Results on learnability and the Vapnik-Chervonenkis
dimension*

(Extended Abstract)

Nathan Linialf

Abstract

We consider the problem of learning a concept
from examples in the distribution-free model in-
troduced by Valiant[13]. (An essentially equiva-
lent model, if one ignores issues of computational
difficulty, was studied by Vapnik and Chervo-
nenkis [14].) We introduce the notion of dynamic
sampling, wherein the number of examples exam-
ined may increase with the complexity of the tar-
get concept. This method is used to establish the
learnability of various concept classes with an in-
finite Vapnik-Chervonenkis dimension. We also
discuss an important variation on the problem
of learning from examples, called approzimating
from ezamples. Here we do not assume that the
target concept T' is a member of the concept class
C from which approximations are chosen. This
problem takes on particular interest when the
VC dimension of C is infinite. Finally, we discuss
the problem of computing the VC dimension of
a finite concept set defined on a finite domain.

*This paper was prepared with support from NSF
grant DCR-8607494, ARO Grant DAAL03-86-K-0171,
and the Siemens Corporation.

tIBM Research Center - Almaden, 650 Harry Road,
San Jose, CA 95120 and Computer Science Dept., Hebrew
University, Jerusalem Israel; e-mail: nati@ibm.com

‘Laboratory for Computer Science, Massachusetts In-
stitute of Technology Cambridge, MA 02139; e-mail:
mansour@theory.mit.edun

$Laboratory for Computer Science, Massachusetts In-
stitute of Technology Cambridge, MA 02139; e-mail:
rivest@theory.mit.edu

0272-5428/88/0000/0120$01.00 © 1988 IEEE

Yishay Mansour?

120

Ronald L. Rivest$

1 Introduction

1.1 Learning in the Distribution-Free
Model

In this model, each concept C is a subset of a
given instance space X. For example, X might
be {0,1}" or real n-dimensional space R". (In
some cases it is more natural to use U,{0,1}"
or Up,R™ so that each instance is an n-bit vec-
tor or a vector of n reals where n is arbitrary; we
don’t consider such variations here.) The class of
concepts being learned will be denoted C. The
unknown target concept T to be learned is as-
sumed to be a member of C.

In this model there is a fixed but arbitrary
probability function P defined on X. The learn-
ing algorithm L will have access to a source of
examples of the unknown target concept 7. Each
time the algorithm obtains an example from this
source it draws an element z € X independently
according to P. This is sometimes called the
“one-oracle” or the “one-button” model. (In a
“two-button” model the learning algorithm can
request either a positive or a negative example,
and these examples are produced according to
separate probability distributions.) In this pa-
per we assume that every concept C (including
the target concept) has a well-defined probabil-
ity with respect to P; we do not address issues
of measurability, etc., here.

Each example (z,c) consists of an instance z
and its classification ¢ € {+, —} as either a pos-
itive instance (z € T) or a negative instance
(z ¢ T) of the unknown target concept 7T

In addition to the source of the examples, the

learning algorithm takes as input two parame-
ters: € (the accuracy parameter) and § (the con-
fidence parameter). After drawing a number of
samples, the learning algorithm produces as out-
put a description of a concept C, which may be
different than the true target concept 7. (Usu-
ally it is required that C € C, although other re-
strictions on C are sometimes considered.) The
error rate of a concept C (with respect to the
true concept T and the probability distribution
P) is P(C®T), the probability that C and T
classify a randomly drawn example differently.
(Here CoT = (C —T)U (T - C), the symmetric
difference of C and T.) We say that the concept
C output by the learning algorithm is approz-
imately correct if the error rate P(C®T) is at
most €, If (for any concept class C, probability
distribution P, accuracy parameter ¢ and confi-
dence parameter §), the probability that the out-
put is approximately correct is at least 1 —§, we
say that learning algorithm is probably approzi-
mately correct; such a learning algorithm is said
to pac-learn the concept class C, and C is said to
be pac-learnable.

The learning algorithm L requires two sorts of
resources: computational time and examples; we
define the time complexity and the sample com-
plezity of L to be amount of each resource used.

We say that L is a polynomial pac-learning al-
gorithm, and that the class C is polynomially pac-
learnable, if L pac-learns C with time complexity
and sample complexity which are polynomial in
land }.

Normally, a polynomial pac-learning algo-
rithm can be made to run in static sampling
mode, where a sample containing all of the neces-
sary examples is drawn before any computation
is performed. Typically, pac-learning algorithms
are consistent in that the concept C they return
agrees with the classification of each example of
the sample.

There are models of learning other than oracle-
based models. For example, a “functional
model” has recently been shown to be equivalent
to the oracle model by Haussler et. al. [6]; their
paper contains a wealth of information about dif-
ferent models of learning.

In this paper we will be concerned almost ex-

121

clusively with the sample complexity of learning
algorithms.

1.2 Previous Results about
Distribution-Free Learning

In order for a pac-learning algorithm to pac-learn
a concept class C, the measured error rate of each
concept C € C (measured on the examples seen)
must be a good estimate of the true error rate
P(T®C) of that concept. Vapnik and Chervo-
nenkis [14] were able to find a nice characteriza-
tion of classes of concepts C for which the mea-
sured error rate converges uniformly (over C) to
the true error rate.

For this purpose they introduce the notion
of a dimension (usually called the Vapnik-
Chervonenkis dimension, or VC dimension) of a
concept class and showed that a sufficient con-
dition for the uniform convergence of the mea-
sured error rates to the true error rates is that
the Vapnik-Chervonenkis dimension of C be fi-
nite.

Definition 1.1 The Vapnik-Chervonenkis di-
mension of a concept class C is the largest d such
that there ezists a set S of d instances, such that

for every subset U C S there exists a concept
C eC such that U=5SnC.

Their work has been extended to handle much
more general situations; see Pollard [9] for a nice
exposition.

Blumer et. al. [3] were the first to draw the con-
nection between distribution free learning and
the VC dimension. They gave bounds on the
number m(¢,§) of examples needed by a consis-
tent pac-learning algorithm to pac-learn a con-
cept class C, in terms of C’s VC dimension d:

1.1 d 1
§) = -In= + —log -
m(e, §) O(eln§+€log€),
1.1
8§ = —In - .
m(e,0) Q(Clné +d)
Specifically, the upper bound proved is:
4. 2 8, 13

we shall use this result later. These results imply
the following,.

Theorem 1.1 [Blumer, Ehrenfeucht,
Haussler, and Warmuth [3]] A concept class

C is pac-learnable with static sampling if and only
if C has finite VC dimension.

The lower bound was improved by Ehrenfeucht
et. al. [5] to

m(e,8) = (3 In % + g) : @)

Based on their upper bound, Blumer et. al.
also showed many concept classes to be polyno-
mially pac-learnable. More generally, if C is a
class with finite VC dimension and there exists
a polynomial time algorithm to find a concept in
C that is consistent with a given sample, then C
is polynomially pac-learnable. Polynomial pac-
learning algorithms have been developed for spe-
cific problems such as k-CNF [13] and decision
lists [12]. See [7,8] for surveys of other known
results in this area.

1.3 Our contributions

We introduce the notion of dynamic sampling,
wherein the number of examples examined in-
creases with the complexity of the target con-
cept. It turns out that dynamic sampling does
indeed enrich the class of pac-learnable concepts,
compared to static sampling. We show examples
of concept classes which our scheme pac-learns
(using dynamic sampling) despite the fact that
the class has an infinite VC dimension and hence
can not be pac-learned with static sampling.
Similar results and techniques have recently
(and independently) been obtained by others.
For example, the notion of dynamic sampling ap-
pears in a proof by Haussler et. al. [6] that the
size of target concept need not be known if one
is willing to sacrifice the requirement that the
learning algorithm should always halt. Based on
this result, Blumer et. al. [4] and have shown
how to pac-learn concept classes of infinite VC
dimension. (There are some minor technical dif-
ferences; while the overall approaches are essen-
tially identical, we present effective techniques
for minimizing the number of stages required by
dynamic sampling; an issue they do not address.

122

Also, our pac-learning algorithms always termi-
nate whereas theirs halt only probabilistically.)
Benedek and Itai [2] give similar results in a
slightly different model.

Next we discuss another important variation
on the problem of learning from examples. This
is the problem of approzimating from examples.
Here we do not assume that the target concept
T is a member of the concept class C from which
approximations are chosen. This problem takes
on particular interest when the VC dimension of
C is infinite.

Finally, we state the problem of computing the
VC dimension for a finite domain as a combinato-
rial problem, called the “discrete VC problem”.
The discrete VC problem can be easily solved in
time O(rn'8"), where n is the number of points
and r the number of concepts.! It is not known if
this problem is in P; it may be NP-complete. We
give a combinatorial characterization for classes
with VC dimension 1. It is an open problem to
characterize classes of higher VC dimensions.

2 The idea of dynamic sam-
pling

We begin with a proof that any enumerable con-
cept class is pac-learnable using dynamic sam-
pling; this example illustrates the power of dy-
namic sampling relative to static sampling, since
an enumerable class of concepts may have infi-
nite VC dimension.

When using dynamic sampling, the pac-
learning algorithm alternates between drawing
examples and doing computations. A stage of
the pac-learning algorithm consists of drawing a
set of examples and performing the subsequent
computations. Pac-learning a class with infinite
VC dimension may require an unbounded num-
ber of stages, as we shall show in section 2.3.

2.1 An example — learning an enu-
merable concept class

Let C = {C},Cy, ...} be an (recursively) enumer-
able concept class, such that for each C; mem-

1We use Ig = to denote log, z throughout.

bership in C; is decidable. Note that C may have
infinite VC dimension. (For example, let N be
the set of natural numbers, and let C be the set

of all finite subsets of N.) We show that C is
pac-learnable as follows.

Algorithm “Enumerable-Learner”:
1. Let ¢ = 1.

2. Draw enough examples so that the total
number m; of examples drawn so far is at
least %ln -27;—.

3. If C; is consistent with all examples seen so
far then output C;. Otherwise increase 7 by
1 and return to step 2.

Theorem 2.1 Enumerable-Learner can pac-
learn any enumerable concept class C.

Proof: Let T be the target concept. Call con-
cept C; “e-bad” if P(T®C;) > e. The proba-
bility that an e-bad concept C; is output is at
most (1 — €)™, since this is an upper bound on
the probability that C; is consistent with the m;
examples seen so far. For m; > Llln 27’:- the in-
equality (1 — €)™ < &5 holds. Since

1 72
2=

the probability that Enumerable-Learner out-
puts an e-bad concept is at most

6 o &
=

3)

(4)

m}

A similar scheme appears in [7] with m; > £+
1ln}. Note that our bound on m; is linear in
the logarithm of the index of the target concept.

2.2 Decomposable concept classes

The result proved above does not handle concept
classes which are uncountable. In this subsection
we extend our result by introducing the notion of
a decomposable concept class. (This notion was
proposed independently by Benedek and Itai[2].)

123

Definition 2.1 A concept class C is decompos-
able if it can be written as the countable union

C=CUCuU...

where each concept subclass Cq has VC dimension
at most d.

(It is equivalent to require merely that each C;
have finite VC dimension.)

In many cases, this decomposition can be done
in such a way that C; C C;4, for all 4, and those
concepts in Cy — Cy_1 can naturally be said to
have size d. For example, if each concept is rep-
resented by a binary string, we might let C; be
the set of concepts whose binary representation
contains at most d — 1 bits. Or, if X = [0,1] and
C is all finite unions of subintervals of X, then Cy
can be the set of concepts which are the union
of at most d/2 subintervals of [0,1]. In other
cases, the “natural” size measure might be poly-
nomially related to d; our results can be easily
extended to handle these cases.

We would like the complexity of a pac-learning
algorithm to be polynomial in the size of the tar-
get concept T being learned, where

size(T) = min{d : T € C4} .

One way to accomplish this is to provide
size(T') as an additional input to the pac-
learning algorithm. This reduces the problem
to one of pac-learning the concept class C; U
C2...Cyize(r)> Which has finite VC dimension.
However, this may be impossible in practice, so
we rule this possibility out. We wish to have the
pac-learning algorithm determine size(T) itself.

Definition 2.2 A concept class C is uniformly
decomposable if it is decomposable and there ez-
ists an algorithm A which given an index d and
a sample, can produce a concept C € Cq consis-
tent with the sample, or else outputs “none” if
no such concept exists. Furthermore, if the al-
gorithm A runs in time polynomial in d and the
number of examples in the sample we say that C
is polynomially uniformly decomposable.

The following algorithm can pac-learn any un-
iformly decomposable concept class:

Algorithm
“Uniformly-Decomposable-Learner”:

1. Let d = 1.

2. Draw enough samples so that the total num-
ber my of examples drawn so far is at least

4. 8d% 8d, 13
bl Pt Mntid
max(—In =, —In—)

3. If there is a C' € C4 which is consistent with
all examples seen so far then output C'. Oth-
erwise increment d by 1 and return to step
2.

Theorem 2.2 Any uniformly
decomposable concept class is pac-learnable, us-
ing dynamic sampling (procedure Uniformly-
Decomposable-Learner). If the class is poly-
nomially uniformly decomposable, then the time
and sample complezxity are polynomial in the size
of the target concept being learned.

Proof: First we argue that the algorithm pac-
learns any uniformly decomposable concept class.
The reason is that if a concept in the class is
found to be consistent with the data, then with
high probability it is not e-bad. Summing over
all d, we show (as for the Enumerable-Learner),
that the total probability of outputting a concept
which is e-bad is at most 4.

The number of examples at each stage, mg,
is chosen according to equation (1) with confi-
dence parameter ﬁ,— and accuracy parameter e.
Therefore, the probability that an e-bad concept
is output in step 3, for a given value of d, is at
most -4{;7. Summing over all possible values of d,
we get that the probability of an e-bad concept
to be output is bounded by §. It remains to show
that the algorithm terminates.

The value of d is incremented by 1 every stage,
therefore after size(T') stages, where T is the tar-
get concept, either the algorithm has terminated
or d = size(T). When d = size(T), there is
a consistent concept in Cy (i.e., T'), so the al-
gorithm terminates at this stage. Furthermore,
the number of examples seen by the algorithm
is polynomial in size(T). For the case that the

124

concept classes that polynomially uniformly de-
composable, the running of the algorithm is poly-
nomial in size(T') as well. O

As an illustration of the power of these tech-
niques, the following classes are pac-learnable,
even though they are uncountable and have infi-
nite VC dimension.

1. The concept class Crpr whose members are
finite unions of subintervals of [0,1].

2. The concept class Cpr whose members are
regions in the two-dimensional Euclidean plane
defined by an inequality of the form y <
f(z), where f is any polynomial of finite de-
gree with real coefficients.

3. The concept class Crc whose members are
defined by multilayer threshold circuits of
arbitrary (finite) size and configuration in
n-dimensional Euclidean space.

We show that the first problem is also poly-
nomially pac-learnable. We are not sure about
the complexity of the second problem, and we
conjecture that the third problem is intractable.

Theorem 2.3 The concept class Crr is polyno-
mially uniformly decomposable.

Proof: Decompose the class Cpr such that each
C; includes all the concepts with at most % subin-
tervals. To show that Cpy is uniformly decom-
posable we need to exhibit an algorithm, Afj,
that given a sample and an index d, finds a con-
sistent concept from Cy (if one exists) or output
“none” (if such a concept does not exists). Algo-
rithm Ap; is based on the observation that the
number of alternations (from positive examples
to negative examples or vice versa) in a sam-
ple along the interval [0,1] is at most twice the
number of subintervals in the target concept. If
the number of alternations is greater than d then
AFrr outputs “none”, else it outputs a concept
with minimal number of subintervals that is con-
sistent with the sample. (Clearly, the output
concept is in Cq.) Since Apy runs in polyno-
mial time in the sample size, Cpy is polynomially
uniformly decomposable. O

Corollary 2.1 The concept class Cry is polyno-
mially pac-learnable. O

Our approach doesn’t seem to help much for
answering some open questions, such as whether
DNF is polynomially pac-learnable. While the
approach presented above (e.g. Enumerable-
Learner) can be used to show that the sam-
ple complexity for pac-learning DNF is not too
great, questions of computational complexity still
remain unsolved.

The converse to Theorem 2.2 holds for classes
that are polynomially pac-learnable. In such a
case there is a polynomial (in size(c)) upper bound
on the number of examples that we can draw
while pac-learning a specific concept ¢. We can
use the decomposition induced by the function
size and refine it such that it will meet our defi-
nition of a decomposable class.

However, Benedek [1] has shown that the con-
verse to Theorem 2.2 does not hold in general.
That is, there are concept classes that are not
decomposable but are pac-learnable (using dy-
namic sampling). His proof is based on the class
Cc1 whose members are countable unions of subin-
tervals of [0,1]. In [2] it was shown that Cc¢r
is not decomposable. The crux of his learning
algorithm is that any concept ¢; € Cc¢y, has a
concept ¢z € Cry, such that P(c;®e¢;) < €.

It remains as an open problem to find a con-
cept class that is not pac-learnable in our model.

Another open question is that of consistency:
a learning algorithm is said to be consistent if its
output always correctly classifies all of the exam-
ples the learning algorithm has seen. While con-
sistency is not required of a learning algorithm,
Haussler et. al. [6] have proven that there exists
a general procedure for transforming an incon-
sistent static sampling procedure to a consistent
static sampling procedure. Their proof does not
apply to dynamic sampling algorithms, and it
remains an open question as to whether such a
transformation is possible.

2.3 The number of stages

A stage of a dynamic sampling pac-learning algo-
rithm consists of drawing a sample and then do-
ing a computation. The number of stages is the

125

number of times a sample is drawn. In Uniformly-
Decomposable-Learner the number of stages
may be as large as n = size(T). We next show
that this can be improved for the concept class

Crr.

Theorem 2.4 To pac-learn the concept class Cry
the number of stages required tois is O(1glgn).

Proof: In each stage update the value of d to d2
rather than d + 1. (Note that the decomposition
of Cry is such that if ¢ < j then C; C C;.) D

For the class Cr; we now prove that this bound
is tight.

Theorem 2.5 Any algorithm that pac-learns Cry,
with respect to the uniform distribution using a
number of ezamples that is bounded by a polyno-
mial in the number n of subintervals of the target
concept requires at least Q2(loglogn) stages.

Proof: First we show that Q(n) examples are
required for a worst case concept with at most n
subintervals. (We can not use a VC dimension
argument (e.g., equation (2)) since the proba-
bility distribution is fixed.) Divide the segment
[0,1] into » equal length subintervals. With prob-
ability 1/2, every point in subinterval ¢ will be a
positive instance of the target concept, and with
probability 1/2 every point in subinterval ¢ will
be a negative instance of the target concept, in-
dependently for each i. Clearly, the target con-
cept can be expressed as a union of at most n
subintervals. If the pac-learning algorithm draws
less then n/2 examples, then the expected error
rate is at least 1/4. However, if the total error
rate exceeds § + (1 — 6)e then pac-learning can
not be achieved. By choosing, say, ¢ = § = 1/8,
we force the pac-learning algorithm to draw at
least n/4 examples for some concept.

Since the algorithm uses a polynomial size sam-
ple, there are constants e and ¢ such that the
number of examples of the algorithm is bounded
above by cn®. Without loss of generality both e
and ¢ are greater than 1. (In general, ¢ may
depend on € and 6. Since both € and § are
fixed, we can regard ¢ as a constant.). Let S;
be the number of examples drawn by the end
of stage ¢. Note that there is a concept in Cpy

consistent with the samples drawn up to stage
¢ which has at most §; subintervals. Thus, if
the algorithm proceeds to stage ¢ + 1, it can
draw at most ¢5;° — §; additional examples in
stage ¢ + 1, otherwise the bound on the sample
size may be violated. Therefore, S;4;1 < ¢S5°,
so we can bound S; from above by . Note
that S,(10g,10g,n) = 0(n). We assumed that the
number of examples is at least n/4, hence, the
number of stages is Q(loglogn). O

Finally, we show that not every concept class
of infinite VC dimension requires an unbounded
number of stages.

Theorem 2.6 Let Cy denote the concept class
of all subsets of the natural numbers. Then Cn
can be pac-learned with a two-stage learning al-
gorithm.

Proof: In the first stage we draw a sample of
size (2/€)1g(2/6). Let M denote the largest inte-
ger appearing in this sample. With probability
at least 1 — §/2 the probability associated with
integers greater than M is at most €¢/2. In the
second stage we consider the induced problem of
learning the restriction of the target concept to
the natural numbers at most M. This reduces
the problem to one having a finite VC dimension
(i-e., M), which can be solved with a static sam-
pling algorithm with parameters ¢/2 and /2. O

A simple generlization of this argument ap-
plies in a straightforward manner whenever the
instance space is countable.

3 Approximating from examples

The problem of “learning from examples” is to
find a good approximation for the target concept
T, given that T is from the class C. This assumes
that we have a priori, or background, knowledge
that the target concept is indeed from the class
C. This assumption may often be unrealistic. It
is often more natural to assume that C contains
concepts which may be “close” to T, even though
T itself might not be a member of C.

How should one proceed if it is not known «
priori that T € C'? The algorithms given in the
literature, and those in the previous sections, are

126

built around the assumption that T € C, so that
they are guaranteed that there will always be
a concept in C with zero true error rate (and
thus zero error rate as measured on the examples
seen). If T ¢ C, there may be no concept in C
which has zero measured error rate. Even worse,
it may be the case that every concept in C has
true error rate greater than some fixed value 8 >
0. In what follows let

B = infc{P(C®T):C €C}.

We therefore define the problem of “approxi-
mating T using C from examples” as the problem
of producing, given as input

1. a source of examples labeled according to
the target concept 7',

2. an accuracy parameter ¢, and
3. a confidence parameter §é,

a concept C' € C whose error rate is at most 8+-¢,
with probability at most 1 — §. An algorithm for
solving this problem is called an approzimation
algorithm for the class C. Note that 8 is not an
input to the approximation algorithm. If an ap-
proximation algorithm exists for C then we say
that C is an approzimation class. If this proce-
dure runs in time polynomial in 1, 1, and the
size of C' then we say that C is a polynomial ap-
prozimation class.

When T € C, we have 8 = 0, and this prob-
lem reduces to the problem of pac-learning from
examples.

When C has finite VC dimension, then C is an
approximation class. (This result follows sim-
ply from the results of Vapnik and Chervonenkis
[14].) The procedure is merely to draw enough
examples, and then return the concept with the
lowest measured error rate.

What happens when C has infinite VC dimen-
sion?

Suppose further that C is “strongly uniformly
decomposable” in that it is decomposable and
there exists a procedure which, given as inputs
d and a sample, returns the concept in C; which
has minimum error rate on the sample.

Can we then modify our procedure Uniformly-
Decomposable-Learner to show that C is an
approximation class in general?

The answer seems to be no. Let us define

Ba = inf{P(COT): C € Ca} .
d
and consider the case that

1

7 >€.

As we go to larger and larger d’s, the true error
rate for the best concept of size d gets smaller
and smaller. The problem is, how can the learner
predict that 8 # 07

We face here the problem of trading off be-
tween “complexity of the hypothesis” (i.e., con-
cept size) and “fit to the data” (i.e., true error
rate). The problem of striking this tradeoff well
is a classic one — a standard example is the prob-
lem of fitting a polynomial to a set of points rep-
resenting noisy measurements, where the degree
of the polynomial is unspecified. The tradeoff is
often achieved by minimizing a function which
is the sum of some function of the concept size
and some function of the amount of information
needed to describe all of the classifications in the
sample, given a description of the concept for
free. (This is the “minimum description length
principle” as proposed by Rissanen [11]; see also
Quinlan and Rivest[10].) However, in our case
the size of the sample is not fixed, but is up to
the learning algorithm; thus the MDLP approach
is not applicable.

In some cases it may be possible to estimate 3
well from the data. For example, if C consists of
all finite subsets of the integers which contain the
integer 1, (assuming that T ¢ C) then § is just
P(1), which can be estimated from the observed
frequency of 1 in the data. This class has infinite
VC dimension but is a polynomial approxima-
tion class. In general, however, the value of 3 is
not easy to estimate, and the algorithm is faced
with the problem of trying to guess whether by
increasing d sufficiently the value of 84 will drop.
Conversely, we note that if C is an approximation
class, then 3 can be estimated accurately.

Ba=€+

It may be that this problem may only be tractable

in general when the algorithm is also given as in-

127

put an upper bound ﬁ > 3, and the algorithm
must produce as output a concept C' whose true
error rate is at most B + €, with high probabil-
ity. The techniques we have given previously can
be modified to handle this case. (The problem
of pac-learning from examples is essentially the
case § = 0.)

Thus we see that while pac-learning from ex-
amples generalizes nicely to the case of infinite
VC dimension, approximating from examples doesn’
seem to generalize as well. This is unfortunate
since, as noted above, one doesn’t always have
an a priori guarantee that the target concept is
in the concept class.

4 Discrete VC problem

In this section we define the computational prob-
lem of computing the VC dimension of a finite
family of concepts defined over a finite domain,
and give some simple results about its complex-
ity. We then give a combinatorial characteriza-
tion of such families when the VC dimension is
1.

4.1 Definition of the problem

We represent a concept class C, |C| = r, over a
finite domain X, |X| = n, by an » X n matrix
M such that M;; = 1iff z; € C;. Each row of
M represents a concept in C, and each column
represents a point in A'. We define the VC di-
mension of the matrix M to be the VC dimension
of the concept class represented by M.

Definition 4.1 The discrete VC dimension prob-
lem is the following: given an r X n 0-1 valued

matriz, M, to determine the VC dimension of
M.

To determine if the VC dimension of an r x n
matrix M is less than d takes time O(rn?); it
suffices to check all (7}) possible combinations of
d columns.

Theorem 4.1 The VC dimension problem can
be solved in time O(rnl&").

Proof: Use the above argument and the fact
that the VC dimension of a concept class with r
concepts is at most Ig». O

4.2 A combinatorial characterization

We now present a combinatorial characterization
of matrices whose VC dimension is one.

Theorem 4.2 A 0-1 valued matriz M has VC
dimension 1 iff it can be reduced to the empty
matriz by a sequence of operations of one of the
following two forms:

1. Delete-column: Delete any column which
contains less than two zeros or less than two
ones.

2. Delete-row: Delete any row which is iden-
tical with a previous row in the matriz.

Proof: The delete-row has the effect of remov-
ing a concept which is already represented by
some other row in the matrix, so this operation
can not affect the VC dimension of the matrix.

If M has VC dimension at least 2, then M has
at least two columns and four rows such that all
rows of the the induced submatrix are distinct.
Thus those two columns will never be deleted
by a delete-column operation. Therefore if the
VC dimension is at least 2, then it remains so
after a delete-column operation.

It remains to show that if neither delete-row
nor delete-column is applicable, then M has
VC dimension at least two.

Define the score of a column to be the maxi-
mum of the number of zeros it contains and the
number of ones it contains. Let &£ be a column of
maximum score, and assume without loss of gen-
erality that column k has at least as many ones
as zeros. (See Figure 1.) Column % must have
at least two zeros, since delete-column is not
applicable. Let 7o and 7, be two rows in which
column £ has zeros, and let § be some column in
which ig and ¢; have different values. (Column j
must exist because delete-row does not apply.)

Now column j can not have more 1’s than col-
umn £, so there is a row (say ly) where column
k contain has a 1 and column j has a 0. But

128

() 0 (o]

i1 o 1
1

ly 1 0

L i b

Figure 1: The matrix for the proof of Theorem
4.2

at the same time, it is impossible that M;; = 0
whenever My, = 1, for then the score of column
J exceeds the score of colurnn k. Therefore there
is a row l; where M) ; = M;,; = 1. But then
columns j and k are labelled in all possible ways
by concepts ig, #1, lo, and !, so that the VC
dimension of M is at least two. O

Now in order for the score of row j not to ex-
ceed the score of column k, in those rows where
column k has ones column j must have at least
one zero and at least one one. (Say in rows /g and
[;.) But then columns k and j represent two el-
ements which can be labeled in all possible ways
by concepts represented by the rows, so that the
VC dimension of M is at least two. O

It remains an open problem to find a combina-
torial characterization for VC dimensions greater
than one, and to find a more efficient algorithm
for the discrete VC dimension problem.

5 Conclusions

Our main result is an extension of distribution-
free learning model to the case of infinite VC
dimension; this greatly enlarges the class of con-
cept classes which are pac-learnable. We have
examined the closely related problem of approx-
imating from examples, and have seen that our
results probably do not generalize to this prob-
lem. Finally, we have considered the problem of
computing the VC dimension for finite concept
classes on finite domains, and have provided a

new combinatorial characterization of the case
that the VC dimension is one. A number of open
problems, conjectures, and new research direc-
tions have been proposed.

Acknowledgements

We acknowledge many useful conversations with
Michael Ben-Or, Gyora Benedek, Mauricio Karch-
mer, Manfred Warmuth and Michael Werman.
The notions in section 3 were developed in re-
sponse to a question raised by Manfred War-
muth. We are thankful for his permission to
present the material here. We also wish to thank
David Haussler for helpful comments on an ear-
lier draft of this paper.

References

[1] G. M. Benedek. Ph.d. dissertation, in
preparation. 1988.

[2] G. M. Benedek and A. Itai. Nonuniform
learnability. In ICALP, pages 82-92, July
1988.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler,
and M. K. Warmuth. Classifying learn-
able geometric concepts with the Vapnik-
Chervonenkis dimension. In Proceedings
of the Eighteenth Annual ACM Symposium
on Theory of Computing, pages 273-282,
Berkeley, California, May 1986.

[4] A. Blumer, A. Ehrenfeucht, D. Haussler,
and M. K. Warmuth. Learnability and the
Vapnik-Chervonenkis Dimension. Techni-
cal Report USCS-CRL-87-20, U.C. Santa
Cruz Computer Science Laboratory, Nov.
1987.

[5] A. Ehrenfeucht, D. Haussler, M. Kearns,
and L. Valiant. A General Lower Bound on
the Number of Fzamples Needed for Learn-
ing. Technical Report UCSC-CRL-87-26,
U.C. Santa Cruz Computer Science Depart-
ment, 1987.

[6] D. Haussler, M. Kearns, N. Littlestone, and
M. K. Warmuth. Equivalence of models

129

7]

(8]

(9]

(10]

[11]

(12]

(13]

(14]

for polynomial learnability. In First Work-
shop on Computational Learning Theory,
Aug. 1988. To be published by Morgan-
Kaufmann.

M. Kearns, M. Li, L. Pitt, and L. Valiant.
On the learnability of boolean formulae.
In Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing,
pages 285-295, New York, New York, May
1987.

M. Kearns, M. Li, L. Pitt, and L. Valiant.
Recent results on boolean concept learning.
In Proceedings of the Fourth International
Workshop on Machine Learning, pages 337—
352, University of California, Irvine, June
1987.

D. Pollard. Convergence of Stochastic Pro-
cesses. Springer-Verlag, 1984.

J. R. Quinlan and R. L. Rivest. Inferring de-
cision trees using the minimum description
length principle. Information and Compu-
tation, 1988. (To appear. An early ver-
sion appeared as MIT LCS Technical report
MIT/LCS/TM-339 (September 1987).).

J. Rissanen. Modeling by shortest data de-
scription. Automatica, 14:465-471, 1978.

R. L. Rivest. Learning decision lists. Ma-
chine Learning, 2(3):229-246, 1987.

L. G. Valiant. A theory of the learnable.
Communications of the ACM, 27(11):1134~
1142, Nov. 1984.

V. Vapnik and A. Y. Chervonenkis. On
the uniform convergence of relative fre-
quencies of events to their probabilities.
Theory of Probability and its applications,
XVI(2):264-280, 1971.

