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We introduce a model of inductive inference, or learning, that extends the
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promising theories, and we wish to know how she can do so most effectively. We
explore several approaches based on the cost of making a prediction relative to the
cost of performing an experiment. The resulting strategies share many qualitative
characteristics with “real” science. This model is significant for the following
reasons:

« It allows us to study how a scientist might go about acquiring knowledge
in a world where (as in real life) both performing experiments and making predic-
tions from theories require time and effort.

« It lays the foundation for a rigorous machine-implementable notion of
“subjective probability.” Good (1959, Science 129, 443-447) argues persuasively
that subjective probability is at the heart of probability theory. Previous treatments
of subjective probability do not handle the complication that the learner’s subjec-
tive probabilities may change as the result of pure thinking; our model captures this
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of how to trade off thinking versus doing—a question that is fundamental for
computers that must exist in the world and learn from their experience. € 1993
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1. INTRODUCTION

We examine “inductive inference™ —the process of drawing inferences
from data. Angluin and Smith (1983) provide an excellent survey of pre-
vious work in the field. Our work is distinguished by the following
features:

» Our inference procedure begins with prior probabilities for each
possible theory, and updates these probabilities in a Bayesian manner as
evidence is gathered.

» Our inference procedure may gather evidence in two ways, each of
which has a cost (in terms of time taken):

1. Use a theory to predict the result of a particular experiment.

2. Run an experiment.

e OQur inference procedure attempts to maximize the expected “rate
of return” measured, for example, in terms of the total probability of
theories eliminated per unit time,

Osherson, Stob, and Weinstein (1988) have examined the effectiveness of
Bayesian approaches within a standard (recursion-theoretic) model of
inductive inference. Their approach differs from ours, however, in that they
define an efficient computation so as to permit any recursive function.

Our approach addresses the following three issues, which have not
always been well handled by previous models.

(1) Induction is fundamentally different from deduction. Much pre-
vious work of a recursion-theoretic character has tried to cast induction
into the same mold as deduction: given some data (premises), to infer
the correct theory (conclusion). We feel that this approach is philosophi-
cally wrong, since experimental data can only eliminate theories, not
prove them. (See Feyerabend (1981) and Kugel (1977).) We therefore
prefer to study inference procedures that represent the ser of remaining
theories (and perhaps their probabilities), rather than inference proce-
dures which are constrained to return a single answer. The “version
space” approach suggested by Mitchell (1977) is more consistent with
our point of view.

(2) The difficulty of making predictions is overemphasized. Previous
theoretical work in this area has been largely recursion-theoretic, and the
richness of the results obtained has been in large part due to the richness
of the theories allowed; allowing partial recursive functions as theories
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makes inference very difficult. The resulting theory probably over-
emphasizes this recursion-theoretic aspect, compared to the ordinary
practice of science. In this paper, all theories are total (they predict a result
for every experiment), and we assume that the cost of making such a
prediction from a theory is a fixed constant ¢ (time units), ¢ > 0, independent
of the theory or the proposed experiment. This is obviously an oversim-
plification, but serves our purposes well.

(3) Experiments take time, and should be carefully chosen. Much pre-
vious work has assumed that the data (ie, the list of all possible
experimental results) is presented to the learner in some order (cf. Gold
(1967}, Blum and Blum (1975)). However, the rate of progress in science
clearly depends on which experiments are run next—consider experimental
particle physics today. Part of doing science well is choosing the right
experiments to do.

A good scientist must decide how to allocate her time most effec-
tively—should she next run some experiment (if so, which one?), or should
she work with one of the more promising theories, computing what it
would predict for some experiment (if so, which theory and which experi-
ment?). These “natural” questions are not particularly well handled by
previous models of the inductive inference problem, but our model allows
us to answer such questions. Our results also shed some interesting light
on related questions, such as when to run “crucial” experiments that
distinguish between competing hypotheses.

In this paper, each experiment takes a constant amount d of time to run.
Again, this is also an oversimplification, but it allows us to explore the
relevant issues without undue technical complication.

Our model can also be viewed as a contribution to the theory of subjec-
tive probability (Good, 1959), which has traditionally had a problem with
the fact that subjective probabilities can change as a result of “pure
thinking.” Various proposals, such as “evolving probabilities” (Good,
1971) have been proposed, but these do not deal with the “thinking” aspect
in a clean way.

2. THE MODEL

We begin with a curious learner, or scientist, whom we’ll call “Alice” for
convenience. Alice wishes to understand some well-defined domain by
running experiments and theorizing about the results she observes. At each
point in time she face the “fundamental dilemma”: is it better now to run
an experiment, or to theorize some more?
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2.1. Experiments

We assume that the domain is completely characterized by an infinite set
of possible experiments, and that Alice can form a list

E,, E,, E, ..

of all possible experiments. If the plausibility of making such an enumera-
tion seems dubious, we note that it is equivalent to the assumption that
Alice has a technical vocabulary adequate for describing every conceivable
experiment in the domain in a finite manner.

Performing experiment E; yields a result, which we denote ;. We assume
that each experiment is deterministic and well-defined, so that rerunning
experiment E; always yields result x,. We leave it as an open problem to
generalize our results for experiments with probabilistically determined
results.

For convenience we assume that y; e {0, 1}; each experiment is defined
in such a way that it either succeeds, yielding y, =1, or fails, yielding x, =0.
This assumption is made with little loss of generality, since an experiment
yielding a nonbinary result can be viewed as a set of binary-valued
experiments, each of which returns one bit of the result.

2.2. Theories

Alice’s goal is to understand the domain perfectly, in the sense that she
“knows” what the result of every conceivable experiment is. In the limit, of
course, she can perform every conceivable experiment £; and thus find out
what each result x; is. She can do better, however, if she discovers some
pattern or regularity to the results of the experiments, in which case she
may be able to correctly predict the results of all possible experiments after
having performed only finitely many experiments. She can describe such
patterns or regularities using a “theory.”

We assume Alice has available an infinite list of theories about the
domain; we let ¢, denote the ith possible theory, for i >0. Each theory
is a function from the natural numbers {0, 1,2,..} into {0, 1}; the
value ¢,(j)=¢, is the “prediction” theory ¢, makes about the result of
experiment E,.

We do not allow “partial” theories here; each theory makes a prediction
for each possible experiment. That is, each theory is a total function. While
accepting partial functions as admissible theories would be an interesting
direction to pursue, we feel that it would also greatly complicate our model
and significantly distract attention from the issues we wish to focus on.

Alice hopes that one of her theories, say ¢,, is correct in the sense that
Q= for all j. If this is the case, and if she can determine r, then she
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will be able to correctly predict the result of any proposed experiment. If
none of the theories is correct, then Alice’s theorizing is in vain, and she
has no way to converge upon an accurate means of predicting the results
of new experiments. In this paper we assume that there is indeed a correct
theory.

We assume that Alice’s theories are ordered, in the sense that theory
¢; 1s judged to be “preferable” to, or “more likely” than, theory ¢, if
i<i'. Theory ¢, is thus the one that Alice most prefers, or judges most
likely.

2.3. Costs of Thinking and Experimentation

If there is a correct theory, Alice would like to identify it as efficiently
as possible. This paper is primarily concerned with this issue of efficiency.
We assume that the resources Alice uses can all be measured in common
units.

The costs of thinking (cost of making a prediction) and of doing (cost
of running an experiment) need to be specified next. We assume that com-
puting ¢; from i and j always costs precisely ¢, independent of i and j, and
that doing an experiment always costs precisely d, where d> 0, independent
of which experiment is performed. Of course, these are not realistic assump-
tions, but they enable us to begin this study. It would be of interest to
generalize these assumptions. We assume that other operations, such as
planning, have zero cost. The reason for having separate parameters for the
cost of predicting and the cost of experimentation is that Alice’s decision as
to whether it is better to predict or to experiment may depend upon the
relative costs of these two operations.

2.4, Alice’s State of Knowledge

Alice begins in a state of total ignorance, and proceeds to enlighten her-
self by taking steps consisting of either doing an experiment (determining
some y,) or making a prediction (computing some ¢,). Alice may choose
which experiments and predictions she wishes to do or not to do, and can
do these in any order (predictions may precede or follow corresponding
experiments, for example).

We need notation to denote Alice’s state of knowledge at time ¢ (after ¢
steps have been taken).

¢ Let “U” denote “unknown”.
e Let ¢e{0,1,U} denote Alice’s knowledge of ¢, at time .
« Let yie {0, 1, U} denote Alice’s knowledge of y, at time .
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If at time ¢ both y; and ¢, are known, then either ¢ y;, in which case
theory ¢, has been refured, or else ¢,; = y;, in which case theory ¢, has been
(partially) confirmed.

When a theory is refuted, we assume that it 1s removed from the list of
available theories, and the remaining theories are renumbered, maintaining
their relative order. By this convention, theories ¢, and ¢; are always
Alice’s “best” two theories: of the theories that have not yet been refuted,
they are the two most preferred.

Subjective Probabilities

We assume in most of our development that Alice uses subjective
probabilities to guide her choice of what to do next. Thus, Alice begins
with two kinds of initial (or prior) subjective probabilities:

e The prior probability p, that theory g, is correct. We assume that
the p,’s are computable, that (Vi) p,> 0 (all theories are possible at first),
and that p,=p, > --- (the theories are listed in nonincreasing order of
probability).

» The prior probability that ¢, =1, for any i and j. We assume that
Pr{(Pij:O} = Pr{(pij: 1}=3

initially, for all / and j; Alice has no reason to expect her theory to predict
one way or the other, until she actually does the computation.

These probabilities are Alice’s subjective prior probabilities, and are thus
somewhat arbitrary. The p;’s do not necessarily represent any specific infor-
mation Alice has about the theories; they may merely represent Alice’s bias
in favor of simpler theories.

Similarly, the prior belief that a theory is as likely to predict 0 as 1
merely represents Alice’s ignorance of the prediction before she does the
computation required to find out what the theory predicts. It is a subjective
probability only, and does not preclude, for example, having theories which
always predict 0 or which are highly structured predictions. Since “truth”
is just one of the theories, nothing in the above assumptions precludes the
true theory from making highly structured predictions. The 50-50 nature of
Alice’s prior beliefs about the predictions a theory might make is entirely
reflective of her ignorance on the question before thinking about it, and is
not reflective of any necessary intrinsic randomness or unpredictability of
the theories or of the true theory.

We note here for future reference that if our set of probabilities satisfies
Po=p; = --- then it also satisfies pog,=p,q, = -+, since p, is no further
from } than p, isand {>p, 2p,> -
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2.5. An Example

Consider Table 1, which illustrates a portion of Alice’s knowledge at
some point in time. Here unknown values are shown as blanks, and only
a portion of the actual infinite table is shown.

TABLE 1

Partial View of Alice’s State of Knowledge—
Unknown Entries Are Shown as Blank

i Di xi— 0 1 1 0 0

0 0.60 0 1 I 0 0 1
1 0.10 0 1 1 0

2 0.05 o 1 1

3 0.04 @, — 0 0
4 0.03 1 1

5 0.02 0

6 0.01

The second row of the table shows which experiments she has run. Here
she knows only y,,.. xs. The second column gives her current
probabilities p,.

The second part shows what predictions she has made. Each row of this
table corresponds to one theory. Theories which have been refuted have
current probability zero and are not shown here, according to our conven-
tion. In this example, Alice has found out what her most probable theory
predicts for experiments 0-5, and so on.

The table illustrates the convention of eliminating theories that have
been found to be inconsistent with the data and renumbering the remaining
theories; note that no theories are listed that are inconsistent with the
known experimental results.

Running experiment 5 next has the potential of refuting ¢q. (It refutes
either ¢, or ¢;.) Making the prediction ¢, s cannot (immediately) refute
¢, but would affect Alice’s estimate of the likelihood that y5=0. With the
current state of knowledge, Alice would estimate that

Pr{zs=0} =004+ (1—0.60—004)=022.

We note that not only does making predictions affect Alice’s subjective
estimates of the likelihood of experimental outcomes, but also experimental
outcomes can affect Alice’s subjective estimates of the likelihood of a theory
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making a particular prediction. For example, if Alice has just discovered
that y, =1, and her current best theory has not yet predicted anything for
this experiment (that is, ¢g,=U), then Pr(p, ;=1) is at least p,; indeed,
this probability is now equal to p,+ (1 — p,)/2. We note this effect as an
observation only; our development does not require or depend on this
effect.

We refer the reader to a fascinating article by Peebles and Silk (1990) on
various theories for the origin of galaxies and the large-scale structure of
the universe; this article contains a chart comparing the five best theories
with 38 critical observables (experimental results) that is quite similar to
our chart. In their case, however, experimental results are seldom sufficient
to completely refute a theory, but they do estimate a measure of the fit of
the theory to the observed result.

3. A GLOBAL STRATEGY

We begin our study with a “global” strategy, whose goal is to minimize
the total cost incurred in eliminating all r incorrect theories that precede
the correct theory ¢, in Alice’s list of theories.

3.1. How Long Does Science Take?

Obviously, after a finite number of steps, Alice can refute only a finite
number of theories, so at no point can she be certain to have discovered
the “truth.”

More realistically, she may ask “How long should it take me to eliminate
all theories with higher prior probability than the correct theory?” Her
answer depends on her set of prior probabilities. For example, she might
have a “non-informative prior” that attempts to have p, decrease to zero as
slowly as possible, as in

pi=o-(iln() Inln(i)---) ", (h

where a is a normalizing constant and only the positive terms in the series
of logarithms are included (see Rissanen (1983)).

Since at least one step is required to eliminate a theory, the expected
number of steps required to eliminate all theories before the correct one is
at least the expected number of such incorrect theories,

Y. rp.

r=0
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which is infinite for the prior (1) and for any distribution that decreases
slowly enough. Thus, for a typical set of initial probabilities, Alice expects
to have an infinite amount of work to do before the true theory is even
considered!

3.2. Cost of Eliminating r Theories

In order to overcome the anomaly of the previous paragraphs, we now
discuss how much work must be done to eliminate the first r incorrect
theories, as a function of r. We begin by calculating a lower bound on this
quantity. Let f(c, d, r) denote the expected cost of refuting ¢g, ¢,, ..., @, _,.
Note that this “expectation” is based on Alice’s subjective probabilities,
and does not correspond to the “true” cost of eliminating the first r
theories, which depends on the exact nature of the theories and of the true
state of the world.

We define the “standard (global) strategy™ as follows. The strategy works
exclusively on the first unrefuted theory until it is refuted. When the correct
theory becomes the first unrefuted theory, the strategy thus enters an
infinite loop attempting to refute it. For a given theory, the standard
strategy first checks the predictions the theory makes against known
experimental results. Only if the theory agrees with all new experimental
results does the standard strategy run new prediction/experiment pairs in
an attempt to refute the theory.

THEOREM 1. For any inference procedure,
fle,d, ry=2cr+dQ(lgr).

Proof. We argue that the standard strategy minimizes the expected cost
of eliminating the first r theories, to within constant factors.

To refute ¢, Alice must compute value ¢, for different values j until
@;=0and x,=1 or vice versa. If ¢, is not the right theory, she expects to
have to make two predictions until she finds a prediction ¢, that is
contradicted by an experiment. Hence her expected computation cost for
eliminating r theories is at least 2cr.

Now for the cost of doing experiments. Since for wrong theories the ¢
are all assumed to be independent by Alice, she has no reason not to reuse
the same experimental y’s in refuting each ¢,. Thus, she might as well
follow the standard strategy. There are r theories to refute. The expected
number of experiments necessary is equal to the expected maximum
number of agreements between any ¢, and y over all r theories ¢, for
i=0,1, .., r— 1. Equivalently, if we play a game where we toss a coin until
we have seen a total of r heads, what is the expected length of the longest
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consecutive run of tails? (Here a coin flip corresponds to making a predic-
tion, and a “head” corresponds to a refutation.) We show that the answer
is 2(lg r).

More formally, let X, be the number of experiments required to refute
(wrong) theory ¢,; it is easy to check that Pr{X,=j}=2"/forj=1,2, ...
Let X=max[_, X,. We want to show that E[X]=Q(lgr); that is, the
expected number of experiments run to eliminate all the theories preceding
¢, 1s Q(lg r). We have

E[X]= Y kPr{X=k)
k=1
=Y Pr{3i:X,>k}
k=1
=¥ (=271
k=1
Lagr)y2]

> Y (1-(1=2./r))

k=1
>(1—(1-2//r))L0gr)/2]
=Q((1-e2V")igr)
=0Q(lgr).

Therefore the expected number of experiments run in order to eliminate
all theories preceding ¢, is Q(lg r). (We note for the record that a corre-
sponding upper bound can also be shown, so that E[X]=6(lgr).) |

The standard global strategy has been analyzed with respect to Alice’s
assumed prior distribution for the values ¢, predicted by the theories and
the values y; resulting from the experiments. In truth, however, these
assumptions may be wildly wrong.

4. “LocAL” (OR “GREEDY’’) STRATEGIES

In many situations, a “local” or “greedy” strategy can perform as well as
or better than a global strategy. For example, there are greedy strategics
for finding minimum-cost spanning trees that always find the optimal
solution. One of the motivations for the research reported in this paper is
to begin a study of how such local, or greedy, strategies perform in the
inference task introduced in this paper.

The local strategies we will study all have a common structure: at each
step they choose an action that maximizes some measure of “rate of
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progress,” taking into account the cost of the action chosen. The notion of
“rate of progress” can be defined (in several ways) in terms of Alice’s
subjective probabilities; the rate of progress is intended to measure her
increase in certainty of knowing what the correct theory is. We shall
explore several different notions of “rate of progress.”

To take in account the cost of taking actions, we can consider the
expected rate of progress per unit cost. This is a natural way of defining a
“greedy” strategy.

However, we note that maximizing the expected ratio of gain to cost can
have somewhat unusual properties, if the actions taken have costs that may
vary. For example, suppose Alice has two options, option A and option B.
Option A always achieves a gain of 49 and a cost of 10, and thus has an
expected ratio of gain to cost of 4.9. Option B always achieves a gain of 24,
but has a cost of 4 with probability § and a cost of 6 with probability 1.
Option B thus has an expected ratio of gain to cost of 5.0, and thus looks
preferable to option A. But executing option B a large number 4 times in
succession yields a total gain of 24k and a total cost of almost exactly 5k
(by the central limit theorem), so re-executing option B has an effective
ratio of gain to cost of only 4.8; option A is thus preferable to option B as
a way to make progress if these options are to be executed repeatedly. In
spite of this anomaly, we shall continue to explore local strategies that
attempt to maximize the expected rate of progress per unit cost.

5. ALICE’S OPTIONS

We find it convenient to organize Alice’s actions into “options.” She
organizes her decision at each step into a finite number of options. Each
such option is a program specifying a sequence of predictions and/or
experiments to run, which terminates with probability . Each option is
capable of refuting some theory. Her menu has the following four options:

s Prediction/Experiment Pair. Make a prediction ¢, for the least j
for which no predictions yet exist, and then run the corresponding experi-
ment. Alice is not compelled to restrict the prediction/experiment pairs to
using the most probable theory, ¢,, but we make this restriction because
it is convenient to limit her options, and also because the expected return
from other theories is not as good.

The cost of making a prediction/experiment pair is just (¢ +d).

e Prediction. Compute a prediction ¢;, given that the corre-
sponding experiment determining y; has already been run. Here again it is
clear that Alice should choose the least i possible, so as to maximize her
rate of return.
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The cost of making a prediction is just c.

» Simple Experiment. Run experiment j, given that at least one
prediction has been made for this experiment.
The cost of running an experiment is just d.

o  Crucial Experiment. Determine the least j such that the two most

probable theories make differing predictions for x,;. Then run experiment ;.

The cost of running a crucial experiment is d+ 2cx, where x is the
number of j’s that are examined before finding one such that ¢y # ¢,;.

Having given our menu of options, we can now make one simple defini-
tion. When we speak of testing ¢,, we are talking about either doing a
prediction/experiment pair involving ¢, or doing simple experiment j for
some j for which ¢, has already made a prediction. In short, testing ¢;
means to take some action that could potentially refute ¢,.

6. How ALICE UPDATES HER SUBJECTIVE PROBABILITIES

Alice will measure her “rate of progress” in terms of her subjective
probabilities, which evolve as she runs experiments and makes predictions.
To model the evolution of Alice’s knowledge more carefully, we show how
her subjective probabilities associated with the various theories change as
a result of the steps she has taken, using Bayes’ Rule.

What happens to the probabilities maintained by Alice after step ¢ is
performed? Let p! denote the probabilities after step 7; here p?=p,. We
consider the effect of step ¢+ on the probability that theory ¢, is correct.
That is, we look at how p{~' is updated to become p’.

The process of updating these probabilities according to the result of the
last step can be performed by executing the following operations in order:

1. For all i,
+ Set p; to 0 if ¢, has just been refuted; that is, if g, ¢,.

» Set pi to 2p!~ " if @, has just been confirmed; that is, if y,=¢@,.
t—1

» Otherwise set p{ to p
2. Normalize the pi’s so that they add up to 1.

The above procedure follows directly from Bayes® Rule, since it is judged
initially to be equally likely for a prediction to be a 0 or a 1.

In the rest of this paper, superscripts ¢ are generally dropped; we assume
that Alice is, at a particular point of time ¢, deliberating on what she
should do next. We also let ¢, denote 1 —p,.

We note that if Alice just sits and “thinks” about an experiment (i.e., she
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just computes the predictions of various theories for this experiment), her
subjective probability Pr{y; =0} evolves, since at time ¢

Pr{XJ=O}= Z pi’*’% Z Pi- (2)

i:(p,'J:O i:<p:]=U

It would also be reasonable to treat this probability as an interval, since
one knows the upper and lower limits that it could evolve to. Taking this
approach, we would represent the probability specified in Eq. (2) by the
interval

[ Y P > }p,].

i tp{]:O l':tpf]s{O.U

7. SpeEcIFIC GREEDY STRATEGIES

The approach taken by Alice depends upon the relative costs of making
predictions versus doing experiments, her initial probabilities for the
theories, and how she wishes to “optimize™ her rate of progress.

7.1. General Assumptions

At each step, Alice must decide what to do next. Although this choice is,
and always remains, a choice among an infinite number of alternatives, it
is reasonable to restrict this to a finite set by adopting the following rules:

+ When running or predicting the result of an experiment which has
neither been previously run nor had predictions made for it, without loss
of generality choose the least-numbered such experiment available.

» When making a prediction for a theory for which no previous
predictions have been made, choose the least-numbered (i.e., most
probable) such theory.

7.2. Optimization Criteria

Alice chooses what actions to take according to some optimization
criteria. For example, she may choose one of the following strategies:

1. Refute-most-weight:! Maximize the expected total proba-
bility of the theories refuted by the action chosen.

! One strategy which we do not consider is Refute-most-theories. It would be very
different from all other strategies, because it would give us incentive to examine lower
probability theories ahead of higher probability theories.
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2. Minimize-entropy: Minimize the entropy

- Z pilglp;)

iz0

3. Maximize-leader: Maximize the highest probability assigned
to any theory.

4. Minimize-error: Minimize the expected total probability
assigned to incorrect theories,

Z pi(1—p,).

iz0

More generally, we assume that she wishes to maximize her “rate of
progress” by dividing her progress (measured by the change in one of the
above criteria) by the cost of the action chosen.

There are, of course, other strategies that Alice might adopt. Some of
these are not entirely rational. As an example, she might simply decide that
her goal would be to always increase the a posteriori probability assigned
to the current best theory. Such a cynical strategy turns out to be
impossible. No actions lead to an expected increase in the probability
assigned to the best theory.?

As another example of an irrational strategy, Alice might try to keep the
current best theory best. To accomplish this goal, Alice should never test ¢,
against any theory. She should simply test the other theories, making sure to
stop testing ¢, as soon as p; = p,/2 (otherwise ¢, might replace ¢, as best).
This procedure is obviously uninteresting, since any strategy that refuses to
put its best candidate theory to the test is not “science,” but dogmatism.

In this paper we discuss all of the “sensible” optimization criteria listed
above; some very briefly, and some at length. In the remainder of this
section we discuss the general form that all our inference procedures take,
regardless of the particular optimization criterion they use.

7.3. Menus of Options

We propose that Alice organize her strategy as a “greedy” strategy of the
following form: :

21If Alice tests the best theory with any kind of action, then with probability p, + (1 — pg)/2
it is confirmed, and its probability goes up to 2py/(1+ p,). However, with probability
(1 —po)/2 it is refuted and its probability goes to 0. Thus its expected probability after any
action is [(po+1)/2]-2pg/(1 + pg) = po. If Alice tests other theories, they may be either
refuted, which could increase the probability assigned to ¢, or confirmed, which would
decrease the probability assigned to ¢@,, and it again works out that the expected value of the
a posteriori probability assigned to ¢, is p,.



EXPERIMENTING VS THINKING 15

e At a given step, for each available option, Alice computes the
expected “rate of return” of that option, defined as the expected ratio of the
total gain of that option (where gain is measured by some optimization
criterion) to the cost of that option.

« Alice then chooses to execute an option having highest expected
rate of return, breaking ties arbitrarily.

The reason for introducing the notion of an “option”, rather than just
concentrating on the elementary possibilities for a given step, is that certain
steps have no expected rate of return in and of themselves. For example,
making a prediction when the corresponding experiment has not yet been
run has zero expected rate of return, as does running an experiment when
no prediction regarding that experiment has yet been made.

8. THE ‘ ‘refute-most-weight’’ GREEDY STRATEGY

We begin by studying an inference procedure, “refute-most-
welight,” which tries to refute wrong theories as quickly as possible.
Specifically, Alice chooses an action which maximizes the expected value of
the ratio of the total probability of theories eliminated by that action to the
cost of that action. The reason for this choice is is simplicity, and the ease
with which Alice can implement such a strategy. Furthermore, if Alice’s
prior probability distribution happens to be one of the ones for which
infinite expected time is required simply to eliminate all wrong theories (see
Section 3.1), then this measure probably makes the most sense.

We now analyze the expected rate of return for Alice’s four options.

Prediction/Experiment Pair. The expected “reward” for this action is p,
times the probability that ¢, will, in fact, be refuted. Theory ¢, is never
refuted if it is the true theory, and is refuted with probability 1 otherwise;
therefore the probability that ¢, is refuted is g,/2. Our expected rate of
return is thus

Podo
2c+d)

Prediction. Compute a prediction ¢, given that the corresponding
experiment determining y,; has already been run. The expected reward is the
same as for the prediction/experiment pair, and the cost is simply ¢. Thus,
the expected rate of return for this prediction is

Pidi
2¢

643/106/1-2
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If we stick to prediction/experiment pairs and predictions, then the
opportunity to make a prediction only arises after a simple prediction/
experiment pair has already been run for that experiment.

Simple Experiment. The expected reward of a simple experiment is the
same as for a prediction or a prediction/experiment pair, so the rate of
return is

Po4o
2d

Crucial Experiment. To calculate the expected reward of a crucial
experiment, we must consider three cases.

1. If ¢, is the true theory, then Alice refutes ¢,, for a reward of p,.
The probability that ¢, is the true theory is py, so this case contributes
poP, to the total expected reward.

2. Similarly, the case where ¢, is the true theory contributes p,p, to
the total final reward.

3. [If neither ¢, nor ¢, is the true theory, then it is equally likely that
@, or @, is refuted. Since this case has probability 1 — p, — p,, its contribu-
tion to the expected reward is (1 —py—p,)(po+p,)/2.

Thus the expected reward is

(1 _Po"Pn)(Po'f‘Pl):Po(] —po) +p(1 —p,)+2pyp,
2 2

2popi t+

_Potp —(po—p1)°
= 5 )

To compute the expected rate of return, we must multiply the expected
reward by E[1/C], where C is the random variable denoting the cost of
finding and running a crucial experiment. Note that C= C(c, d) is a func-
tion of ¢ and d. The expected cost of finding a crucial experiment is easily
seen to be 4c, since if Alice picks a j and compute ¢, and ¢,;, she has a
1 chance of finding j to be crucial. Thus

E[C]=4c+d

In general, however, it is not necessarily true that E[1/C] = 1/E[ C], unless
C is a constant.® This fact is relevant for analyzing crucial experiments,
because the cost is not constant. We have C=2ck +d, if k pairs of values

* An earlier version of this paper (Rivest and Sloan, 1988) contained an error here based
on the assumption that E[1/C]=1/E[C].
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®o;» @, are computed before Alice finds a j such that ¢ # ¢, The
probability that k pairs need to be computed is 2%, since there is a }

chance for each j that ¢y, # ¢,;. Thus,

1
2ck+d

E[1/C]= ) 2%
k=1
This formula is nearly impossible to evaluate in any simple closed form (see
Gonnet (1984, Eq.II.1.11}), for a starting point). It is, however, easy to
approximately evaluate this formula in practice for any given values of ¢
and d, because of the exponentially decreasing powers of 2. We can also
derive the bounds

<E[1/C]) < (3)

1 1
4c+d 2885c+d
where the constant 2.885..=1/In2. The lower bound foliows from the
inequality E[1/C} = 1/E[C], since C>0 and the function 1/C is convex.
The formula for the upper bound is derived from an exact analysis of the
case d =0 and numerical experimentation; it is actually a good approxima-
tion, correct to within 7% for all positive values of ¢ and 4. We omit the
justification here.

Note that E[1/C] remains the same if we condition it by any one of the
following three events: theory ¢, is correct, theory ¢, is correct, or neither
@, nor @, is correct. Therefore, the expected rate of return is

Po+Pi— (PO_PJ)Z
2

E[1/C]. (4)

We note that using all four options, the only way an opportunity can
arise to run a simple experiment is by having the search for a crucial experi-
ment generate predictions for the first two theories, without running the
corresponding experiment since the predictions were identical. This is the
only way Alice can obtain a situation where predictions have been made for
experiments that have not been run. Furthermore, additional predictions
will not be made for this experiment until after this experiment has been
run. Since the crucial experiment eliminates one of the top two theories,
Alice is left in a situation where (after renumbering of theories as usual)
there is a j for which we know ¢,; but have not yet run experiment ;.

We claim that, using any of the above options, the relative order of two
theories does not change, except when a theory is refuted, if an optimal
greedy strategy is used. This follows since it is always preferable to work
with the more probable theories, given a particular option, and this work
tends to enhance the probability of that theory if it is not refuted.
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8.1. Analysis of the “Refute-Most-Weight” Strategy

If Alice has a choice between starting with a prediction/experiment pair
or making a prediction clearly Alice begins with a prediction/experiment
pair. Afther that, Alice oscillates between further testing of her best theory
(using prediction/experiment pairs) and testing of her other theories (using
predictions).

The ratio ¢/(c+d) affects the relative amount of effort spent on
prediction/experiment pairs. We typically see all theories down to some
probability threshold (depending on ¢, d, and p,) fully tested against
existing experimental data, before proceeding with the next prediction/
experiment pair.

If it is more expensive to perform an experiment than to compute a
theory’s prediction, then Alice should consider whether she should get her
experimental data from crucial experiments rather than from prediction/
experiment pairs.

Let us consider whether at the beginning of time, Alice is better off
running a prediction/experiment pair or running a crucial experiment. The
crucial experiment has a higher expected rate of return if

po+pi—(po—p) Podo
; E[]/C]>—---—2(C+d) (5)

or, substituting the lower bound from Eq. (3), if

"+d> Podo
3c Piqi+t2pep,

Since the right-hand side of this inequality is 1 if py=p, =1, it is possible
to have a crucial experiment be advantageous over a prediction/experiment
pair for any values of ¢ and d.

No matter how cheap experiments get, relative to the cost of making
predictions, it is possible to find a probability distribution where it is
advantageous to find an experiment which is crucial, before running any
experiments.

9. THE “Minimize-entropy” GREEDY STRATEGY
The (binary) entropy H(P) of a probability distribution P is defined

H(P)= Z —p/lgp;, (6)

izl
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where 1lg x denotes the binary logarithm of x. The quantity H(P) is
considered to be a good measure of the information contained in
probability distribution P. Maximizing entropy corresponds to maximizing
uncertainty; minimizing entropy corresponds to minimizing uncertainty.
Thus a reasonable optimization criterion for Alice would be minimizing the
entropy of the a posteriori probability distribution.

Unfortunately, for some probability distributions, the entropy is infinite.
Consider, for instance, the previously mentioned distribution due to
Rissanen (1983),

pi=a-(iln())Inln(i)--- )", (7

where « is a normalizing constant and only the positive terms in the series
of logarithms are included. Wyner (1972) shows that the entropy series,
Eq. (6), converges only if the series Y., p;,Ini is convergent, but this
series clearly diverges for the distribution given in Eq. (7).

However, any particular experiment or prediction Alice makes only
causes her to alter a finite number of her a posteriori probabilities for
theories, excluding the effect of renormalizing. It happens, as we shall see
below, that even with renormalization, the expected change in entropy for
any of the four options is finite.

The above discussion leads us to a precise description of the optimiza-
tion criterion for our second inference procedure. Alice chooses an action
which maximizes the quotient of the expected decrease in the entropy of the
probability distribution resulting from that action, divided by the cost of
that action.

9.1. Analysis of the “Minimize-entropy” Strategy

We need to calculate the expected change in entropy for each of Alice’s
four options. To begin with, we calculate the change in entropy caused by
refuting ¢,. (The case for ¢, is similar, but the notation is simpler for
i=0.) Let P be the initial probability distribution, and let 4( H(P)) denote
the change in entropy that occurs when ¢, is refuted. Then

AH(P)) =~} 1_ ( P’p0)+2p,lgp,

iz1 iz0

[(l—po)lg(l —Po)— Y pilgp,]+ Y pilgp,

izl iz0

_1_P0

1
lg(l_P0)+T"“p—<Polg[’0+ Y p,lgp>+ > pilgp;

iz0 iz0

L Polgpo lgpo Do

Pt R HPR) ®)

=lg(l —py) +
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Now we calculate the change in entropy that occurs if ¢, is instead
partially confirmed. In the case we have

2 20 i i
AH(P)) = — 22 lg( P )—Z P lg(—”———)

_1+P0 t+po =1 L+po 1+ pgy

+ Y plgp,

iz0

2
[—2p01g< Lo )+polgpo— > p,»lgp,»]

=1+pg 1 +p, i=0
+ Z pilgpi
iz0
=1g(1 + po) ~ 2= (2 +1g po + H(P®), ©)
+Po

Now we are ready to compute the expected change in entropy for each
possible option.

« For computing the prediction ¢, (assuming that y, is already
known), we get
(1—p) (1+p,

ELA(H(P)1 = —p+ U210 - p) + S5 2101400 (10)
Equation (10) comes from taking (1 —p;)/2 (the probability that ¢, is
refuted) times the quantity specified by Eq.(8) plus (1 +p,)/2 (the
probability that ¢, is confirmed) times the quantity specified by Eq. (9).

« For running a crucial experiment between ¢, and ¢, we get

1 —_
ELACH(P)] = —po—py + 2219014y —p)
L=po+P,
B2 g1 pytp) (i)

« In fact, in general, for running y, where the total probability of
theories which predict that x, is zero is r, and the total probability of
theories which predict that x, is one is r, we get

ELAH(P)] = —ro—ry+ =gt 47y =1y
U=rod ") bt —rg ), (12)

2
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Consider the probability distribution, R, that has only two outcomes,
one with probability ro+ (1—r,—r;)/2, the other with probability
ri+ (1 —ro—r;)/2. We can rewrite Eq. (12) in terms of the entropy of R,

E[4(H(P))]= —ro—r,+ H(R). (13)

Equations (10) and (11) can be rewritten in a similar manner (since really
they are just special cases of Eq. (12)).

In fact, the calculations for this entropy driven inference procedure and
the previous “refute-most-weight” strategy yield very similar results.
Equation (13) and Eq. (3) could both be written as

PROGRESS = k(ro + r, — penalty(|ro— r,|). (14)

(The difference in signs between Eq. (13) and Eq. (14) arises because in
Eq. (13) Alice is trying to minimize entropy, so her progress is negative,
and her penalty is positive.)

Let d=|rq~r,|. For the entropy approach, k=1 in Eq.(14), and
penalty(d) = H(1/2+6/2, 1/2—4/2). (In terms of r, and r, that probability
distribution is ro+u/2, r;+u/2, where u=1—r,—r, is the undecided
probability—the total probability of those theories i such that ¢,(j)=U.)
For the refute-most-weight strategy, k=3 in Egq.(14), and
penalty(d) = 6%

As one might expect given this strong similarity between the two
optimization criteria, the inference procedures behave in a roughly similar
manner.

10. THE “Maximize-leader” GREEDY STRATEGY

As we pointed out in Section 7.2, there is no strategy which leads to an
expected increase in the probability assigned to the current best theory.
There is, however, at least one interesting way for Alice to always have a
“pretty good” best theory. Alice chooses an action to maximize the
quotient of the expected value of the probability assigned to the best theory
not yet refuted after that action, and the cost of that action.

10.1. Analysis of the “Maximize-~leader” Strategy

The first thing we do is calculate the expected value of the probability
assigned to the best theory for each of Alice’s options.

o If Alice tests ¢, (with any kind of action), then with probability
po+ (1 —pg)/2 it 1s confirmed, and the probability for the best theory
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becomes 2p,/(1 + py). With probability .5(1 — py), @, is refuted, and the
probability for the best theory becomes p,/(1 — py). The expected value of
the probability for the best theory is therefore p,+ p,/2.

« If p;<py/2 (so even if Alice tests and confirms ¢, it still has a
lower a posteriori probability than ¢,), then testing ¢; does not lead to an
increase in the expected value of the probability of the best theory.

e 1If p,>po/2, and Alice tests ¢,, then the expected value of the
probability of the best theory after the test is p, + po/2.

Note however, that this situation is of no practical importance. If y; is
known and both ¢, and ¢, are unknown, then it is more profitable to
compute ¢, than to compute ¢,. Consider now the case where there is
some j such that y,= @, but ¢, =U. Whichever theory is now numbered
zero began with an initial probability greater than or equal to the initial
probability of the theory now numbered i. If at time ¢ theory ¢, has been
confirmed more than g,, it must be that p, > 2p,. Hence if x, is known, the
only ¢, ; for which it can be worth while to make a prediction is ¢, ,.

o I Alice runs a crucial experiment for the two best theories,* then
the expected value of the probability of the best theory is

L
Y. Pr[¢,is confirmed and ¢, is refuted ] (weight of ¢, after that)
i=0

1—po— 2 1—po— 2
=(p0+ Po p1> Po +(p1+ Po p;) P

2 1 +po—p) 2 1 —po+p,
=<1 +P0_P1> 2po +<1_P0+P1> 2po
2 1+po—p, 2 1—po+p,
=po+Pi-

Having listed the payoffs for each action, we can now give the
payoff/cost ratios for the actions Alice might take:
e A simple pair with the best theory: (p,+ p,/2)/(c + d).
o Prediction for ¢ if x; known: (py + p,/2)/c.
» Simple experiment y; where ¢, is known: (p, +p,/2)/d.
» Crucial experiment: (p,+ p,;) E[1/C].

» Alice might consider running a crucial experiment when we have
some leftover predictions (say from an earlier crucial experiment) for one
of the two theories. If she has k such predictions, then the expected cost

*In this case there Alice gains nothing by running a crucial experiment for the best n
theories for n> 2.
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E[C], used in our lower bound for E[1/C], decreases from d+ 4c to
d+(3-3-127 e

i=1

All Alice needs to do is pick the maximum reward/cost action from the
above list, but we make a few qualitative observations here: If there is a j
for which y; is known but ¢, is not, then it is always best to compute @;,.
It is better to do a crucial experiment instead of a simple pair if
dfc > 6p,+ 2p,; otherwise it is better to do the simple pair.

11. THE “Minimize-error” GREEDY STRATEGY
We have

E[weight of wrong theories]= Y p(l—p)=1=73 p}.

iz0 i20

Hence the goal is to maximize
H (15)

which looks similar to the entropy strategy, only nicer, since the sum of the
squares is guaranteed to converge.

Unfortunately, however, when we look at any action that might refute a
given theory, that infinite sum is in its expected value. For the entropy
case, it dropped out.

In the sum of squares case we get:

If we test ¢; against a known experiment and it is confirmed, the change
in the value given in Eq. (15) 1s

Pj 2
3p.—(p,+2 2 ). 16
a +p,-)2[ p;— (P, );;0 p,] (16)
If instead it is refuted, then the change is
2 2[—Pj+(2“1’/) z P?] (17)
(1 —Pj) iz0

Taking (1 + p;)/2 times (16) plus (1 —p,)/2 gives us the expected change
in (15) when we test theory j. This quantity is

p?
! (1——2pj+ > p,z) (18)

2
l—pj iz0
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It seems likely that (18) is maximized for p; as large as possible (ie.,
Jj=0), but to compare this action’s expected return versus, say, a two way
experiment, Alice must compute an infinite sum, which violates the spirit
of our procedures. Hence, we do not consider this strategy further.

12. How THE GREEDY STRATEGIES COMPARE TO THE GLOBAL STRATEGY

The greedy strategies we discussed above all perform within a con-
stant factor of the optimum in refuting wrong theories, in terms of the
expected cost required to refute the first r theories. We argue this point
as follows.

Using any of these strategies, Alice never does an experiment when there
are known experimental values against which the best theory has not yet
been tested. Thus, until the right theory has become ¢, she never does any
more experiments than the optimum theory refutation strategy.

Alice sometimes performs more computations than the optimum theory
refutation strategy. In particular, she sometimes performs “wasted” com-
putations as part of a crucial experiment. In such an experiment she might
compute @, and ¢,; for some j and find them to be equal. By the definition
of a crucial experiment, she will refute one of those two theories before ever
doing experiment y,; hence one of those computations was “wasted.” She
only perform crucial experiments, however, when she is going to do an
experiment, and she only does O(lg r) experiments, so she only misses the
optimum of 2¢r by O(clgr).

13. CONCLUSIONS

We have introduced a new model for the process of inductive inference,
which
« s relatively simple, yet

« captures a number of the qualitative characteristics of “real”
science,

» provides a crisp model for evolving or dynamic subjective
probabilities, and

« demonstrates that crucial experiments are of interest for any
relative cost of experiments and making predictions.

RECEIVED September 20, 1988; FINAL MANUSCRIPT RECEIVED June 5, 1991
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