
6.842 Randomness and Computation February 28, 2022

Lecture 9
Lecturer: Ronitt Rubinfeld Scribe: Richard Qi

1 Interactive Proofs

Definition 1 (Review from previous Lecture) An interactive proof system for a language L
with a verifier V and prover P is a protocol such that:

1. If x ∈ L, and V and P follow protocol, then PrV’s coins[V accepts] ≥ 2/3

2. If x /∈ L, and V follows protocol, PrV’s coins[V accepts] ≤ 1/3, no matter what P does.

It is possible to show that V does not need to use private coins. In other words, any interactive proof
system that uses private coins can be modified so that is an interactive proof system that does not use
private coins.

1.1 Introduction to the Set Size Interactive Proof Problem

Instead of proving that we can always use public coins instead of private coins, we will consider a simpler
example. Suppose that P wants to convince V that a set if big. Let Sϕ = {X|X satisfies ϕ} be some
set of boolean assignments. (This could be replaced by any language L ∈ IP , but we use this example
for simplicity.)

Theorem 2 (Interactive Proof for Set Size) There exists some protocol using only public coins
such that on input ϕ:

1. If |Sϕ| > k and V, P follow protocol, then Pr[V accepts] ≥ 2/3.

2. If |Sϕ < k
∆ and V follows protocol, then Pr[V accepts] ≤ 1/3.

Consider the space of all assignments. One idea we could use is the following process:

1. For some number of iterations, V picks a random assignment x, then evaluates ϕ(x).

2. Then, V outputs number of satisfying assignments
total number of repetitions as an estimate for the fraction of all assignments that

are satisfying.

The expected amount of time V needs in the above problem just to find a single satisfying assignment
is 2n

|Sϕ| , which could be very large if |Sϕ| is relatively small. Alternatively, we could ask the Prover in

the protocol to return all satisfying assignments in Sϕ and have the Verifier check each one. This could
also take a large amount of time if |Sϕ| is large.

1.2 Universal Hashing Introduction

Some family of functions H = {h1, h2, · · · } for hi : [N] → [M] is “pairwise independent” if, when h is
chosen randomly from H:

1. ∀x ∈ [N], h(x) ∈U [M].

2. ∀x1 ̸= x2 ∈ [N], (h(x1), h(x2)) ∈U [M]2.

1

Here, ∈U denotes uniformity. Equivalently, the first condition implies that any location x is mapped
uniformly, and the second condition implies that any pair of locations x1, x2 is mapped uniformly and
independently.

Now, suppose we use some randomly drawn h from a family of pairwise independent functions H that
maps the set of all assignments to a set of assignments of size 2l, where we pick l such that 2l−1 ≤ k ≤ 2l.
Then, h maps any element x ∈ Sp to some element in h(Sϕ). Clearly, |h(Sϕ)| ≤ |Sϕ| because every input
is mapped to a single output. Our hope is that |h(Sϕ)| is not too much smaller than |Sϕ|.

1.3 Note on Pairwise Independent Hash Functions

Pairwise independent hash functions can be used to map some space into a smaller space, for example
mapping a list of names to some smaller sized strings. This is good because it reduces the amount of
storage needed. However, there could be collisions, which is bad. Pairwise independence give some upper
bound on the number of collisions.

1.4 Protocol

We now define the actual protocol used for solving the “set size” problem that was first introduced.

1. V picks some h uniformly and randomly from H.

2. V sends h to P .

3. P sends some x ∈ Sϕ such that h(x) = 0l, if possible.

4. V accepts iff x ∈ Sϕ, which they can check quickly. Note that if Sϕ was some other type of language
in IP, this step would become slightly more complicated because another protocol would have to
be used to check whether x ∈ L. For L = Sϕ, V can easily check this by themself.

First, suppose |Sϕ| > k. Our hope is that |h(Sϕ)| ≈ k so that 0l is hit by the hash function with a
reasonably large probability. Then, P will be able to find some x such that h(x) = 0l, which they will
send back to V .

Next, suppose |Sϕ| < k
∆ . Then, |h(Sϕ)| < k

∆ , so our hope is that it is much less likely that 0l is hit
compared to the first case. If 0l is not hit by h, then P cannot find some x such that h(x) = 0l. If they
send an incorrect x such that h(x) ̸= 0l, V will be able to detect that an incorrect x was sent.

1.5 Formal Analysis of the Protocol

Lemma 3 If H is some pairwise independent hash family, and U ∈ {0, 1}n, and a = |U |
2l

, then we must

have a− a2

2 ≤ Prh∈H[0l ∈ h(U)] ≤ a.

Proof ∀x, Prh∈H[0l = h(x)] = 1
2l

by pairwise independence. Next,

Pr[0l ∈ h(U)] ≤
∑
x∈U

Pr[0l ∈ h(x)] =
|U |
2l

= a, (1)

where the inequality follows from Union Bound. This proves the right hand side of the lemma.
For the other side, consider

Prh∈H[0l ∈ h(U)] ≥
∑
x∈U

Pr[0l = h(x)]−
∑

x ̸=y∈U

Pr[0l = h(x) = h(y)], (2)

which follows from inclusion-exclusion. Again, from pairwise independence, we have that

2

∑
x∈U

Pr[0l = h(x)]−
∑

x ̸=y∈U

Pr[0l = h(x) = h(y)] = a−
(
|U |
2

)
· 1

22l
≥ a− a2

2
, (3)

as desired.

Recall that l was chosen such that 2l−1 ≤ k ≤ 2l. Let a =
|Sϕ|
2l

. Also, choose ∆ = 4.

• If |Sϕ| > k, then a ≥ k
2l

≥ 1/2, so Pr[0l ∈ h(Sϕ)] ≥ a− a2

2 ≥ 3/8.

• If |Sϕ| < k
∆ , then a <

k
∆

2l
≤ 1

∆ , so Pr[0l ∈ h(Sϕ)] ≤ a ≤ 1
∆ = 1/4.

Now, we can repeat the process of choosing hash functions h and following the described protocol. If
|Sϕ| > k and protocol is followed, then number of times that V accepts approaches some fraction at least
3/8. If |Sϕ| < k

∆ , then no matter what the Prover does, the number of times that V accepts approaches
some fraction at most 1/4. With high probability using Chernoff bounds, we can distinguish between
the two cases.

2 Derandomization via Conditional Expectation

2.1 General Description

2.1.1 Intuitive Idea

Consider some tree of scenarios, where at each node of the tree, we flip a coin, and depending on
whether the result is 0 or 1, we can possibly go to two possible child nodes. Then, if there are m total
coin tosses, some of that 2m possible results of the coin tosses are “good”, and some of them are “bad”.
In other words, the “good” results of the coin tosses are results where our randomized algorithm works,
and the opposite happens for “bad results”. For example, good results could correspond to when an
algortihm returns a cut with a high number of edges crossing the cut, while bad results could correspond
to when an algorithm returns a cut with a low number of edges. The general idea of Derandomization
via Conditional Expectation is to deterministically decide which node of the tree to travel down instead
of flipping a coin.

2.1.2 Formal Definition

Definition 4 Let m be the number of coin tosses. Denote the results of the coin tosses be r1, r2 · · · ri ∈
{0, 1}d. Let p(r1, · · · ri) be the fraction of continuations of the coin tosses that end up in a “good” leaf,
given that the results of our first i coin tosses were r1, · · · ri. Let e(r1, · · · ri) be the expected cut value of
the maximum cut value given the first i coin toss results.

By definition, we have p(r1 · · · ri) = 1
2p(r1 · · · ri, 0)+

1
2p(r1 · · · ri, 1) and e(r1 · · · ri) = 1

2e(r1 · · · ri, 0)+
1
2e(r1 · · · ri, 1).

Lemma 5 Suppose that at each step, we chose the value of our coin tosses ri such that for all i,
p(r1 · · · ri+1) ≥ p(r1 · · · ri). Suppose p(Λ) > 0, where Λ denotes the situation where no coin tosses have
been determined. Then, the sequence of deterministically chosen tosses r1, · · · rm corresponds to a good
result.

Proof From the statement, we must have p(r1 · · · rm) ≥ p(r1 · · · rm−1) ≥ · · · ≥ p(r1) ≥ p(Λ) > 0.
However, p(r1 · · · rm) corresponds to the situation where all m tosses have been determined and no
random coin flips remain, so it must be either 1 or 0. Since it is greater than 0, it must be 1, so r1, · · · rm
corresponds to a good result.

3

Lemma 6 Suppose that at each step, we chose the value of our coin tosses ri such that for all i,
e(r1, · · · ri+1) ≥ e(r1, · · · 1−ri+1). Then, the sequence of deterministically chosen tosses r1, · · · rm satisfies
e(r1, · · · rm) ≥ e(Λ).

Proof Recall that e(r1 · · · ri) = 1
2e(r1 · · · ri, 0) +

1
2e(r1 · · · ri, 1). Thus, if we choose ri+1 such that

e(r1, · · · ri+1) ≥ e(r1, · · · 1−ri+1), then we also have e(r1, · · · ri) = e(r1,···ri+1)+e(r1,···1−ri+1)
2 ≤ e(r1, · · · ri+1).

Then, using the same argument as Lemma 5, we have e(r1, · · · rm) ≥ e(r1, · · · rm−1) · · · ≥ e(Λ).

Essentially, what this last lemma is saying is that if at every node of the tree, we go down the branch
that leads to a higher expected value, then our ending value is at least our starting expected value if we
chose to flip a fair coin at each node to determine our path.

2.2 Derandomization in Max Cut

Recall in an earlier lecture the randomization algorithm for finding a large max cut. We flip n coins, and
place node i in S if ri = 0, and otherwise place node i in T . We previously showed that the expected

size of the cut is at least |E|
2 . This indicates that e(Λ) ≥ |E|

2 , where Λ denotes that no ri have been
decided yet.

2.2.1 Greedy Algorithm

Consider the following greedy algorithm:

1. Initialize S, T as empty sets.

2. For all i from 0 to n − 1, do the following: place vi+1 in S if the number of edges between vi+1

and T is at least the number of edges between vi+1 and S. Else, place vi+1 in T .

Note that our greedy algorithm is essentially choosing the flips of the random bits that the random-
ization algorithm uses.

2.2.2 Analysis of the Greedy Algorithm

First, we consider the expression e(r1, · · · ri), which the expected value of the max cut given that we
have already fixed the sets that the first i nodes belong to.

Definition 7 Consider some time i, where for every node j ≤ i we have decided which set it belongs to.
Define Si = {nodes j|j ≤ i, rj = 0}, which is the set of nodes we have decided to be in S. Similarly, define
Ti = {nodes j|j ≤ i, rj = 1} to be the set of nodes we have decided to be in T . Define Ui = V \ Si \ Ti

as the set of nodes that have not yet been decided to be in either S or T .

Claim 8 e(r1 · · · ri+1) = (number of edges between Si+1 and Ti+1)+
1
2 (number of edges touching Ui+1).

Proof This follows from the analysis of a previous lecture. Note that the edges between Si and Ti will
end up in the final cut, and the set of all possible remaining edges that could be in the cut is precisely
the set of edges touching Ui. Each of these has a probability 1/2 of being in the final cut if we flip a
coin for each node j ≥ i+ 1 to go on either side of the cut.

Lemma 9 The greedy algorithm chooses ri+1 such that e(r1, · · · ri+1) ≥ e(r1, · · · 1− ri+1).

4

Proof Suppose the greedy algorithm chooses ri+1 = 0 (the other case is exactly the same). This
means that the number of edges between node i + 1 and Ti was at least the number of edges between
node i+ 1 and Si.

Now, compare e(r1, · · · ri+1) against e(r1, · · · 1 − ri+1), which is the situation where an algorithm
copies the greedy algorithm but chooses the opposite of the what the greedy would have chosen at time
i+ 1. Clearly, the set Ui+1 is the same in both cases, so the term 1

2 (number of edges touching Ui+1) in
claim 8 is equal in both cases. The only difference in the term (number of edges between Si+1 and Ti+1)
is when examining edges between node i+1 and either Si or Ti. However, the greedy algorithm precisely
chose ri+1 such that the number of nodes between i+ 1 and either Si or Ti was maximized, so we must
have e(r1, · · · ri+1) ≥ e(r1, · · · 1− ri+1).

Theorem 10 The previously mentioned greedy algorithm deterministically achieves a max cut of size

at least |E|
2 .

Proof This follows from our claims that e(Λ) = |E|
2 , Lemma 9, and Lemma 6.

5

