Lecture 22

Lecturer: Ronitt Rubinfeld

Scribe: Bertie Ancona

1 Introduction

Today we will go over linear functions, how to self-correct them and how to test them.

Definition 1 A function $f: G \to H$, where G and H are finite groups having operations $+_G$ and $+_H$, is linear (homomorphic) if $f(x) +_H f(y) = f(x +_G y)$ for all $x, y \in G$.

Examples of finite groups:

- Z_m with addition mod m
- Z_m^k with coordinate-wise addition mod m

Examples of linear functions:

- f(x) = 0
- f(x) = x
- $f(x) = ax \mod m$
- $f_{\bar{a}}(\bar{x}) = \sum_i a_i x_i \mod m$

Definition 2 A function f is ϵ -linear if there is some linear function g such that f and g agree on an $(1 - \epsilon)$ fraction of inputs. Otherwise, f is ϵ -far from linear.

This is equivalent to having $\Pr_{x \in G}[f(x) = g(x)] \ge 1 - \epsilon$.

A Useful Observation For all $a, y \in G$, $\Pr_{x \in G}[y = a + x] = \frac{1}{|G|}$, because only a single value x = y - a satisfies this. Thus, if $x \in_R G$ (x chosen from G uniformly at random), then $a + x \in_R G$ for all $a \in G$.

2 Self-Correction (or, Random Self-Reducibility)

Given a function f such that f is $\frac{1}{8}$ -linear, let g be a linear function $\frac{1}{8}$ -close to f. To compute g(x):

Algorithm 1 Self-Correcting

for i in $1, ..., c \log \frac{1}{\beta}$ do Pick $y \in_R G$ $answer_i \leftarrow f(y) + f(x - y)$ end for Output most common value over all $answer_i$

Claim 3 After running Algorithm 1, $\Pr[Output = g(x)] \ge 1 - \beta$

Proof Pr[f(y) ≠ g(y)] ≤ ¹/₈ (by definition) Pr[f(x − y) ≠ g(x − y)] ≤ ¹/₈ (by our Useful Observation) ⇒ Pr[f(y) + f(x − y) ≠ g(y) + g(x − y)] = Pr[answer_i ≠ g(x)] ≤ ¹/₄ (by linearity and union bound) Now we may use Chernoff to show that most common value of answer_i will be g(x) with probability 1 − β after c log ¹/_β iterations. ■

3 Testing

The Goal: Given f, if f is linear then PASS with probability 1. If f is ϵ -far from linear, FAIL with probability at least 2/3.

Trigorionni a Lincario, resents	Algorithm	2	Linearity	Testing
--	-----------	----------	-----------	---------

for s times do Pick $x, y \in_R G$ if $f(x) + f(y) \neq f(x + y)$ then Output FAIL and halt end if end for Output PASS and halt

If f is linear, Algorithm 2 clearly passes with probability 1. We will prove the contrapositive for eps-far f: if f is likely to pass, then f is ϵ -linear.

Theorem 4 Say $\delta = \Pr_{x,y}[f(x) + f(y) \neq f(x+y)] < \frac{1}{16}$. Then f is 2δ -linear.

This would mean that setting $s = \Omega(1/\delta) = \Omega(16)$ is enough for such f to be likely to pass Algorithm 2. **Proof**

Definition 5 Let $g(x) = plurality_y \{f(x+y) - f(y)\}$, breaking ties arbitrarily.

In other words, g(x) is the self-correction of f on x.

Definition 6 x is ρ -good if $\Pr_y[g(x) = f(x+y) - f(y)] \ge 1 - \rho$ (i.e., a $(1-\rho)$ fraction of y's agree on their vote for f(x)), and x is ρ -bad otherwise.

This means that if x is $\frac{1}{2}$ -good, then g(x) is defined on the majority element.

We prove Theorem 4 in three claims. With Claim 9, we show that g is defined for all x as the majority element. With Claim 8, we show that g is "linear". Finally, with Claim 7 we show that f and g agree on at least a $1 - 2\delta$ fraction of inputs, i.e. that they are 2δ -close, implying that f is 2δ -linear. We now prove the claims.

Claim 7 If $\rho < \frac{1}{2}$, $\Pr_x[x \text{ is } \rho\text{-good and } g(x) = f(x)] > 1 - \frac{\delta}{\alpha}$

The claim implies that the fraction of x for which f and g both agree is greater than $1-\delta/\rho > 1-2\delta > 7/8$. **Proof**

Let $\alpha_x = \Pr_y[f(x) \neq f(x+y) - f(y)]$. If $\alpha_x \leq \rho < 1/2$, then x is ρ -good and g(x) = f(x) (and we have our claim). $\mathbb{E}_x[\alpha_x] = \frac{1}{|G|} \sum_{x \in G} \Pr_y[f(x) \neq f(x+y) - f(y)]$ $= \Pr_{x,y}[f(x) \neq f(x+y) - f(y)]$ $= \delta$. Now by Markov: $\Pr[\alpha_x > \rho] \leq \frac{\delta}{\rho} \Rightarrow \Pr[\alpha_x \leq \rho] \geq 1 - \frac{\delta}{\rho}$.

Claim 8 If $\rho < \frac{1}{4}$ and x and y are both ρ -good, then (1) x + y is 2ρ -good, and (2) g(x+y) = g(x) + g(y).

Proof Let h(x, y) = g(x) + g(y).

 $\Pr_{z}[g(y) \neq f(y+z) - f(z)] < \rho$ (because y is ρ -good), and

 $\Pr_z[g(x) \neq f(x + (y + z)) - f(y + z)] < \rho$ (because x is ρ -good and $(y + z) \in_R G$). We have that h(x, y) = g(x) + g(y), therefore

 $\Pr_{z}[h(x,y) = f(x+(y+z)) - f(y+z) + f(y+z) - f(z) \equiv f((x+y)+z)) - f(z)] > 1 - 2\rho > \frac{1}{2} \text{ (by union bound of the above).}$

This means that g(x+y) = h(x,y), because f((x+y)+z) - f(z) is more than half of the votes and thus wins plurality for g(x+y), by definition of g.

Also, h(x,y) = g(x) + g(y) by definition of h, so g(x+y) = g(x) + g(y). We also have that (x+y) is 2ρ -good by the last probability statement.

Claim 9 If $\delta < \frac{1}{16}$, then for all x, x is 4δ -good and g(x) is defined as the majority element.

Proof If there is a y such that y and x + y are both 2δ -good, then by claim 8, x is 4δ -good and g(x) = g(y) + g(x - y).

We prove that such a y must exist.

 $\Pr_y[y \text{ and } x + y \text{ are both } 2\delta \text{-good}] > 1 - 2(\frac{\delta}{2\delta}) = 0$, by claim 7 and union bound. Thus, such a y must exist and the claim holds.

3.1 δ Tightness

It is in fact possible to show this for $\delta < \frac{2}{9}$, rather than $\delta < \frac{1}{16}$. We show that we cannot do better than $\frac{2}{9}$ with an example of a function that is $\frac{2}{3}$ -far from linear but passes our test with probability $\frac{7}{9}$.

$$f(x) = \begin{cases} 1 & x = 1 \mod 3\\ 0 & x = 0 \mod 3\\ -1 & x = 2 \mod 3 \end{cases}$$

The closest linear function is g(x) = 0, which is $\epsilon = \frac{2}{3}$ -far from f. However, our test only fails in two of nine cases:

- When $x = y = 1 \mod 3$, $f(x) + f(y) = 2 \mod 3$ and $f(x + y) = -1 \mod 3$
- When $x = y = 2 \mod 3$, $f(x) + f(y) = -2 \mod 3$ and $f(x + y) = 1 \mod 3$