Lecture 8

Lecturer: Ronitt Rubinfeld

1 Testing "Triangle Freeness" for Dense Graphs

Definition 1 Triangle Freeness.
Graph G is triangle free, or Δ-free, if there does not exist an x, y, x such that $A(x, y)=A(y, z)=A(x, z)=1$.
Claim: If there exists a property testing algorithm for Δ-freeness, then there exists an algorithm that works as follows:

1. Pick random x, y, z
2. Test if $A(x, y)=A(y, z)=A(x, z)=1$

However, we need to show how many times we must query the above instructions.

2 Detour

Let's first determine how many triangles are in a random tripartite graph and then illustrate tools to assess triangle freeness.

Figure 1: Random tripartite graph with density η
Assume that the density of edges between all subgraphs, or sets, above is η and $\Delta_{a, b, c}$ is an indicator variable such that:

$$
\Delta_{a, b, c}= \begin{cases}1 & \text { if there exists a triangle connecting } a, b, c \\ 0 & \text { otherwise }\end{cases}
$$

Now, $\forall a \in A, b \in B, c \in C$, the probability that there exists a triangle connecting some a, b, c and the expected value of the indicator are the following:

$$
\begin{aligned}
\operatorname{Pr}\left[\Delta_{a, b, c}\right] & =\eta^{3} \\
E\left[\Delta_{a, b, c}\right] & =\eta^{3}
\end{aligned}
$$

Further, the expected number of triangles connecting the three subgraphs above is computed as:

$$
E[\# \Delta s]=|A||B||C| \cdot \eta^{3}
$$

Now, let's define the density and regularity of set pairs.
Definition 2 Regular Pairs. (i.e. γ-regular)
Let $A, B \subseteq V$ such that $A \cap B=\emptyset,|A|>1$, and $|B|>1$. Let $e(A, B)=$ the number of edges between A and B, with density defined as:

$$
d(A, B)=\frac{e(A, B)}{|A||B|}
$$

We say that A, B are γ-regular if $\forall A^{\prime} \subseteq A$ and $\forall B^{\prime} \subseteq B$ where

$$
\left|A^{\prime}\right| \geq \gamma \cdot|A| \text { and }\left|B^{\prime}\right| \geq \gamma \cdot|B|,
$$

the difference in densities between the pairs is:

$$
\left|d(A, B)-d\left(A^{\prime}, B^{\prime}\right)\right|<\gamma
$$

Thus, the graphs A^{\prime} and B^{\prime} must first be large enough to behave like random graphs, and then the densities between the pairs must be less than γ. Note, the γ values above - indicating the size of the subsets and the difference in density - do not have to be the same. Here, we simply use the same variable to reduce the number of parameters.

Lemma 3 Triangle Counting Lemma (Komlós and Simonovits). $\forall \eta>0$, there exists $\gamma=\gamma^{\Delta}(\eta)=\frac{1}{2} \cdot \eta$ and $\delta=\delta^{\Delta}(\eta)=(1-\eta) \cdot \frac{\eta^{3}}{8} \geq \frac{\eta^{3}}{16}$ (if $\left.\eta<\frac{1}{2}\right)$, such that if A, B, and C are disjoint subsets of V, and each pair is γ-regular with density $>\eta$, then G contains $\geq \delta \cdot|A||B \| C|$ triangles with a node in each of A, B, and C.

Proof We aim to prove the Triangle Counting Lemma. Note, such a lemma exists for all sizes of subgraphs. Let $A^{*}=$ the nodes in A with $\geq(\eta-\gamma)|B|$ neighbors in B and $\geq(\eta-\gamma)|C|$ neighbors in C.

In order to proceed, consider the following claim:
Claim $4\left|A^{*}\right| \geq(1-2 \gamma)|A|$
Proof To prove the above claim, we know that if A^{\prime} is the number of bad nodes of A with respect to B and $A^{\prime \prime}$ is the number of bad nodes of A with respect to C - in other words, there are $<(\eta-\gamma)|B|$ neighbors in B and $<(\eta-\gamma)|C|$ neighbors in C, respectively - then $\left|A^{\prime}\right| \leq \gamma \cdot|A|$ and $\left|A^{\prime \prime}\right| \leq \gamma \cdot|A|$.

For contradiction, assume this is not true, i.e. $\left|A^{\prime}\right|>\gamma \cdot|A|$. Then

$$
d\left(A^{\prime}, B\right)=\frac{\left|A^{\prime}\right| \cdot(\eta-\gamma) \cdot|B|}{\left|A^{\prime}\right||B|}=(\eta-\gamma)
$$

However, we know that $d(A, B)>\eta$ (by definition in the lemma), causing

$$
\left|d\left(A^{\prime}, B\right)-d(A, B)\right|>\gamma
$$

which contradicts the assumed γ-regularity. Note, B is large enough to behave as a random graph, by definition, and A^{\prime} is at least A by the assumption, leading A^{\prime} to be large enough to also behave as a random graph. One can make a similar argument for $A^{\prime \prime}$.

Observe that $A^{*}=A \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)$, since A^{*} does not contain bad nodes. So

$$
\begin{aligned}
A^{*} & \geq|A|-\left|A^{\prime}\right|-\left|A^{\prime \prime}\right| \\
& \geq|A|-2 \gamma \cdot|A|, \text { since we showed that }\left|A^{\prime}\right| \leq \gamma \cdot|A| \text { and }\left|A^{\prime \prime}\right| \leq \gamma \cdot|A| \\
& \geq(1-2 \gamma)|A|
\end{aligned}
$$

To complete the proof of the Triangle Counting Lemma, for each $u \in A^{*}$, define B_{u} to be the neighbors of u in B and C_{u} to be the neighbors of u in C. Thus, if $\gamma \leq \frac{\eta}{2}$:

$$
\begin{aligned}
& \left|B_{u}\right| \geq(\eta-\gamma) \cdot|B| \geq \gamma \cdot|B| \\
& \left|C_{u}\right| \geq(\eta-\gamma) \cdot|C| \geq \gamma \cdot|C|
\end{aligned}
$$

Figure 2: Tripartite graph with $u \in A^{*}$, where B_{u} and C_{u} are neighbors of u.
As a result, $\left|B_{u}\right|$ and $\left|C_{u}\right|$ are large enough. Further, note that we assume $d(B, C)=\eta$ in the lemma. Thus,

$$
\begin{aligned}
d\left(B_{u}, C_{u}\right) & \geq \eta-\gamma, \text { and } \\
e\left(B_{u}, C_{u}\right) & \geq(\eta-\gamma) \cdot\left|B_{u} \| C_{u}\right| \\
& \geq(\eta-\gamma)^{3} \cdot|B \| C|
\end{aligned}
$$

This gives a lower bound on the number of triangles that contain u as an endpoint. The total number of triangles with a node in each of A, B, and C is then as follows:

$$
\begin{aligned}
\text { total \# of triangles } & \geq \sum_{u \in A^{*}}(\eta-\gamma)^{3} \cdot|B||C| \\
& \geq(1-2 \gamma)|A| \cdot(\eta-\gamma)^{3} \cdot|B||C| \\
& \geq(1-2 \gamma) \cdot(\eta-\gamma)^{3} \cdot|A||B||C|, \text { and since we choose } \gamma \leq \frac{\eta}{2}, \\
& \geq(1-\eta) \cdot \frac{\eta^{3}}{8} \cdot|A||B \| C|
\end{aligned}
$$

3 Szemerédi's Regularity Lemma (SRL)

We would like to equipartition the nodes in a graph into sets V_{1}, \ldots, V_{k} such that all (or most) pairs $\left(V_{i}, V_{j}\right)$ are ϵ-regular.

Lemma $5 \forall m$ and $\epsilon>0$, there exists $T(m, \epsilon)$ such that given $G=(V, E)$ with $|V|>T$ where A is an equipartition of V into $(m \ll T)$ sets, then there exists an equipartition B of V into k sets which refine A such that $m \leq k \leq T$ and $\leq\binom{ k}{2}$ set pairs are not ϵ-regular.

Figure 3: Apply SRL to refine G into a constant number of partitions such that the pairs behave like a random bipartite graph and are mostly regular.

In other words, given an arbitrary starting point, we can refine A so that the graph is ϵ-regular and all subgraphs have roughly the same number of nodes. Further, we can partition the graph into a constant number of partitions such that each pair of sets behaves like a random bipartite graph.

3.1 Property Testing

Property testing is an application of the SRL. Given a graph in adjacency matrix form, we would like to construct an algorithm which outputs PASS if the graph is triangle free and FAIL with probability $\geq \frac{3}{4}$ if the graph is ϵ-far from triangle free. Note, if the graph is ϵ-far from triangle free, one must add $\epsilon \cdot n^{2}$ edges to transform the graph to be triangle free. A possible algorithm is the following:

```
Algorithm 1: Triangle Freeness
    Input : Graph \(G\) in adjacency matrix form
    for \(O\left(\delta^{-1}\right)\) iterations do
        pick \(V_{1}, V_{2}, V_{3}\)
        if \(\Delta\), halt and output FAIL
    Return PASS
```

To assess the behavior of the above algorithm, consider the theorem:
Theorem 6 If G is ϵ-far from Δ-free, then G has $\geq \delta \cdot\binom{n}{3}$ distinct Δs.
As a result, $O\left(\frac{1}{\delta}\right)$ loops of the algorithm finds a possible triangle with high probability.
Corollary 7 The algorithm accepts with probability 1 if the graph is triangle free. If the graph is ϵ-far from triangle free, meaning there are more than $\delta \cdot\binom{n}{3}$ triangles,

$$
\begin{aligned}
\operatorname{Pr}\left[\text { do not find a tringle in } \frac{c}{\delta} \text { loops }\right] & \leq(1-\delta)^{c / \delta} \\
& \leq e^{-c} \\
& <\frac{1}{4} \text { for big enough } c
\end{aligned}
$$

Proof Given the corollary, we need to prove Theorem 6. With this, we can construct the algorithm to test if the graph is ϵ-far from triangle free with failure probability less than $\frac{1}{4}$. First, we use the SRL to obtain $\left\{V_{1}, \ldots, V_{k}\right\}$ such that $\frac{5}{\epsilon} \leq k \leq T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)$ for $\epsilon^{\prime}=\min \left\{\frac{\epsilon}{5}, \gamma^{\Delta}\left(\frac{\epsilon}{5}\right)\right\}$ such that less than $\epsilon^{\prime} \cdot\binom{k}{2}$ pairs are not ϵ^{\prime}-regular. The aforementioned is equivalent to $\frac{\epsilon \cdot n}{5} \geq \frac{n}{k} \geq \frac{n}{T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)}$, representing the number of nodes per partition.

To clean up G, we assume that $\frac{n}{k}$ (the number of nodes per partition) is an integer. G^{\prime} is the result after performing the following:

1. Delete edges internal to any V_{i}. This amounts to $\leq \frac{n}{k} \cdot n \leq \frac{\epsilon \cdot n^{2}}{5}$ deleted edges. Note, we multiplied by n to sum over all of the nodes.
2. Delete edges between non-regular pairs. This amounts to $\leq \epsilon^{\prime} \cdot\binom{k}{2} \cdot\left(\frac{n}{k}\right)^{2} \leq \frac{\epsilon}{5} \cdot \frac{k^{2}}{2} \cdot \frac{n^{2}}{k^{2}} \leq \frac{\epsilon \cdot n^{2}}{10}$.
3. Remove low density $\left(<\frac{\epsilon}{5}\right)$ pairs. This amounts to $\leq \sum_{\text {low density pairs }} \frac{\epsilon}{5}\left(\frac{n}{k}\right)^{2} \leq \frac{\epsilon}{5}\binom{n}{2} \leq \frac{\epsilon \cdot n^{2}}{10}$

Therefore, the total number of deleted edges is $\frac{\epsilon \cdot n^{2}}{5}+\frac{\epsilon \cdot n^{2}}{10}+\frac{\epsilon \cdot n^{2}}{10}<\epsilon \cdot n^{2}$. Thus, since G was ϵ-far from triangle free, G^{\prime} must still have a triangle. By the way we constructed G^{\prime}, we know the remaining triangles between some V_{i}, V_{j}, V_{k} contain:

1. Distinct endpoints, since we removed all edges within the partitions
2. Regular pairs, since we removed all non-regular pairs
3. Dense pairs, since we removed all low density pairs

In the end, nodes in each one of V_{i}, V_{j}, V_{k} comprise distinct triangles which have $\geq \frac{\epsilon}{5}$ density and $\delta^{\Delta}\left(\frac{\epsilon}{5}\right)$ regular pairs.

To determine the number of triangles in G^{\prime}, we invoke the Triangle Counting Lemma.

$$
\begin{aligned}
& \geq \delta^{\Delta}\left(\frac{\epsilon}{5}\right)\left|V_{i}\right|\left|V_{j}\right|\left|V_{k}\right| \Delta s \text { remain in } G^{\prime} \\
& \geq \frac{\left(\frac{\epsilon}{5}\right)^{3}}{16}\left|V_{i}\right|\left|V_{j}\right|\left|V_{k}\right| \\
& \geq \frac{\left(\frac{\epsilon}{5}\right)^{3}}{16} \cdot \frac{n^{3}}{T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)^{3}} \text { since } k \leq T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right) \\
& \geq \delta \cdot\binom{n}{3}
\end{aligned}
$$

Now that we have proven Theorem 6, we can use the previously mentioned algorithm for triangle freeness, which fails with probability less than $\frac{1}{4}$ after $O\left(\frac{1}{\delta}\right)$ iterations when the graph is ϵ-far from Δ-free.

