1 Introduction

Today we will go over linear functions,how to self-correct them and how to test them.
Definition 1 function $f: G \rightarrow H$, where G and H are finite groups having operations $+_{G}$ and $+_{H}$, is linear (homomorphic) if $f(x)+_{H} f(y)=f\left(x+{ }_{G} y\right)$ for all $x, y \in G$.

Examples of finite groups:

- Z_{m} with addition $\bmod m$
- Z_{m}^{k} with coordinate-wise addition $\bmod m$

Examples of linear functions:

- $f(x)=0$
- $f(x)=x$
- $f(x)=a x \bmod m$
- $f_{\bar{a}}(\bar{x})=\sum_{i} a_{i} x_{i} \bmod m$

Definition 2 A function f is ϵ-linear if there is some linear function g such that f and g agree on an $(1-\epsilon)$ fraction of inputs. Otherwise, f is ϵ-far from linear.

This is equivalent to having $\operatorname{Pr}_{x \in G}[f(x)=g(x)] \geq 1-\epsilon$.
A Useful Observation For all $a, y \in G, \operatorname{Pr}_{x \in G}[y=a+x]=\frac{1}{|G|}$, because only a single value $x=y-a$ satisfies this. Thus, if $x \in_{R} G$ (x chosen from G uniformly at random), then $a+x \in_{R} G$ for all $a \in G$.

2 Self-Correction (or, Random Self-Reducibility)

Given a function f such that f is $\frac{1}{8}$-linear, let g be a linear function $\frac{1}{8}$-close to f. To compute $g(x)$:

```
Algorithm 1 Self-Correcting
    for \(i\) in \(1, \ldots, c \log \frac{1}{\beta}\) do
        Pick \(y \in_{R} G\)
        answer \(_{i} \leftarrow f(y)+f(x-y)\)
    end for
    Output most common value over all answer \({ }_{i}\)
```

Claim 3 After running Algorithm 1, $\operatorname{Pr}[$ Output $=g(x)] \geq 1-\beta$
Proof $\operatorname{Pr}[f(y) \neq g(y)] \leq \frac{1}{8}$ (by definition)
$\operatorname{Pr}[f(x-y) \neq g(x-y)] \leq \frac{1}{8}$ (by our Useful Observation)
$\Rightarrow \operatorname{Pr}[f(y)+f(x-y) \neq g(y)+g(x-y)]=\operatorname{Pr}\left[\right.$ answer $\left._{i} \neq g(x)\right] \leq \frac{1}{4}$ (by linearity and union bound)
Now we may use Chernoff to show that most common value of answer ${ }_{i}$ will be $g(x)$ with probability $1-\beta$ after $c \log \frac{1}{\beta}$ iterations.

3 Testing

The Goal: Given f, if f is linear then PASS with probability 1. If f is ϵ-far from linear, FAIL with probability at least $2 / 3$.

```
Algorithm 2 Linearity Testing
    for \(s\) times do
        Pick \(x, y \in_{R} G\)
        if \(f(x)+f(y) \neq f(x+y)\) then
            Output FAIL and halt
        end if
    end for
    Output PASS and halt
```

If f is linear, Algorithm 2 clearly passes with probability 1 . We will prove the contrapositive for eps-far f : if f is likely to pass, then f is ϵ-linear.

Theorem 4 Say $\delta=\operatorname{Pr}_{x, y}[f(x)+f(y) \neq f(x+y)]<\frac{1}{16}$. Then f is 2δ-linear.
This would mean that setting $s=\Omega(1 / \delta)=\Omega(16)$ is enough for such f to be likely to pass Algorithm 2. Proof

Definition 5 Let $g(x)=$ plurality $_{y}\{f(x+y)-f(y)\}$, breaking ties arbitrarily.
In other words, $g(x)$ is the self-correction of f on x.
Definition $6 x$ is ρ-good if $\operatorname{Pr}_{y}[g(x)=f(x+y)-f(y)] \geq 1-\rho$ (i.e., a $(1-\rho)$ fraction of y 's agree on their vote for $f(x)$), and x is ρ-bad otherwise.

This means that if x is $\frac{1}{2}$-good, then $g(x)$ is defined on the majority element.
We prove Theorem 4 in three claims. With Claim 9, we show that g is defined for all x as the majority element. With Claim 8, we show that g is "linear". Finally, with Claim 7 we show that f and g agree on at least a $1-2 \delta$ fraction of inputs, i.e. that they are 2δ-close, implying that f is 2δ-linear. We now prove the claims.

Claim 7 If $\rho<\frac{1}{2}, \operatorname{Pr}_{x}[x$ is ρ-good and $g(x)=f(x)]>1-\frac{\delta}{\rho}$
The claim implies that the fraction of x for which f and g both agree is greater than $1-\delta / \rho>1-2 \delta>7 / 8$. Proof

Let $\alpha_{x}=\operatorname{Pr}_{y}[f(x) \neq f(x+y)-f(y)]$.
If $\alpha_{x} \leq \rho<1 / 2$, then x is ρ-good and $g(x)=f(x)$ (and we have our claim).
$\mathrm{E}_{x}\left[\alpha_{x}\right]=\frac{1}{|G|} \sum_{x \in G} \operatorname{Pr}_{y}[f(x) \neq f(x+y)-f(y)]$
$=\operatorname{Pr}_{x, y}[f(x) \neq f(x+y)-f(y)]$
$=\delta$. Now by Markov:
$\operatorname{Pr}\left[\alpha_{x}>\rho\right] \leq \frac{\delta}{\rho} \Rightarrow \operatorname{Pr}\left[\alpha_{x} \leq \rho\right] \geq 1-\frac{\delta}{\rho}$.

Claim 8 If $\rho<\frac{1}{4}$ and x and y are both ρ-good, then (1) $x+y$ is 2ρ-good, and (2) $g(x+y)=g(x)+g(y)$.

Proof Let $h(x, y)=g(x)+g(y)$.
$\operatorname{Pr}_{z}[g(y) \neq f(y+z)-f(z)]<\rho$ (because y is ρ-good), and
$\operatorname{Pr}_{z}[g(x) \neq f(x+(y+z))-f(y+z)]<\rho$ (because x is ρ-good and $\left.(y+z) \in_{R} G\right)$. We have that $h(x, y)=g(x)+g(y)$, therefore
$\left.\operatorname{Pr}_{z}[h(x, y)=f(x+(y+z))-f(y+z)+f(y+z)-f(z) \equiv f((x+y)+z))-f(z)\right]>1-2 \rho>\frac{1}{2}($ by union bound of the above).

This means that $g(x+y)=h(x, y)$, because $f((x+y)+z))-f(z)$ is more than half of the votes and thus wins plurality for $g(x+y)$, by definition of g.

Also, $h(x, y)=g(x)+g(y)$ by definition of h, so $g(x+y)=g(x)+g(y)$. We also have that $(x+y)$ is 2ρ-good by the last probability statement.

Claim 9 If $\delta<\frac{1}{16}$, then for all x, x is 4δ-good and $g(x)$ is defined as the majority element.
Proof If there is a y such that y and $x+y$ are both 2δ-good, then by claim $8, x$ is 4δ-good and $g(x)=g(y)+g(x-y)$.

We prove that such a y must exist.
$\operatorname{Pr}_{y}[y$ and $x+y$ are both 2δ-good $]>1-2\left(\frac{\delta}{2 \delta}\right)=0$, by claim 7 and union bound. Thus, such a y must exist and the claim holds.

3.1δ Tightness

It is in fact possible to show this for $\delta<\frac{2}{9}$, rather than $\delta<\frac{1}{16}$. We show that we cannot do better than $\frac{2}{9}$ with an example of a function that is $\frac{2}{3}$-far from linear but passes our test with probability $\frac{7}{9}$.

$$
f(x)=\left\{\begin{array}{lll}
1 & x=1 & \bmod 3 \\
0 & x=0 & \bmod 3 \\
-1 & x=2 & \bmod 3
\end{array}\right.
$$

The closest linear function is $g(x)=0$, which is $\epsilon=\frac{2}{3}$-far from f. However, our test only fails in two of nine cases:

- When $x=y=1 \bmod 3, f(x)+f(y)=2 \bmod 3$ and $f(x+y)=-1 \bmod 3$
- When $x=y=2 \bmod 3, f(x)+f(y)=-2 \bmod 3$ and $f(x+y)=1 \bmod 3$

