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1 Testing “Triangle Freeness” for Dense Graphs

Definition 1 Triangle Freeness.

Graph G is triangle free, or ∆-free, if there does not exist an x, y, x such that A(x, y) = A(y, z) = A(x, z) = 1.

Claim: If there exists a property testing algorithm for ∆-freeness, then there exists an algorithm that works
as follows:

1. Pick random x, y, z

2. Test if A(x, y) = A(y, z) = A(x, z) = 1

However, we need to show how many times we must query the above instructions.

2 Detour

Let’s first determine how many triangles are in a random tripartite graph and then illustrate tools to assess
triangle freeness.

Figure 1: Random tripartite graph with density η

Assume that the density of edges between all subgraphs, or sets, above is η and ∆a,b,c is an indicator variable
such that:

∆a,b,c =

{
1 if there exists a triangle connecting a, b, c

0 otherwise
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Now, ∀ a ∈ A, b ∈ B, c ∈ C, the probability that there exists a triangle connecting some a, b, c and the
expected value of the indicator are the following:

Pr[∆a,b,c] = η3

E[∆a,b,c] = η3

Further, the expected number of triangles connecting the three subgraphs above is computed as:

E[#∆s] = |A||B||C| · η3

Now, let’s define the density and regularity of set pairs.

Definition 2 Regular Pairs. (i.e. γ-regular)

Let A,B ⊆ V such that A ∩ B = ∅, |A| > 1, and |B| > 1. Let e(A,B) = the number of edges between A
and B, with density defined as:

d(A,B) = e(A,B)
|A||B|

We say that A,B are γ-regular if ∀ A′ ⊆ A and ∀ B′ ⊆ B where

|A′| ≥ γ · |A| and |B′| ≥ γ · |B|,

the difference in densities between the pairs is:

|d(A,B)− d(A′, B′)| < γ

Thus, the graphs A′ and B′ must first be large enough to behave like random graphs, and then the densities
between the pairs must be less than γ. Note, the γ values above – indicating the size of the subsets and
the difference in density – do not have to be the same. Here, we simply use the same variable to reduce the
number of parameters.

Lemma 3 Triangle Counting Lemma (Komlós and Simonovits). ∀η > 0, there exists γ = γ∆(η) = 1
2 · η and

δ = δ∆(η) = (1− η) · η
3

8 ≥
η3

16 (if η < 1
2), such that if A, B, and C are disjoint subsets of V , and each pair

is γ-regular with density > η, then G contains ≥ δ · |A||B||C| triangles with a node in each of A, B, and C.

Proof We aim to prove the Triangle Counting Lemma. Note, such a lemma exists for all sizes of sub-
graphs. Let A∗ = the nodes in A with ≥ (η − γ)|B| neighbors in B and ≥ (η − γ)|C| neighbors in C.

In order to proceed, consider the following claim:

Claim 4 |A∗| ≥ (1− 2γ)|A|

Proof To prove the above claim, we know that if A′ is the number of bad nodes of A with
respect to B and A′′ is the number of bad nodes of A with respect to C – in other words, there
are < (η−γ)|B| neighbors in B and < (η−γ)|C| neighbors in C, respectively – then |A′| ≤ γ · |A|
and |A′′| ≤ γ · |A|.

For contradiction, assume this is not true, i.e. |A′| > γ · |A|. Then

d(A′, B) = |A′|·(η−γ)·|B|
|A′||B| = (η − γ)
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However, we know that d(A,B) > η (by definition in the lemma), causing

|d(A′, B)− d(A,B)| > γ

which contradicts the assumed γ-regularity. Note, B is large enough to behave as a random
graph, by definition, and A′ is at least A by the assumption, leading A′ to be large enough to
also behave as a random graph. One can make a similar argument for A′′.

Observe that A∗ = A \ (A′ ∪A′′), since A∗ does not contain bad nodes. So

A∗ ≥ |A| − |A′| − |A′′|
≥ |A| − 2γ · |A|, since we showed that |A′| ≤ γ · |A| and |A′′| ≤ γ · |A|
≥ (1− 2γ)|A|

To complete the proof of the Triangle Counting Lemma, for each u ∈ A∗, define Bu to be the neighbors of
u in B and Cu to be the neighbors of u in C. Thus, if γ ≤ η

2 :

|Bu| ≥ (η − γ) · |B| ≥ γ · |B|
|Cu| ≥ (η − γ) · |C| ≥ γ · |C|

Figure 2: Tripartite graph with u ∈ A∗, where Bu and Cu are neighbors of u.

As a result, |Bu| and |Cu| are large enough. Further, note that we assume d(B,C) = η in the lemma. Thus,

d(Bu, Cu) ≥ η − γ, and

e(Bu, Cu) ≥ (η − γ) · |Bu||Cu|
≥ (η − γ)3 · |B||C|
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This gives a lower bound on the number of triangles that contain u as an endpoint. The total number of
triangles with a node in each of A, B, and C is then as follows:

total # of triangles ≥
∑
u∈A∗

(η − γ)3 · |B||C|

≥ (1− 2γ)|A| · (η − γ)3 · |B||C|

≥ (1− 2γ) · (η − γ)3 · |A||B||C|, and since we choose γ ≤ η

2
,

≥ (1− η) · η
3

8
· |A||B||C|

3 Szemerédi’s Regularity Lemma (SRL)

We would like to equipartition the nodes in a graph into sets V1, ..., Vk such that all (or most) pairs (Vi, Vj)
are ε-regular.

Lemma 5 ∀m and ε > 0, there exists T (m, ε) such that given G = (V,E) with |V | > T where A is an
equipartition of V into (m << T ) sets, then there exists an equipartition B of V into k sets which refine A
such that m ≤ k ≤ T and ≤

(
k
2

)
set pairs are not ε-regular.

Figure 3: Apply SRL to refine G into a constant number of partitions such that the pairs behave like a
random bipartite graph and are mostly regular.

In other words, given an arbitrary starting point, we can refine A so that the graph is ε-regular and all
subgraphs have roughly the same number of nodes. Further, we can partition the graph into a constant
number of partitions such that each pair of sets behaves like a random bipartite graph.

3.1 Property Testing

Property testing is an application of the SRL. Given a graph in adjacency matrix form, we would like to
construct an algorithm which outputs PASS if the graph is triangle free and FAIL with probability ≥ 3

4 if
the graph is ε-far from triangle free. Note, if the graph is ε-far from triangle free, one must add ε · n2 edges
to transform the graph to be triangle free. A possible algorithm is the following:
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Algorithm 1: Triangle Freeness

Input : Graph G in adjacency matrix form
1 for O(δ−1) iterations do
2 pick V1, V2, V3

3 if ∆, halt and output FAIL

4 Return PASS

To assess the behavior of the above algorithm, consider the theorem:

Theorem 6 If G is ε-far from ∆-free, then G has ≥ δ ·
(
n
3

)
distinct ∆s.

As a result, O( 1
δ ) loops of the algorithm finds a possible triangle with high probability.

Corollary 7 The algorithm accepts with probability 1 if the graph is triangle free. If the graph is ε-far from
triangle free, meaning there are more than δ ·

(
n
3

)
triangles,

Pr[do not find a tringle in
c

δ
loops] ≤ (1− δ)c/δ

≤ e−c

<
1

4
for big enough c

Proof Given the corollary, we need to prove Theorem 6. With this, we can construct the algorithm to
test if the graph is ε-far from triangle free with failure probability less than 1

4 . First, we use the SRL to

obtain {V1, ..., Vk} such that 5
ε ≤ k ≤ T ( 5

ε , ε
′) for ε′ = min{ ε5 , γ

∆( ε5 )} such that less than ε′ ·
(
k
2

)
pairs are

not ε′-regular. The aforementioned is equivalent to ε·n
5 ≥

n
k ≥

n
T ( 5

ε ,ε
′)

, representing the number of nodes per

partition.

To clean up G, we assume that n
k (the number of nodes per partition) is an integer. G′ is the result after

performing the following:

1. Delete edges internal to any Vi. This amounts to ≤ n
k · n ≤

ε·n2

5 deleted edges. Note, we multiplied by
n to sum over all of the nodes.

2. Delete edges between non-regular pairs. This amounts to ≤ ε′ ·
(
k
2

)
· (nk )2 ≤ ε

5 ·
k2

2 ·
n2

k2 ≤
ε·n2

10 .

3. Remove low density (< ε
5 ) pairs. This amounts to ≤

∑
low density pairs

ε
5 (nk )2 ≤ ε

5

(
n
2

)
≤ ε·n2

10

Therefore, the total number of deleted edges is ε·n2

5 + ε·n2

10 + ε·n2

10 < ε · n2. Thus, since G was ε-far from
triangle free, G′ must still have a triangle. By the way we constructed G′, we know the remaining triangles
between some Vi, Vj , Vk contain:

1. Distinct endpoints, since we removed all edges within the partitions

2. Regular pairs, since we removed all non-regular pairs

3. Dense pairs, since we removed all low density pairs

In the end, nodes in each one of Vi, Vj , Vk comprise distinct triangles which have ≥ ε
5 density and δ∆( ε5 )-

regular pairs.

To determine the number of triangles in G′, we invoke the Triangle Counting Lemma.
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≥ δ∆(
ε

5
)|Vi||Vj ||Vk| ∆s remain in G′

≥
( ε5 )3

16
|Vi||Vj ||Vk|

≥
( ε5 )3

16
· n3

T ( 5
ε , ε
′)3

since k ≤ T (
5

ε
, ε′)

≥ δ ·
(
n

3

)

Now that we have proven Theorem 6, we can use the previously mentioned algorithm for triangle freeness,
which fails with probability less than 1

4 after O( 1
δ ) iterations when the graph is ε-far from ∆-free.
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