

:-ph:i' Ig(ml‘l+r‘:1
<p [l 142,

Therefore,

T] {r}en(1gtm) +d) /hx-;-pa{Z—cH (lgmi 1) ( |g(t.1i};l-d) /m)+
-p;tl;lg(m)-d+r|g1m11+(|glm1+11lag(m};d1/m1+
'2+2(fglm)+d)/m+(pc+pHIM+p32k' : |

'Sh(lg(m1+d1/m+(1-pcupd)tz;d+f1g{m)+11{1g(ﬁ);d1/m1+' S
2+2(|g(m1+d1/m+(pcfp5}m+pd2k .
: Sﬁiig(M]+d]/m+4—d¥{Ig(m);Bl(iQ{m]+d]/m+
; . .{p64pd!(m+d~2—{ig(m¥+1)tlg(mj+dl/mi+pd2k.

[f te use pd5p6+pd$1/m tie get - |

Tl(n)sn(ygfm1+di/m+5-u+¢tlg(m143)(1g{mr+d1+2{271gtm11+d;21/m;

Since }g!m)/ﬁ'decrna$n5 for m2e:2.718- -+ anﬂ {g°{n) /m decreases

for m?efé?.SS:---. the 1nst tﬁEMIHbOVﬂ.decfeaseé fnr mze?. énd

goes to 0 as m goes to e, 'Thué..for'mééz and sﬁitablg large d,

Tl{n}SH(ig(m}+d)/m; For m>18, d=14is suitably large..

Now consider the case where B is in state 2. He uwish to
sﬁnu that T:(n)fn(ig{m)+dl/m+2R {k=[2 TgtmP. He diagram the

situntion below
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Hindou . - Y

0am-k knouns X of length k-],

Let X be the region of length Zk-1 immediateig folloning the

knotine as diagrammed above, and let Y be the remaindor of the

text., {If n<P+7%k then'TﬂfnlSZkSn(Ig{ml+d3/m¥2k.3 B uill examine

positions in ¥ and eventually shift into Y. Let p be the

-' -hr0babiIity of heing in state 2 when the first_prbbe_is‘made into
Y. Then T:(n)$2k¥(]~plTj{n-k}+pT2In-k];: 1t B'is*in-é%éte 2.
then, since m2Zk, thore cxists'é subétringruf lengfh-k-in X uhich

_ocours in.the last 2k po5ition5 of p, The probability. of this.-
'.dons not excand k9/n”, so pekd/nl, Therefbre.. |

7Tﬁ(n]SZK+{l;p}(n~k)(lg(m)+d]/m+p((n~k)l}g(m)+dl/m+2k)

snliglm)+d} /melk-k g (m) +d) /mep2k -
ShlIg(wl+d)/m+2k+2k3/m2~k(fg{m);d}/m
Sn(!gfm}+dl/m+2k+k(2k:—m(ig(m}+d)l/m2-'

The final term above is negative for m218, d=14, so.

:_IﬂfnlSn(Ig[m}+]4)/m+2k._

He have choun that Tn)<nligim)+14)/m,; for m>18. MWe also

Cknou that Tinl<n for all m. Then, since for m<lS,

(Tt +141 /], ue have TnbanCigm)+14}/n for all m, ¢
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Hee have proved an upper bound on the averaJo runnzng time
for Algﬂrithﬁrﬁ. e can use Yao s result [Yao] to get a louer
bound uhich is uftﬂ:n a ponstant factor ofltho-uppcr bound. In
fact, if one analyzes the constants in Yao's boﬁnd;_the bound
Horke out tn'n-lg(m}/ﬂm; So our upper bound is onlgifour‘times
the Touer bound, and the lower bound is for the best case!
However, Yao's constant of 174 holds for m}1030. which means thaf
the bounds are not nuite so close.

He can also get an-explicit exanple for uhich Algorithm B
;tiknf nearly the nppnr bound,

Theorem IV.@ Let 240, il For all m there exfsto a pattern chm:
for nhlch B examines nebg(m}/n-0{(n/m) (hararters inall text
sirings.

‘Egggi'.Fnr.wverg j there nxistsia.striﬁg p'cEk.'uheré k=2+j-1,
siich that all nlnmnntf of 2 Uﬁcur as éhbstriﬁgs of . Suchla
etring is cal!éd a DeBruijn-sequence. See [Hall for a proof of-
thé rxistence of such sequences, For a given m24, let
=L tglwm) I-1, and Eet-p;Om'ﬁf;_uhere.k'and p’oare ﬁefined as
Abnve,  Hote that kr2j+j—lf21“”m'}4+]|g(m1j—2<m;

l.et £in) be the best-case tive for B on p. B scéans

Backuards from 1 as tong as it finds a substring of p. By

"
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“eonstruction, eVerg“é{ring of Iength ng(mlj—l'ocCurs inp. soB
‘must examine ‘at least thia mang'charactérs.. When it shifts the
window it canﬁot shift by more thaﬁ m.éhafaCférs;'so
'f(nl‘L!g(m)J l+f€n m. Thus, .

f{n) 2 n/m il 1g(m)j 1]>n-ig{m) U(n/ml o

In cummary We coriclude the following.

-

Thearen 1V,5 For 2-10.11, P{0)=P(1)=0.5, and for all patterns
peZ, the average running time for'Aigori{hm'B oh'text'strings of
~ length n is U(n4lg{ml/m); and for most pattérns'B has average

rum_]ing time Q(n-lg{m)/m). o

These results generalize to larger alphabets and

Cdifferent probability distributions.

Thearem 1V,6 Lot g=1/{e) where ¢ has the hlghrdt probabllltg of
any element of Z. _Thgn_for any pfzm the average number of

| Ehnrnnfﬁrs evanined By § on text ${r1ngs of iength n is no more
than n-ingqu)/m+ﬂ{n/ml; anr for mnsj pﬂtterhs_it is

on- STy td /md,

Pronf A generalization of the proofs of Theorems 1V.1-G,6
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'_IV.U Notes on Algorithi B

 It,9th]d be noted that Algorithn B, when épétialized ﬁor-
a pattern p, i5‘ﬁot an"SSA, since it does ﬁot.shift.ghen a
miémnfch onours, Aé a result it sometines Hill.examinera
character that it dons not:have‘tn-e#émine. Cofreétihg thisi
deficiency would producé‘an afgnrithm that gxamincé'femgr
characiérg. .Houevor,.it vould still examine n- loglvi{m}/m+ﬂfnlm)
characters on.the average; the 1mprovrmcnt vould only be in low
orcder tarme.  Also, even though Atgorithm B does not_yleld SSA'Q;f
ite average huhber of ﬁharacte;s éxam}ned'still is of the form |
T(n)rcn%d+0{1};for soime ¢ and d,. since it tdoes gié?d fiﬁite-staté
machines for uhich aur Markov ahatgsas holds.

Nue to-time timitations in the preparation-of this.
thesis, there és,a cignificant gap in the prn&entatioﬁ of
'Alanlthn M e have not actually programmed the a!gnrlthm and
empiricallg-compared'ltsvspeed=u1th that of knoun algorithms._ In
this sectinn e proesent somn-thoUghés on issues that-might.arise
in the actual programming, |

Algoriths 1) s vﬁrg sinple except for the uses of the
Knuth-Morric-Pratt algorithn and Weirer's algorithm, KMP is wel |

decrribed in (K] aod programming it is straight foruard and
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efficient, UWeiner's aigofiihm [ueﬁl Uﬁ tﬁé'ﬁfher hahd.'{s not so
trnhspnrnnt. Hﬁtfnight’s%préécn{étion'[HCE]'is clearef;‘but it
is still a chai}enge:to Qade'through.."it abbéafs. though, that
except for one problem, a progfam for HgCreigHt;s.a!gorithm.Qill
be complex, but efficieﬁt; The one'prob‘émférea is due to the
fact that the pnaitiﬁn tree buiit by the algorithm can have nodes
;Jith up to 1 Z] branches.’ Thus, if one is not careful in |
prngramming._the'timn;to determnine uhe{hef é'étrfﬁg occurs in the
pattern caﬁ be'lafge.

The koy fo efficinnt,implementat?on is the undcrlgihg.
strutfﬁrerof tﬁe‘pdsition'tree; %Hat is, jf must be possible to
. ‘determine efficiently, givén a ndde x of.thé tree and a_sgmbol
o2, udhetker thore iz a branch labeled ¢ from rnode x. ‘The
‘simplest implenaatation of the position {roe“aé'a biﬁarg tree 
¥l Hnuid'giéld'a prog am uitﬁ worst-caze time 0([Z]+n+m)} and
aﬁerage time GUIZ] n Tog(a) /nsnm) (for  the unfst patterh). This -
 can be improved using binary scarch trees [KnZ]to.uorst—case
QCog 21« (nem) indd average U[!dg(lz!i-n'!bg(m)/m;1og(|2|)fm).A 
!T;lmr‘.r,: incfficiont sechome where pach node is represented by an
array nf osize |Z) yields time of worst-case B(n+|E|-m]_and
év#rngn G(n;iogiml/m+|2|-m). Hashing is:probéblg the best scheme

to uce in implenenting position trees {as suggested in [MeCl).
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using an analegous procedure AC iﬁsféad of KMP. The pnlg

additsonél #hahge is that the é|gofithm'mus{ keep fréck of the

state of the Aho—Cuﬁasipk aﬁtométon as uell as ¢, befuegnéhiffsf
| 1f thn patfern5 are noi'pf Qquai Iéhgfh,'tﬁé situatfﬁnris

more cowplex. The follouwing is a sketch of the a!gorifhm.

1. Set 9=0. k1. and s=Ithe initial state of the Aho-Corasick

Automaton {AC)},

B!

Let k'=k+f(c)-1, where fls) uill be def ined laterQ; Examine
tk'.tk'_l;'°-.tk+ﬁ;.stopping.jf ti-"tk%_Qccufs in-Sdme-_ V
pattern, but thq---tk:.does not occur in any péttern. If
Csuch an i exicts, go to 3o otheruice, go to 3b. = .
'; al .- ’ i i ;--v .,.;—- x-ooo X‘ ’
3a. Determine the least i'>i such that t, tg =Pyt Py for
sone pattern p*. Po this using AC, setting s to .the

resulting state. Go to 4.

X
[

2 "y i ..1» i | e, P> .‘r“' e e ,:.x-ol' ’
3, [L,tLIM|1ﬁ. thn ieact 12k such that toreent, P P i e

for some p”, ‘Do this using AC, Eetfing‘s to the resulting
state. As a by-product, any occurrences of ihe-péf{erns” |

completely within t »++t . can be found. Go to 4.

. Dt U=k'-i"+], and if k+flsl-1<n, then go to 2.
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Fnr'tﬁis algﬁrithm'to tork, e mdétjdéfihe f{s)
correctiy. - Hé could define fle)=8+1, in which case every
charadter uouldtbe éiamined.-aé the algorithm ifould be correct.
(Note that § is aniguety ﬂétefmined'bg s. so this definition
makes sense.). Alfefnativeig. it mis the length 6fithe shortest -
pattern, then we could define fls):maxlm.ﬂ;]1. 'Thi5 uould_ |
guarantee that mo 0ccurrehces‘uouid'bé skippéd."

.The pest value for flsl is fuﬁﬁd bgsﬁﬁngidering-the leasf

number of characters, d, that can be appended to tk?--t to

| kio1
get an ocrurrence of the pattern. Then f(s} can be defined as
Q4. In terns of‘fﬁﬁ-Aho?beaéick éﬁfdmat6n;.d_Caﬁ ﬁe_expressed
éimbtg as the Iengih nf the shortest. path from $ td_an.aCCepfing'
 5tate. This can be computed from thc'automatﬁn by startiﬁg uith
the accepting 5taté5. and do{ng a breédtthirSt search of all the
othnr.atntﬁa., Thnfdutaifﬁ of this are left td tﬁe rcédcr.

_ Thn time fﬁf"this algorithm can be expressed in terms of
the.length of the shortest pattern ﬁ,-fhe sumlof'the_lengths of
all the pat{erns'ﬂ,:and the tength of the fexf'n._'ésrin the
single pattern case, no toxt character is examined more than
once, the artual Timé pér character examinéd is constant, and the
preprocessing takes time 801, Therefore, the Horst-case actual

time ie Q=M. Analysis similar to the single pattern case
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chows that the average number 0f character5 examined is no more
than n-'mgq(m/mmwma i n22-log, (), 'uhé.re q':l(Ptfr} and o is
the most probable element dfﬁz. The -average {ihe is then
U(n'logq(ﬂl/mfﬂ). The only-knduﬁ1ouer”bound on'{he“avefage"
number of characters-examined.is'the'Yao”Eouer boﬁﬁd [Yaol for
qne.pattern;iQ{n-log}Sl{m)/m);" HouéVer.'it'appearsftha{ffor'a}#"
pattérns-of équal length, Yao's tecHﬁiquéigiefds‘a tower hoﬁnd of
ﬂ(n-Ingizr{ﬂllml;'but-thp dutaiIs'of‘{hIS'Havé-nbt beeﬁ Horked
out.

.'.Asfin_the.siﬁgle pa{terh'casé;‘uc'Have not-actuallg &
,prbgramﬁed this-algorithm;‘rNéQerthéIGSS.-ué-bél?evé fhat'if cén
be implchented cofficiently and i;'ah”improvcmcnt‘OVer_the :
_.Ahé-Corasick algorithm. It appears to be.eépécialig useful for
the hihliogrnphic aearch application dcscribeﬂ in [A&C], uhere
the pattorne shnuid e regsonably fong. Thé_algdfi{hm also has_
the nice prnpnrtg thiat the more explicit one is in 5pecifging the
queries (i.e. the longer the pafterns).;the faster thg algorithm

vpill run,
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V. The Case of the All-Zero Pattern

In th?é'éectionne sfudy'the sinplest special case of
string-searching - fihding'p:Om in t(f0:1I“ | Uhtle thp
simpIICILg of th:: problem ‘might make it unlnterestlng, tHe
fstrong.resuits Aand the techniques we developfjuatufg its study.

We uill . show that Algorithm B when specialized to p- Om
npttmél even uhen ronq1dpr|ng the class of decision tree
algorlthms. A consedquence of this is that thlé is a problem

uhere |ncreaqung the memory qIZP or program compfexltg cannot
produce-a faster algorithm, Conveﬁseig; Festricting wémory or
program'gizé.does leaﬁ.th sl ouer algohithms.' We uill-étudg this

time-cpace trade-off,

V.A Ceortificatas

The case of p=0" imposes a great deal of structure on the

certificates. This structure is summarized in:

Theoras V] Let uc 10,1, %" be a certificate for p=0". then the

string Tul can be partitioned into segunnts lul—u u?e -+ u* such

. . , . . ) . *
that ecach ceguent u' iz cither a positive segment —- u'cO™0*, or
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A negative cegnent -- ul starts and ends uifh 1 and cvery
substring of:}ength m Contains ht,ieast one 1.

HFroof ﬁﬁflhu& casily from the définitinn of bbrtifiéate.¢
Corollary V.1la Any 5ubsfring of u of length at least m not
containing a 1 must be all 0's.¢

Corollary V,1b If tjrl and the iotai ﬁumhér of 0's immediateig

preceding and follouing tj_is at least m-1, then szl;ih all

certificatéeru for t.¢
V.B Algorithm B for 0"

When epecialized to the case of p=0", A!gorifhme has a
very simpie form, It uas used in [Riv]l to show an algorithm uith

good uorst-case behavior. 1t can be stated as:

Algorithm B0:  Input: m oand teZ"
0:-0; 1 the ﬁumber of 0's fourd
- on the left of the window |
r:=0; 1 the number of 0's found on the right }
jo=mse I the ond of the r;urrt:nt o
text-matching position |

phile jon dn
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uhile J4ram A {j~r;0 do r:=r+l]
if O4r=m thﬁn.l'foundlat j-m+d
jr=j+l; “ |
Der=m-1;
r.=0;
.ﬂfﬁﬂ I not found at j-m+l through j-r l

ji=j-ramg

The alﬁorithm starts at pééition m of the texf and éﬁéns g
backumeds until mithnr Al is found or untit w O'; are fouﬁd In
:the formcr case the algorithm can qklp ahead to m pl?res past the
1 u:thnut mise g nng NrCUrrences of the pattern. ]n the %atter
S Cane thu'pa tern hq; been found and the algorithm moves Qhead by
one 5pnfnhiug fnr-the riext nﬁcurrénce. In either case it
restarts the scon, remembering the relevant 0's already found.

This aigorithm is optimal over the class of decision tree -
algorithme no matter vhat the probébilitias.aré of 0 and 1. The

reennce nf o the algorithn’ s "goodaess” is summarized in the

follauing:
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This would gield Lorat

and average time
U(n-log(ml/m+m}. It mau be possible to improve the unrst ~-case
time by rhnﬂ”lng 2 has hlng.srheho parttcuiar!g sui ted to this
application. (The FPCtPiCted domain of the hash function makes
Cthis likely.) |

Ne believe that Algorithm B‘can be implemented
éfficient]g, yirtding a practicaj afgorithm Hhethcr lt.is

better than the Hogpr Moore aigorrthm remains. to be seen.
IV £ Mult iple Patterns

Algorifhm B can be genérélizad;tb handle the phobiemqu"
finding any of a set of patterns. This problem uas'studied by
Aho and Corazick [ASC). who gener ailzed the idea of VHP to
ptndwru A fa=t algnri*hm For this problem the input is 38 list
of patterns pl.pz.-vf;pi anrd text t, aﬁd the a[gofithm must find
all occurrences of ail the patterns in t,  The gencralization of
Algofithm [ to handlie multiple patterns is simple if
lplfs---:!pj|=m. As preprocessing, the algorithm builds a
position Aren for SplSpSec gpl from right to left and bui [ds the
Aho-Carasink FﬂJtﬂmgtFHI [AECT for the patterns.  The ;zfgofitrmr

then chifie a uindoy nf length moover the test, just as before,
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Theorem V.2 For all tci0,117, every certificate for t must have
at-leéét 35 han 1's as the-ceftificafe-found by BO.
BEQEi'.Lét t bo ozome toxt strfng uithlBOQCGrtiffca£e.u*aﬁd
another certificate 8 SQch'that f has feuer 1's then}&._ He.HfE( .
derive a ﬁonfradiﬁtimn. |

1f § has no 1's then either ri<m or t=0". fin‘éither case
o« has ho 1" s either, o ﬁ.cannot have feuer 1's. Alsoﬁ'if'd has‘
no1's then B cannot have feuer. ‘So assume that a has 1's at

<owe e e

jocitions |
' 1512 K

and # has 1's at ﬁbsitions'jicjzé..;<ju.
For notational convenience, let ig=ig=0 and_ik+1=jp+1=n+1f

Lemna - 1f i 2j  then TS NIRRT

Proof 1f i 2j then 1 >i >j and we are done. So assume
— u” v+l utl” T ve] _

- that jv;1>iu2jv' I f jv+]-jV$m'then by Corollary Vfla,'ﬁi=0=ti

for j<i<j, ;. and ta iual'canho{ be'léss‘that.j§+l’ Tt

Vo m then concider the operation of 00 after finding

t. -1, Itostarts it i and scans backuards looking for a 1.

L X .
Since Pomg om0t u|I! find a l aﬁ some position b2, .10
, '. N 1 4 . . ‘ .. .( M E . = >.
aned never look to the left of b again. _Thua. RS NPT

Returning to the thenrem, we can partition the set

-
¥

10,1,--+.nt inta §4] =siboets {jé.jiiU[jl.jq}Uf--U[jp.jg+1). The

elenornts nf i 11 fall into these subsets, Since ue are

O'_".‘ k

assuming that 9k, thgrg'must-be‘some-pair'iu.iu+l in the same
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set fjv.jv4]}, by the pigeonfhnle principie. This implies that

jvslu-:iw'd-’.jv+I uhich eontradicts the lemma,  Therefore, f cannot
have feuer 1's. The O0-certificate must have the least number of

1's of all certificates,¢

In the next sectien we uill shou that the total number 6fﬁ
- 0's found in all text strings is propoftional to the total number
~of 1"s. Thus, since BO minimizes the number of 1's, it also

‘minimizes the nmimber of 0's and the total. .
- V.C The Decisiaon Tree Lemwna

lie have définéd the average fime for a decision tree
'algnrithm A to bn.fﬁﬁ %iarnb(f);{numbcf of characths of ¢
e?nmimnd'hg AI.. e cAn vied this another Qég{. a{ eveory nnde.x
'hf.thn dnniaiﬁn trne um-"chafgm" a cost of 1 to 6§erg t-uhich
takes A to that node sometime in its computation. Then the
average tine islthm avcraga-totaj cost charged to the t<Z". Note -
that.exnctig hal f the t Hhich take A to » take A to the l-~child

pA
3

of ». Mareover, P68 7000=1"{1) then each child of % accounts for
the came cost in.TA. Therefore, another way to compute the

averayge cont i to chiarge 2 to the text strings in wbhich al is
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found at ~.  Thus, bhen P(O}spll);'TA:E:prbb(t]-Z-inumber of 1's
o . t -
in t found by Al.  HWe generalize and prove this as follious,
Leama Vo1 1,2 3 prob (1) - Inusber of 17s in t found by AI/P(1).
Tt e | |
Froof For every nade » in the tree A define
Slx}=1tc2" |t takes A to xt

Sl{x)zstrz” t takes A to x and a 1 i5 found in_t-at »)

Sglxd=1tcZI|t takes A to x and a 0 is found in t at x}
and define S (t)=Ix{tcS{x}], uith 8 and S defined analogous!y.
Then

Ty=2 prob(t) |57 (1) ]

prob(t) 3
' xS {t)

S prob(t)

te5{x)

(>  prob{t)+ 3 prob(t’)}
tr%-j(x) t'(':-in(v.)

x v XV v~V

Mote that fmr nvnrg‘trSl{x!_thnra exists a unique-t};so(x) which
diffnrc'frnm t-in nxantlg-onm hnsitinn ~-- that cxam{ned at x.
(We assume, here, that the decision tree never examines the same
pnsitinﬁ tuice.)  That is, for some j, tj=1. t}=0,:aﬁd tizt; i f
iwj...There?bre- - |
prnb(t'léprnb(t}lflprnbft”

b

m(prmh(t;}/prob[ti!)-}prob{ti} ! probiti))

(ES]

(P01 /P11 } - prob (1)
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Thus

3 (prob(t]+{P{0]/P(]}) prnb(tll

T,=3
x b

A

]
'={1*P(0)/P(]]) > prob(t}
¥ t(q {»)

={1/F(1)} Eprob(d 2 I
x(ql(t)

=S prob{t) - fmumber of 1's found in t by A /P(LY. 6"

This lemma holds when |E]>2 and, of course, uhen any ocZ

is substitued for 1 in its statement.
V.0 Dptimatity of BG

We rnow prove our principal theorem from the BG theorem

arnd ithe decision trec lenma,

- Theoran V.3 [0 is averayge-tine nptimal'ovcrlthe bléss of
-idecieioh tree 31gbrithm5 for any probabilities, PO} and P(1),
where 0P(0)<1. |
 §£9gf We have shoun that for any algorithm'A:.
T, % prnh{tl-lnpmbnr af 1's found in t bg_Al/Ptll; We have also
shnuﬁ that for any A aned atl tex” .
Tthe nueber of 175 found in t by Bbi

< lthe number of 1's found in t by AV
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Thgrefmre, ]HOSTA‘O

This theorem has sone interesfing cqnsequéntes iﬁ térm5:
of space-time-programn-size trade-offs. UWhen ue_think bf'B0lin _
the form af an 55A ue see that it uéeslm @ells of random access
memory. ‘This'thGOrem shous that hévfng’mo?e memorg_dpeé not
help. Houever, ﬁé Wwill see that having less meﬁofg'fbrces any
élgorithm to be slouer, In additién.-increésing ihe cﬁmplexifg"
of the program -- even using a decision tree -~ cannot produce ai

faster a!gorithm.l
V.E Other Optimal Algorithms

e have shaun tha{ BO is anzoptimal'algorithﬁ.Lbut not
tﬁat it is theronly optinal algorithm. In fact, thefe are
othere, [or nyjmpig. rqnning BO from right'to Ief% instead of
left to right will have the came average-tine behavior;.'Houever;
we will chou that all optiﬁaT algorithms are just'comﬁinationsof
these tuo strategies;- | |

Cunﬁidnr &0l intnrmndiate.point in the operation of an
algorithm aned the purtiai certificate u cdmputed at that point.

We definm:
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Definition A forcei position j is a text positidﬁ such that 03;*

and one of the foliouing hold:
(1 L”_ifl.ﬁﬁd for j<i<j+m, ué#O,'

(2) u. =1 and for j-m<i<j. u.=0.
. j+i _ i -

In either case, t, mist be examined sometime in the futﬁfe'bg'the -

algoritim, but its value has no affect on uhether any other

position need Le examinerl,

Befinition Letk be the least numbérlsuch that

| (1) k is.not a forcerd pcsitioa. |
(Z}  for all i, k<i<k+m, ui=0 or Q;=*f_énd '
{Bf  for some 1. k<ickm, uizﬂ;. |

That is, k is the leftnost position uhore the pattern may or may

‘_nnt ocour, but uhich is not forced., The left window of t is the -

substring Tk"'tRJNJ;

Definition A position ic an ending position if it is either in

both'uindnu§ or s adjﬁﬁén%'{o bhth,uindnus ahd surrounded by at

least m-1 0 5.

Definition A prébe j is acﬁeptﬁﬁle if“it'fé’oné of:
1) a forced hositfon | |
(él “the rightnest unknoun in the left uihdou.
-13) the fcftwost urknoun in the right wirdou

th)  an ending position,

-_Thé'[igbt'uindou'is defined anatogously. 3
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Theorem V.4 An algorithe A is optimal iff every probe it makés'
 i5 ﬂcceptablé.é | | |
Proof {if) fdhis is’similar to the BO THeorem and.iS“ieff forthé
readet, | |
{only if) =Nha{ we will shou is thaf if A makeé an unaccépfabie
probe theh there is some t in MhicH'A finds wore fhén the minimal
number of 1's,  We will use an adversary argument;j_,. 
_-.the iﬁat.everg unacceptable probe eithér'is:befﬁeeﬁ the

windous or is in'on!g the left (right) windou bu{'iénot the =
rightmost (Iéftmost} unknoln. | | |

AsSume.A makes an unaccnptéb!é ﬁroﬁe énd‘cdnsidér the
first-(ﬁighest'in the decisidn'iree] suéh-pfﬁbe. fAésume_it %s-to _
' pnsition.j. The adversary uill ansuer that tj=1,.but'a{so-ansuer
that tiftkfi for some i_anﬂ.kr uith'i<j<k and.k-i<ﬁ; Hoheover.
the adversary witl force bnthiti“ﬂnd tg-tq be eﬁamined,‘so thaf
neamini g {j uill be Hnnecessarg. |

If.j falls in betueen the windous and is not adjacent to
either window, then ue must have ”jJZUJ:UyHT*' (if Either uj;i

or u. ., Here knoun, they would have been found by an-unacceptable

pel

probe, bt ud assume that j is the first one.)  In this case our

arlversary ansuers tjdmt}=t“1=1-and every other unknoun is 0.

Since overygthing else s 0, A must probe bath tj—l and t}+1 at
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some point. The resulting certificate will have U, =U,=u

j-1 ‘=1'i

i+l

Thus, uj=] Hill be redundant and A uill_hévé found more than the

minmimum number of 1°s.-

[f the unacceptable probe is betucén'the'uindous. but

adjacent to, say, the left window, then ue have'uj=u1¥i&* and _

‘u=%c-for osome i, jem<i<j.  In this case the aAVEbsarg'sagé-
tiztj“tj+1=1 and eVergthing else 0, _Agaiﬁf both ti and tj+1'uillf

be examinnad, Ui=l wit! be redundant, and the number of 1's will

rnot be minitmal,

Finatly, if the unacceptalbile probe ié.'éag.'in the left

Mindou but not the rightmost unknoun in the teft uindow, then we

hove Lk—lfl' uj=ujg*';nhnrelk is the pﬁ#itioh qf the.jcft uindqu
and i fé-the righthost unknoun in thé uindou, Aé'before, the
édvnr;nrg “ays tjnt;zl and uvnrgtﬁing else 0, The algorithﬁ‘must
_examinn.ti. ujrl uill'he'rcdundant. ancl A_Qiif not'find thg
minimumrnumbnr nf i%n

The laét case, uwhere jis adjacént_fo both uinddus.bUt
not 5Grfnunded hg.m—i 0's is simiiar. |

Since A docs not find the minimumfnUmbef bf'1'5 for some.
t. it must find more thtn(-]'s inall t thﬁniﬂe. - Therefore, by

the decision tree lemma, it must not be optimal,d
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V.F First-Occurrence Algorithms

We get similar but simpler results for algorithms.uhich

halt after fihding the first occurrence Gf'Om.

Theorem V.5 B0 is an optimal first-occurrence algorithm for
o . ,

Proof First, note that the decision tree Iemma:app!iés in this
case also. A modification of the BO thcorem.shous that BO finds
the minimum. number of-1's in any t among firSt—Qccurrence

algorithms,  Therofore, B0 i5-0ptiﬁéI.¢

For the first-occurrence case uwe define:;

Definition A probe j is acceptable if j is a forced position, or

if thera is nn foroed position and jis the rightmost unknoun in

the left nindou or an ending position.

Theorem V.6 A first-occurrence algorithm is optimal iff every

probe is drceptable,
Pronf The proof iz siwilae to the all-occurrences case, In the
case vhero the unacceptable probe is inside the left window, the

arlvarcary ansners as before.  In the cases where either there is:
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a foreed pocition and the probe is to some other position or . the
probe is to the.right of the uindou, ahshéring;t1=i.and ali else
0 pute the first accurrence of the pattern to the laft of i

Therefore, uizl 15 redundant, ¢

V.G Time Analysis of BO

For the record, we would like to precisely analyze the

tine taken by BO for 210,11, P(0)-P(1)=0.5, p=0". For any

specitfic m wue can use the techniques-of Chépter'S to cémpute _
Tin), but ue'hHVe nﬁt'béem able t6 generaIizé thé resulfs for all
moin asinple pay, All ue can say is that T[h]#cn%d+o(1). for
éome c and d. In tﬁis section we will derive bounds on ¢ in
terms of m.

Mlue o the optimality of N0, we can brb#e.tertain
unifnrmitg cnnditinﬁu o s runn}ng time, Lot Tg(n) be the time
used bg B0 given that it Has found § 0's at the left of the
windou, and the total number of characters left, including the

tindold, e n,
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Lemma V, 2

1. 7, (41127 tn)
o T, k12T (n} © for Gk
3. T, (nsk) <l (042 for Qakem

4, Te+l[n)sTg(nl for 041<m.

Proof

1. This nas provéd in general for'Algofithm:B in Chapter 4,

2. An 3lg0rifhm for strings of lbngth'h+kruith.Q+kﬁleading 0's
éan be converted into an algorithm'for strings of lehéth nuith @
[eading.O's,'simplg bg'appénding R‘Ieadjhg 0's to t. -Then,'since
BO is optimal, we must have Thklh+ETzTu(n). |

3. Ue uiil.nnnﬁtruct ar algerithm'fnr finding 0™ in strings of
length n;k with 9+k knoun 0's at the left, that.has-éverage time
<T M+l jhen,.sincu B0 ?5 optimai. the result is proved. The
alaor ithem oporates just Tike §30, Startfng at t Hith § 0's
knian, Hh;n i+ has finiched it has found all nccufrchccs of p in
t except for ﬁoasible oCCurrences sfaftiﬁg at {i,tz‘;;.,tj_m
there ] is the leftuost position éxamfnnd bglfhe'algorithm. If
jrk+041 then it is done,  If k+f+l<j<m, then tj=1 and it is done

in thi= race alan,  Tf 2w, the algoriths exanines t T

kel T Yo

stopping when it finds a 1. These positions determine if p

occars At b et The expected number of characters

j-m"
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examinerd befor e finding a1 is 1- ]/7+2 176443 1/8+--- <Z. Thus,

T (n+k}<1 (nl+h

4. Compare the operation of BO when § 0's are: knoun and Wwhen Q+1
0's are knoun. Thrg are exactly the came if a l is found in

‘tp+é"'tm' The probability that no 1 ls_found ln‘tp+2---{m is

. 2“(m'g‘l). Thus, the difference in average times iq

T =T, {n]—”“”“ul(m 04T, gy (n=0-11)42° ‘m°’(m 947 ,(n-1))

-9~
L2t g L+T, (- 1) |
"\-—{li’l)ﬁ( ] (o N
| Sl "I =D =T R0 -
CIf 9-0. then Tm_j{n—l}nTm”md{n—Q—11=0'and the result hoids. 1f
0-0. then T (n-1)<T o (n-0-1)+2 Lrom 31, so

T =Tt 20D p- -8 5y 4

He can mou hound ¢ in termns of m.

Thoorem V.7 _Thﬁﬂﬁverage number of ché?actérs éxamined'bg.BO forﬂ'
p-0" iﬂ_T(n)ﬁnn+d+n{]) .uﬁrrn ¢ and d are constants uith |

(2-21") /mecs (2-21M 7 (n-1420°m)

Proof H&'knnu thét'fnr GHQIDOSitiQE «, thcre.exiSts 50 such that
e <[l sensdee for al! nzn, from the form of Tin}. We Hi[l
Aesume that nEn g+

Far the louer bound ue have
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cn+d> T (n) =
no., o
25 27T, (nema =101 427 " T (n=11) =
T i-1 m-1""

.

> % Z;i!i+T(n—m})+2"m(m+T(n;m!l;t. [from Letma V.2 2]
i o

5221 M T (nom) —¢
>2-21 " enoemid-2e [since'n-mznol
So ck(Z—Z}“meEm)/m. Since ¢ can.bérarbitrarifg smafl. He
conclude that c(2-21°") /n, |
For the upper bound we use
'cn+dsT(ni+(
giglz‘i{i;T{_]{n~m+iy1}i+2'”(mem_i(nf11)+;'_ ! |
<222V 5 27 T e i-10427" T (n-1) +¢ - [from Lenma V.2 4]
: _ _ ‘
<2-214 5 27 (G hneme i~ 1) 4o+ ) 427 (e (=1 4eit )+
: i
<2-21 Mpenad-on (127 —ore (2- (w42} /2" 426
S:—é]fm+cn+d~ﬂ(m~l+Z]'m]+2( |

So e (2-217"20)/ u-1421""), Sinee ¢ con be arbitrarity small,

“he conciude that o (228" 7 (e-1421"0 L0

This analysis has shoun that as'm.grous;_T(n) approaches
(2-21"" /e (1), In fact for any pattern, any algorithm must
eemine at et 22V o/ ) nhnfactnrs on the average. lo see
this concider g fixerl patterh and algorithm.'.Nou ﬁonsider any m

coneorutive positions in the text, t.-+-t No character

j an-—j :
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[ ]

outside thic sngnent can affect uhéther the patfern ﬁccurs
'étnrtinglnt.j. Thernfore, the'algnrithm mUst.keep'exémining
characters in THEQ segment Qntil it.has.¥ouhd 57Mismatch or
exanirned all the chﬁréu{ﬂrﬁ.— Thﬁs. on the.éyerage. it must
examine at {east - _- _ _ |

141/2420 1/643-1 /84 -+ 4 (n]) - 1/2% L. 1 7201010
characters in this segment.  We can diviﬂéhlhe.text into Lﬁ/m]-
“such segﬁents.'andithis must be true.in all these segwents. So
?(nia(z_gl—man/mJ;' So, as one might.imagine.'the ruhniﬁg time
of the optimal a!gnrithm'forfp=0m is éssén{iailgxthe least for

all patterns,
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Vi. Sumimary

Our stidy has been divided into. tuo areas, theoretical

analuysi

n

“of string-searching a!gotithms and the design and
analysis of a He algorithm, In-tﬁe-theoreticai study Qe have
concentratéd on the fguestion of how many text characters are
examined on the average by a!gﬁrithms. By defining a
finite-state model, string-searching éufohata. we have found a
structure which permits detailed anaylsis of average running
time, Using the tccﬁniques of Markov analgsis'ue.canrcompute‘fhé-r
exact average time for an algorithmf_'ﬁore important is the fact
that ue_man-rcadilg~uomputc thg'asgmptotic average time, .
T(a)=cn+G{l).: From this it is possible to find optimal
al'gorithms using linear progranming.

Lie nl;olytudied the simplest special case of string
cearchineg, st p=0".  In this case the optimal SSA is also an
optimal decision tree algorithm, This fesult'revéals_some
important insights inte the nature of the problem. 1n this
cspecial case the text can be processed left to right. never .
Panking mare thnﬂ m characters ahead, and otill yield an optimal
algorithm.  Alzo, the algorithe has a finite number of states --

the addidd poune of decision trees is not necded,
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The nore practical part of our research has dealt with a

new algorithm for siring searching. This algerithm has

Morst-case running time of @{n+m) and average running time

B loglm) /wem} on a random access machine. - These times are

‘within a constant factar of optimal. The sizes of these constant

factors must still be learned before the practicality of the neu
élgorithm_is.determined:

_ There remain mang.open probulemns cnhcernihg SSA'# aﬁdrthe
nature of string searcﬁing. Ue'haye devaloped'éome intuition-
about some of these brdblems,_and it stﬁte them as conjectures.
Eoniecture. For thru pattern an ontiﬁal SSA_is*é}sn_an optimal

decision tree algorithm, - Thus, there exists an optimal decision

tree algorithm which jrocesses the,téxt from left‘fo.right. Hith

A lookahead of at most m characters,
Conjrcture  An optimal all-occurrences algorithm, when

appropriately modified, is an optimal first-occurrence algorithm,

Open Probles o there a cimple, structural characterization of
aoptimal GEATA7  The hypothesice that the feduced-ﬂoger—ﬂoore SGA

s aluays optimnl is proved incorrect by considering the patterns
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0" '1 for m=3. In theae cases, it is better to make the first

probe at position m-1 instead of m.

Conjecture  The worst-case number of states in the =
reduced-Doyer-lfoore G5A groué’éxpdhentiallg Hith m, @f at least
] non-polynomiat by, Thus, }t is not practical to constrﬁct the
rEM-55A in the prgprocessing stcp"of'{he algorithm.~ He have
comnputed the maximﬁm number bf states and the correspbndingv

pattern for Z=10.1}, m=1,-+-.16. They are:

he 0100000
57 01010000
53 011101100
103 0010100011

m  states pattern
1 1 0 '
ol 3 00

3 5 009

4 12 0100

5 20 01000
) 2 010000
7

g

9

10

11 155 01101011100

12 135 0110111163100

13 Z8) ;110101110100

14 3% 01060001000101
15 517  -011010J11011100
16 534 0111010110111100

This appears 1o be exponential growth,

Conjrcture For all patterns and al'l n, the rBM-S5A is worst-case

optinal,
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Open Problem Find a good louer bound on ihe'aQéhagé,time to find

multiple paticrns,

Finnllg,'thﬂ'tnchniques of this thesis may be:appiiéable-:

to other cOmputationai'problems.‘ Specificaiig,-ihe Hérkbv '
_ analgqra of Ch?ptor 3 and the tecision troe lnmma of Ehapter 5
"mag he USPTU| in anaigaing the 1verage tlme for algorlthms for

othpr prubfpmr"
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Biograghical Note

-Con{rarg'to popul ar belief.'Pan Bagcr'uas born in
Chicago, not af NIT.. Through accidents of‘moving.and.aging. he
entered and !eft éight'échools‘in Iliinofs'éhd Néu Jeréqg ﬁefore
Iaﬁding at.NIT in 1859. Another popular beliéf Will be dispeliéd

_ff.-as SEaMS likelg,_hn leaves MIT afier'onlg-fen years,

Paul met his first conputer in high;échool and has been

Gourting a.varietg:df.lﬂﬂ's; POP* s, and COC’s ever sinte..'He.has ‘

“also courted his wife Terry for five years nith an amazing result -

-~ Andreu Bayer, age 16 months.

While an undergraduate, his extracurricular 1ife centered

on the MIT gymnastics team. He was a !etterzuinner for four

years, the captain for one, and an assistant coach for tuwo years .

during graduate zchool,
His academic interests are focused on, but not limited to

thé.studg of algorithms, He is a member of ACM, a number of its

special interect groups, SIAM, and TEEE. His work experience has:

been mainly in the development of minicomputer operating systems
and other snftuare, Aftor graduation he plans to continue uwork
in this area as a sidelight to his principal occupation of

plaging uith his wife and con,
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Paul's family of tuwo parents, one brother and tuo sisters
are scattered around the globe in Houston, Ehicago. Ithaca, and
Petersfield, England. He will be survived at MIT by a cousin in

the class of 1383,





