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Lecture 16
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1 Outline

The following topics were covered in class:

• Hypothesis testing

• Cover Method

2 Hypothesis testing

We say a distribution p is known to algorithm A if A has access to p’s probability density function
(pdf). We say p is unknown to algorithm A if A doesn’t have access to p’s pdf. Unless otherwise
stated, A can take samples from distribution p (in order to ”learn” p).

For distributions p, q and parameter ε, we say p is ε-close to q iff |p− q|1 ≤ ε Input:

• Unknown distribution p.

• Collection H of known distributions. H is guaranteed to contain a distribution that is ε-close to p.

Output: a distribution q ∈ H that is ε-close to p

Example 1. H is the set of biased coins i.e. H = {Ber(q)|q ∈ [0, 1]}1 and p = Ber(x).

3 Subtool: Comparing two hypothesis

We break the problem down into smaller pieces. First, let us consider an ”easy” case of the problem:
when |H| = 2. We can build a solution for the general case from there.

Theorem 1. There exists algorithm A that when given input:

• Known distributions h1, h2.

• Unknown distribution p.

• parameter ε′ > 0, confidence level δ′ ∈ (0, 1).

takes O(log(1/ε′)/ε′
2
) samples from p, and output h ∈ {h1, h2} such that: if one of h1, h2 are ε′-close to

p, then with probability ≥ 1 − δ′ output h is 11ε′-close to p. Note that, we do not hold any assumption
on the output when neither h1, h2 are ε-close to p.

Actually, we will prove something stronger:

Theorem 2. There exists algorithm ”Choose” when given input:

• Unknown distribution p.

• Known distributions h1, h2, assuming that at least one of them are ε-close to p

• parameter ε′ > 0, confidence level δ′ ∈ (0, 1).

1see https://en.wikipedia.org/wiki/Bernoulli_distribution
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takes O(log(1/δ′)/ε′
2
) samples from p,

and outputs tuple out=(outcome, h) where outcome ∈ {win, tie} and h ∈ {h1, h2} that with probability
≥ 1− δ′ satisfies:

(1) If hi is more than 12ε′-far from p, then out 6= (outcome, hi)

(2) If hi is more than 10ε′-far from p, then out 6= (win, hi) (but it is probable that out = (tie, hi)).

Proof. Let A = {x|h1(x) > h2(x)}. Let ai = hi(A) =
∑
x∈A hi(a) for i ∈ {1, 2}.

Claim (1): |h1 − h2|1 = 2(a1 − a2).
For a proof by picture, see https://people.csail.mit.edu/ronitt/COURSE/S19/Handouts/lec16b.

pdf. Here, we formalize the proof in words. for x ∈ A, |h1(x)− h2(x)| = h1(x)− h2(x) so∑
x∈A
|h1(x)− h2(x)| =

∑
x∈A

(h1(x)− h2(x)) = h1(A)− h2(A) = a1 − a2.

Similarly,
∑
x 6∈A |h1(x)− h2(x)| =

∑
x∈A(h2(x)−h1(x)) = h2(Ac)−h1(Ac) = (1−h2(A))−(1−h1(A)) =

h1(A)− h2(A), where Ac is the complement of A in the union of the domains of h1 and h2.
Thus

|h1 − h2|1 =
∑
x∈A
|h1(x)− h2(x)|+

∑
x 6∈A

|h1(x)− h2(x)| = 2(a1 − a2)

Algorithm ”Choose”:

1. If a1 − a2 ≤ 5ε′, return (tie, h)

2. Draw m = log(1/δ′)/ε′
2

samples s1, · · · , sm from p

3. Let α← 1
m |{i|si ∈ A}|.

4. If α > a1 − 3
2ε
′ returns (win, h1)

else if α < a2 + 3
2ε
′ returns (win, h2)

else return (tie, h1)

There exists h∗ ∈ {h1, h2} that is ε′-far from p. If algorithm ends at Step 1, then h2, h1 are 10ε′-close
to one another thus also 10ε′-close to h∗; hence, they are 11ε′-close to p. So algorithm can output
”tie” along with either h1 or h2. On the other hand, if either h1 or h2 is > 12ε′-far from p. WLOG,
may assume h∗ = h1 and h2 is 12ε′-far from p, then by triangle inequality, h2 is 11ε′-far from h1, so
a1 − a2 = |h1 − h2|1/2 > 5ε′, and algorithm will reach Step 2.

Assume algorithm reaches Step 2. Note that E(α) = p(A), and by Chernoff’s bound, with probability
≥ 1−δ, |α− E(α)| < ε′/2. Assume this inequality holds. If h1 is ε′-close to p then by triangle inequality,
|p(A)− h1(A)| ≤

∑
x∈A |p(x)− h1(x)| ≤ |p− h1|1 ≤ ε′; thus,

α > E(α)− ε′/2 = p(A)− ε′/2 ≥ (a1 − ε′)− ε′/2 = a1 −
3

2
ε′.

Similarly, if h2 is ε′-close to p then |p(A)− a2| ≤ ε′ so α < a2 + 3
2ε
′. Note that since we reach step 2,

a1 − a2 > 5ε′ so a1 − 3
2ε
′ > a2 + 3

2ε
′, thus the algorithm wouldn’t output ”tie” (assuming the inequality

|α− E(α)| < ε′/2 holds!)
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4 Cover method

Using the subtool in Section 3, we can get an algorithm for the case when H is finite. But as we see
in Example 1, H might be infinite. How do we deal with that? We revisit the idea of ε-net discussed
in previous lectures. More concretely, given a set of distributions D, we want to take a smaller set of
distributions C that approximate D within some ε distance. Formally,

Definition 3. Let D be a set of distributions. Set of distributions C is a ε-cover of D if ∀q ∈ D, there
exists p ∈ C such that |p− q|1 ≤ ε.

This way, we can save time by running algorithms on C instead of D.

Theorem 4. There exists an algorithm, that given p ∈ D, takes O( 1
ε2 log |C|) samples of p and output

h ∈ CD such that |h− p| ≤ 11ε.

Proof. Since p ∈ D, there exists q ∈ C such that |p− q|1 ≤ ε. We run Choose on every pair q1, q2 in C
with parameter ε′ = ε and δ′ = 1

10(|C|
2 )
. Then by union bound, with probability ≥ 1−

(|C|
2

)
δ′ = 9/10, all

output of calls to Choose satisfy their guarantee. Assuming this happens. We can show that there is a
q′ that wins or ties all matches (q′, q2) where q2 ∈ C \ {q′}. For example, let q′ = q then by Definition
of Algorithm Choose, any match (q, q2) either ends in a ”tie” at Step 1, or reaches Step 2 and ends in a
”win” for q.

But what if there is multiple q′ that wins or ties all matches? We can just pick an arbitrary such
q′ and output it, since any such q′ satisfies |q′ − p|1 ≤ 11ε. Indeed, if q′ = q then we are done, as q is
ε-close to p. Assume q′ 6= q, and consider the match between q′ and q: if q′ wins, then q′ is ≤ 10ε′-close
to p, else if q′ tie, then q′ is 10ε-close to q, thus 11ε-close to p.

Example 1 revisited. We abuse notation and write q in place of Ber(q) for brevity’s sake. We
write H = {q|q ∈ [0, 1]}. Then C = {0, 1k ,

2
k , · · · ,

k−1
k , 1} where k = 2/ε is a ε-cover of H. Indeed, let

r ∈ {0, · · · , k} be such that r
k ≤ x < r+1

k then
∣∣Ber(x)−Ber( rk )

∣∣
1

= 2
∣∣ r
k − x

∣∣ ≤ 2/k = ε. Note that
|C| = θ(1/ε). So by Theorem 3, setting ε′ = ε/11, can learn Ber(q) ε-close to p = Ber(x) by taking
O( 1

ε2 log( 1
ε )) samples from p.

Example 2 (2-Bucket distributions). A 2-bucket distribution Bα,β is defined by

PrX∼Bα,β [X = i] =


α
n/2 if i ∈ [n/2]
β
n/2 if i ∈ [n] \ [n/2]

0 else

Let D be the set of all 2-bucket distributions Bα,β where α, β ∈ [0, 1]. Similar to in Example 1, we
can create an ε-cover using ε-net for each of α, β i.e. C = {Bi/k,j/k|i, j ∈ {0, · · · , k}} where k = 1/ε.

The size of this cover is θ( 1
ε2 ) thus can learn unknown Bα,β in O( 1

ε2 log( 1
ε )).

Example 3 (Monotone distributions). Let D be the set of monotone (decreasing) distributions over
[n] = {1, 2, · · · , n}. By lecture 15, the set of Birge distributions2 C = {(w1, · · · , wθ( logn

ε ))|wi = ji
k , ji ∈

{0, · · · , k}} where k = 1/ε forms an ε-cover. The size of this cover is |C| = θ( 1
εlogn/ε

), so we can learn

p ∈ D in O( logn
ε3 log( 1

ε )).

2see Lecture 15
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