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These days, it seems that we are constantly bombarded by discussions of “big data” and our lack of tools
for processing such vast quantities of information. An important class of big data is most naturally viewed
as samples from a probability distribution over a very large domain. Such data occurs in almost every setting
imaginable – examples include samples from financial transactions, seismic measurements, neurobiological
data, sensor nets, and network traffic records. In many cases there is no explicit description of the distribution
– just samples. Even so, in order to effectively make use of such data, one must estimate natural parameters
and understand basic properties of the underlying probability distribution. Typical questions include: How
many distinct elements have non-zero probability in the distribution? Is the distribution uniform, normal or
Zipfian? Is a joint distribution independent? What is the entropy of the distribution? All of these questions
can be answered fairly well using classical techniques in a relatively straightforward manner. However,
unless assumptions are made on the distribution, such as that the distribution is Gaussian or has certain
“smoothness” properties, such techniques use a number of samples that scale at least linearly with the size
of the domain of the distributions. Unfortunately, the challenge of big data is that the sizes of the domains
of the distributions are immense. The good news is that there has been exciting recent progress in the
development of sub-linear sample algorithmic tools for such problems!

In this article, we will describe two lines of results, the first on testing the similarity of distributions and
the second on estimating the entropy of a distribution, which highlight the main new ideas that have led to
this progress. We assume that all of our probability distributions are over a finite domain D of size n, but
(unless otherwise noted) we do not assume anything else about the distribution.

Closeness to another distribution How can we tell whether two distributions are the same? There are
many variants of this question that have been considered, but let’s begin with a simpler question, motivated
by the following: How many years of lottery results would it take for us to believe in its fairness? In our
setting – given samples of a single distribution p, how many samples do we need to determine whether p is
the uniform distribution?

To properly formalize this problem, we need to allow some form of approximation, since p could be
arbitrarily close to uniform, though not exactly uniform, and no algorithm that takes finite samples would
have enough information to detect this. We will use the property testing framework: What we ask of our
testing algorithm is to “pass” distributions that are uniform and to “fail” distributions that are far from
uniform. We next need to decide what we mean by “far” – many distance measures are in common use, but
for this article we will use the L1 distance between two probability distributions p and q is defined as:

||p, q||1 =
∑
x∈D
|p(x)− q(x)|.

For 0 < ε < 1, we say that p and q are ε-close with respect to the L1 distance if ||p, q||1 ≤ ε. Denote by UD
the uniform distribution on D. Then, on input parameter 0 < ε < 1, the goal of the testing algorithm will
be to pass p if it is uniform and fail if ||p, UD||1 ≥ ε. If p is in the middle – not uniform, but not far from
uniform – then either “pass” or “fail” is an allowable, and not unreasonable, answer.

One natural way to solve this problem, which we will refer to as the “naive algorithm”, is to take enough
samples of p so that one can get a good estimate of the probability p(x) for each domain element x. It is easy
to see that there are distributions for which such a scheme would require at least linear in |D| = n samples.
However, there is a much more efficient O(

√
n/ε4) sample algorithm, based on an idea of Goldreich and

Ron [GR00] (see also [Pan08] for a more recent algorithm which requires only O(
√
n/ε2) samples). This

algorithm does not attempt to learn any of the probabilities of specific domain elements according to the
distribution p. Instead, the algorithm counts “collisions” – the number of times that samples coincidentally

1



fall on the same domain element. Slightly more specifically, for a set of k samples x1, . . . , xk, let i, j ∈ [1..k]
be two indices of samples. Then we say that i and j “collide” if they output the same domain element, i.e.,
xi = xj . Note that the probability that i and j collide does not depend on i, j, and is an important parameter
of the distribution p which we will refer to as the collision probability Cp. Consider the fraction of pairs i, j
in the actual sample set that collide – it is easy to see that its expectation is exactly Cp. A simple calculation
shows thatCp is minimized when p is the uniform distribution, in which caseCUD

= 1/n. One can show that
when p is far from the uniform distribution, thenCp is very different than 1/n. So now it should be clear that
the collision probabilityCp is a useful statistic to estimate. The especially convenient property ofCp is that it
is a statistic that one can estimate with surprisingly few samples, since k samples yield

(
k
2

)
pairs from which

to estimate the collision probability. Although these pairs are not independent, [GR00] have shown that they
have nice properties, yielding an algorithm whose sample complexity is O(

√
n log n/ε4) which estimates

the collision probability and in turn solves our uniform distribution testing problem. In fact, one cannot do
much better in terms of n. It is easy to see that generalized collision statistics (including `-way collisions for
all `) are the only information that an algorithm can use to determine whether a distribution is uniform. More
than that, generalized collision statistics are the only information that an algorithm can use for determining
whether p has any of a large class of properties – namely those properties that are independent of the names
of the domain elements, the so called symmetric properties! Using this observation, one only needs to find
a distribution which has no collisions at all until at least Ω(

√
n) samples are taken, but on the other hand

is very far from uniform. Such a distribution can be constructed by taking the uniform distribution over a
random subset S of half of the domain [BFR+00].

What if we want to know whether p is the standard normal distribution? More generally, what if we
want to know whether p is the same as another distribution q, where q is known explicitly by the algorithm
– that is, q(i) for any domain element i can be determined essentially for free? For example, this would be
the case if q is a Gaussian, Zipfian or exponential distribution with known parameters of expectation and
variance. Batu et. al. [BFF+01] give an algorithm which solves this problem for any q using O(

√
n log n)

samples from p to perform O(log n) collision probability estimations over carefully chosen subdomains of
D.

Finally, what if both p and q are unknown and the only way we can find out anything about them is
to view samples? Up until now, though the analyses are nontrivial, the sample complexities are not terri-
bly surprising to those that have studied “birthday paradox”-type analyses of collisions and hashing. But
here the story takes a fascinating turn, since in fact, the complexity of the problem is quite different from
n1/2! Why? The reason is that there may be elements which are quite “heavy” on which p, q are identical,
but whose collision statistics are so big that they hide what is happening on the rest of the domain. For-
malizing this lower bound reasoning was quite challenging and eluded researchers for several years, but in
2008, Paul Valiant was able to prove that Ω(n2/3) samples are required for this task [Val08, Val11]. The
O(n2/3 log n poly (1/ε)) algorithm, given in 2000 by [BFR+00, BFR+10], distinguishes pairs of distribu-
tions p and q that are identical from those pairs p, q which are ε-far as follows: First find the “heavy” domain
elements, namely, those that have probablity at least 1/n2/3. Since the domain elements are so heavy, there
can be at most n2/3 of these, so the naive algorithm which takes O(n2/3 log n poly (1/ε)) samples of p and
q and estimates their probabilities on each of the heavy elements is likely to give very good estimates of
their probabilities. If p and q seem similar, then check that they are also similar on the rest of the domain by
sieving out the heavy elements and using a test that is based on estimating collision probabilities – this time,
not just collision probabilities of p and q, but also collisions between samples of p and q. Since none of the
remaining domain elements are heavy, one can show that O(n2/3 log n poly (1/ε)) samples suffice for this
latter task as well.
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Such ideas have had further applications: They have been used to design algorithms for testing whether
a distribution is monotone increasing or bimodal over the domain [BKR04], or whether a joint distribution
is independent [BFF+01]. The sample complexity of many of these problems have been investigated over
other distance norms [GR00, GMV09, BNNR11], but in many cases the same collision-based ideas apply.
There is much further work on testing similarity, see for example [ADJ+11, GMV09, LRR11].

A tolerant test is given two parameters ε1 < ε2, and is required to pass distributions p that are ε1-
close to q and to fail distributions p that are not even ε2-close to q. Unfortunately, even for the problem of
testing whether p is the uniform distribution, P. Valiant has shown that for large enough values of ε1, the
task becomes much harder, requiring at least n1−o(1) samples [Val08, Val11] (it is known that n/(ε2 log n)
samples are sufficient [VV11b]). Still, some tiny amount of tolerance can be squeezed out of the more
efficient algorithms and it is an interesting direction to see how much more can be achieved.

Estimating the entropy of a distribution. The Shannon entropy of a distribution is an important measure
of the randomness of the distribution and the compressibility of the data produced by that distribution – thus,
entropy plays a central role in statistics, information theory, data compression and machine learning. The
entropy of distribution p over a discrete domain D, is defined as:

H(p) ≡
∑
x∈D
−p(x) log p(x).

The problems of estimating the entropy of a distribution and the closely related measures of KL-divergence
and mutual information have received much attention, because of their usefulness in analyzing data in ma-
chine learning and the natural sciences (cf. [Ma81, SKdRvSB98]). How many samples of a distribution are
required in order to get a good estimate of the entropy? But first we should ask – what do we mean by a
good estimate?

Let us begin with the setting in which one would like an additive estimate of the entropy – that is, the
algorithm should output a number y such that H(p) − ε < y < H(p) + ε for a given input parameter ε. In
such a case, one very common estimator for the entropy, sometimes referred to as the “plug-in” estimate, is
based on a “best guess” of what the entire distribution p looks like. That is, if p̂(x) is the fraction of times
that a domain element x is seen in a sample, then the estimate of the entropy is given by the entropy of p̂,
namely, Ĥ =

∑
x∈D −p̂(x) log p̂(x). It is easy to see that for this estimate to have good quality, one must

take enough samples to get a good estimate the value of p(x) for most x, which in general is only guaranteed
to happen when the number of samples is at least linear in n. Other commonly used estimators such as the
Miller-Madow corrected estimator and the jacknifed naive estimator are similar in that they require linear
samples because they do not adequately deal with the contribution to the entropy from the unseen samples.
A major barrier was broken when in [Pan04], Paninski gave a non-constructive proof of the existence of
an algorithm for estimating the entropy with a number of samples that is sublinear in the domain size.
Recently, very exciting results of G. Valiant and P. Valiant in [VV11a, VV10a, VV10b, VV11b] settled the
longstanding open question of the complexity of this problem. On one hand, they give an O(n/(ε2 log n))-
sample algorithm for estimating the entropy of a distribution over a domain of size n to within an additive
error of ε (improving on the results of [Val11, RRSS09]). On the other hand, they show that this task is
not doable with fewer than Ω(n/(ε log n)) samples. In order to show the first result, they show that linear
programming can be used to find a distribution that is expected to have a similar set of collision statistics to
p. Then, this new distribution, though likely to be very different from p in L1-distance, is similar to p in at
least one important way – it is likely to have similar entropy! To show the second result, their lower bound
constructs two families of distributions that have very similary collision behaviors, yet are very different in
terms of support size or entropy.
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Let us now turn to the setting in which a much weaker multiplicative estimate of the entropy is sufficient.
That is, on input parameter γ > 1, the algorithm should output a number y such thatH(p)/γ < y < γH(p).
In this case, it suffices to have a number of samples that is dramatically smaller that the domain size –
algorithms which use only O(n(1+o(1))/γ

2
) samples can be achieved [BDKR05].1 Furthermore, it is known

that Ω(n1/γ
2
) samples are necessary for this task [Val08, Val11]. Just to be concrete — this means that one

can approximate the entropy to within a multiplicative factor of two using only slightly worse than O(n1/4)
samples, which is significantly less than what is required for the additive error case! The description of the
algorithm is very simple – it uses the plug-in estimate for any domain elements that have high probability,
and assumes that the distribution is uniform over the rest of the domain.

Similar results can be achieved for another closely related and well studied task – that of estimating
the support size of a distribution. The question of estimating the support size of a distribution has been
considered at least since the early 1940’s by Fisher and Corbet to estimating the number of butterflies in a
region (see [Bun] for a large number of other reasons to consider this problem). In [VV11b], θ(n/ log n)
samples are shown to be both necessary and sufficient to achieve an additive estimate of the support size.

Summary and some final words. The study of big data has led the Computer Science community to
make very exciting progress on classical statistical problems. Still, in some settings, the lower bounds can
be daunting. One approach to overcoming the lower bounds is to find specialized algorithms for distributions
that have convenient properties, such as that of being continuous, monotone, normal... Such assumptions
often lead to dramatically better query complexities.

A second approach to overcoming the lower bounds is to note that in some settings it is natural to assume
that the algorithm has access to other information in addition to random samples, such as the ability to
quickly determine p(x) for any domain element x. For example, when determining distributional properties
of data that is stored in sorted order, one can still take a random sample of the data, but it is also easy to
determine the number of times that a given element appears in the data set. In another example, Google
[FB06] has published their N -gram models, which describe their distribution model on 5-word sequences
(from which the p(x) values can be found), along with the complete set of texts on which their model was
constructed (from which random samples according to p can be obtained). Algorithms for such models have
received less attention, though they have been studied in [BDKR05, RS09]. The efficiency of algorithms in
these more powerful models can be exponentially faster, and thus when more powerful queries are available,
it is crucial to take advantage of them.
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