6.889 Sublinear Time Algorithms April 8, 2019

Lecture 16
Lecturer: Ronitt Rubinfeld Scribe: Thuy-Duong Vuong

1 Outline

The following topics were covered in class:
e Hypothesis testing
e Cover Method

2 Hypothesis testing

We say a distribution p is known to algorithm A if A has access to p’s probability density function
(pdf). We say p is unknown to algorithm A if A doesn’t have access to p’s pdf. Unless otherwise
stated, A can take samples from distribution p (in order to ”learn” p).

For distributions p, ¢ and parameter €, we say p is e-close to ¢ iff [p — ¢|; < € Input:

e Unknown distribution p.

e Collection H of known distributions. # is guaranteed to contain a distribution that is e-close to p.
Output: a distribution g € H that is e-close to p
Example 1. H is the set of biased coins i.e. H = {Ber(q)|q € [0,1]}[[] and p = Ber(z).

3 Subtool: Comparing two hypothesis

We break the problem down into smaller pieces. First, let us consider an ”easy” case of the problem:
when |H| = 2. We can build a solution for the general case from there.

Theorem 1. There exists algorithm A that when given input:
e Known distributions hq, ho.
o Unknown distribution p.
e parameter € > 0, confidence level §' € (0,1).

takes O(log(l/e’)/e’Q) samples from p, and output h € {hy, ha} such that: if one of hy, ho are € -close to
p, then with probability > 1 — &' output h is 11€ -close to p. Note that, we do not hold any assumption
on the output when neither hi, ho are e-close to p.

Actually, we will prove something stronger:
Theorem 2. There exists algorithm ”Choose” when given input:
e Unknown distribution p.
e Known distributions hy, ho, assuming that at least one of them are e-close to p

e parameter € > 0, confidence level &' € (0,1).

lsee https://en.wikipedia.org/wiki/Bernoulli_distribution

https://en.wikipedia.org/wiki/Bernoulli_distribution

takes O(log(1/8")/€'*) samples from p,
and outputs tuple out=_outcome, h) where outcome € {win, tie} and h € {hy, ha} that with probability
>1— ¢ satisfies:

(1) If h; is more than 12€ -far from p, then out # (outcome, h;)
(2) If h; is more than 10€ -far from p, then out # (win, h;) (but it is probable that out = (tie, h;)).

Proof. Let A = {z|hi(x) > ho(x)}. Let a; = hi(A) = >
Claim (1): |h1 — ha|; = 2(a1 — a2).
For a proof by picture, see https://people.csail.mit.edu/ronitt/COURSE/S19/Handouts/lec16k.
pdf. Here, we formalize the proof in words. for € A, |hy(x) — ha(z)| = h1(z) — ha(x) so

D (@) = ho(@)] = Y (ha(x) — ha(@)) = hi(A) = ha(A) = a1 — as.

z€A z€A

Similarly, >0, o o [h1(2) = ho(2)] = 32, c 4 (ha(2) =l () = ha(A) —hi(A%) = (1—-ha(A)) = (1= (A)) =
h1(A) — ha(A), where A° is the complement of A in the union of the domains of hy and hs.

Thus
b1 = haly = Y (@) = ha(z)] + Y |hi(2) = ha(2)] = 2(a1 — as)
z€A TZA

sca hia) for i € {1,2}.

Algorithm ”Choose”:

1. If a1 — as < 5¢, return (tie, h)

2. Draw m = log(1/6’)/€’* samples s1,-- - , s, from p
3. Let a « L|{i|s; € A}|.

4. If a > ay — 3¢ returns (win, hy)
else if & < ap + 3¢’ returns (win, hy)

else return (tie, hy)

There exists h* € {hy, ho} that is €/-far from p. If algorithm ends at Step [1} then ho, hy are 10€'-close
to one another thus also 10¢’-close to h*; hence, they are 11l€¢’-close to p. So algorithm can output
’tie” along with either h; or hs. On the other hand, if either hy or hy is > 12¢’-far from p. WLOG,
may assume h* = hy; and hs is 12€/-far from p, then by triangle inequality, ho is 11¢’-far from hq, so
a1 — ag = |hy — hal{/2 > 5€¢/, and algorithm will reach Step

Assume algorithm reaches Step Note that E(a) = p(A), and by Chernoff’s bound, with probability
>1-9, |a — E(a)| < € /2. Assume this inequality holds. If h; is €’-close to p then by triangle inequality,
P(A) = iy (A)] < e () — ha(@)] < Ip =l < €5 thus,

3
a>FEl)—€¢/2=p(A)—€/2> (a1 —€)—€/2=a1 — 56/.
Similarly, if hy is €-close to p then [p(A) — as| < € so o < as + 3€'. Note that since we reach step
a1 —as > 5€' s0 a; — 3¢/ > ay + 3¢, thus the algorithm wouldn’t output "tie” (assuming the inequality
la — E(a)| < €/2 holds!)
[

https://people.csail.mit.edu/ronitt/COURSE/S19/Handouts/lec16b.pdf
https://people.csail.mit.edu/ronitt/COURSE/S19/Handouts/lec16b.pdf

4 Cover method

Using the subtool in Section [3] we can get an algorithm for the case when # is finite. But as we see
in Example [1} A might be infinite. How do we deal with that? We revisit the idea of e-net discussed
in previous lectures. More concretely, given a set of distributions D, we want to take a smaller set of
distributions C that approximate D within some e distance. Formally,

Definition 3. Let D be a set of distributions. Set of distributions C is a e-cover of D if Vq € D, there
exists p € C such that [p —q|; <e.

This way, we can save time by running algorithms on C instead of D.

Theorem 4. There exists an algorithm, that given p € D, takes O(e%log IC]) samples of p and output
h € CP such that |h — p| < 11e.

Proof. Since p € D, there exists ¢ € C such that [p — ¢|; < e. We run Choose on every pair ¢;,¢2 in C
with parameter ¢ = ¢ and §' = m. Then by union bound, with probability > 1 — (|g|)§’ =9/10, all
output of calls to Choose satisfy théir guarantee. Assuming this happens. We can show that there is a
¢’ that wins or ties all matches (¢, g2) where g2 € C\ {¢’}. For example, let ¢’ = ¢ then by Definition
of Algorithm Choose, any match (g, g2) either ends in a ”tie” at Step [1] or reaches Step [2] and ends in a
7win” for gq.

But what if there is multiple ¢’ that wins or ties all matches? We can just pick an arbitrary such
¢’ and output it, since any such ¢’ satisfies |¢ — p|; < 1le. Indeed, if ¢’ = ¢ then we are done, as ¢ is
e-close to p. Assume ¢’ # ¢, and consider the match between ¢’ and ¢: if ¢’ wins, then ¢’ is < 10¢’-close
to p, else if ¢’ tie, then ¢’ is 10e-close to g, thus 11le-close to p. O

Example [1] revisited. We abuse notation and write ¢ in place of Ber(q) for brevity’s sake. We
write H = {q|q € [0,1]}. Then C = {0, %, %, e ,%, 1} where k = 2/¢ is a e-cover of H. Indeed, let
r € {0,--- ,k} be such that § < 2 < “t! then |Ber(z) — Ber(%)|1 = 2|7 — x| < 2/k = . Note that
IC] = 6(1/€). So by Theorem 3, setting ¢ = €/11, can learn Ber(q) e-close to p = Ber(z) by taking
O(% log(1)) samples from p.

Example 2 (2-Bucket distributions). A 2-bucket distribution B, g is defined by

as ifi€ [n/2]
PTXNB@,/:\‘ [X = 7’] = ni/g ZfZ € [TL} \ [n/Q]

0 else

Let D be the set of all 2-bucket distributions By, g where a, 8 € [0,1]. Similar to in Example we
can create an e-cover using e-net for each of o, i.e. C = {B;/i /ili,j € {0,--- ,k}} where k = 1/e.
The size of this cover is (%) thus can learn unknown Bq g in O(Z log(1)).

Example 3 (Monotone distributions). Let D be the set of monotone (decreasing) distributions over
[n] = {1,2,--- ,n}. By lecture 15, the set of Birge distributionc = {(wy, - ,we(@))\wi =i €
{0,--- ,k}} where k = 1/¢ forms an e-cover. The size of this cover is |C| = H(Elog%/e), so we can learn
p €D in 08" log(1)).

€

2see Lecture 15

	Outline
	Hypothesis testing
	Subtool: Comparing two hypothesis
	Cover method

