1 Outline

The following topics were covered in class:

- Hypothesis testing
- Cover Method

2 Hypothesis testing

We say a distribution p is known to algorithm \mathcal{A} if \mathcal{A} has access to p 's probability density function (pdf). We say p is unknown to algorithm \mathcal{A} if \mathcal{A} doesn't have access to p 's pdf. Unless otherwise stated, \mathcal{A} can take samples from distribution p (in order to "learn" p).

For distributions p, q and parameter ϵ, we say p is ϵ-close to q iff $|p-q|_{1} \leq \epsilon$ Input:

- Unknown distribution p.
- Collection \mathcal{H} of known distributions. \mathcal{H} is guaranteed to contain a distribution that is ϵ-close to p.

Output: a distribution $q \in \mathcal{H}$ that is ϵ-close to p
Example 1. \mathcal{H} is the set of biased coins i.e. $\mathcal{H}=\{\operatorname{Ber}(q) \mid q \in[0,1]\}$ and $p=\operatorname{Ber}(x)$.

3 Subtool: Comparing two hypothesis

We break the problem down into smaller pieces. First, let us consider an "easy" case of the problem: when $|\mathcal{H}|=2$. We can build a solution for the general case from there.

Theorem 1. There exists algorithm \mathcal{A} that when given input:

- Known distributions h_{1}, h_{2}.
- Unknown distribution p.
- parameter $\epsilon^{\prime}>0$, confidence level $\delta^{\prime} \in(0,1)$.
takes $O\left(\log \left(1 / \epsilon^{\prime}\right) / \epsilon^{\prime 2}\right)$ samples from p, and output $h \in\left\{h_{1}, h_{2}\right\}$ such that: if one of h_{1}, h_{2} are ϵ^{\prime}-close to p, then with probability $\geq 1-\delta^{\prime}$ output h is $11 \epsilon^{\prime}$-close to p. Note that, we do not hold any assumption on the output when neither h_{1}, h_{2} are ϵ-close to p.

Actually, we will prove something stronger:
Theorem 2. There exists algorithm "Choose" when given input:

- Unknown distribution p.
- Known distributions h_{1}, h_{2}, assuming that at least one of them are ϵ-close to p
- parameter $\epsilon^{\prime}>0$, confidence level $\delta^{\prime} \in(0,1)$.

[^0]takes $O\left(\log \left(1 / \delta^{\prime}\right) / \epsilon^{\prime 2}\right)$ samples from p,
and outputs tuple out $=($ outcome, $h)$ where outcome $\in\{$ win, tie $\}$ and $h \in\left\{h_{1}, h_{2}\right\}$ that with probability $\geq 1-\delta^{\prime}$ satisfies:
(1) If h_{i} is more than $12 \epsilon^{\prime}$-far from p, then out $\neq\left(\right.$ outcome, $\left.h_{i}\right)$
(2) If h_{i} is more than $10 \epsilon^{\prime}$-far from p, then out $\neq\left(\right.$ win, $\left.h_{i}\right)$ (but it is probable that out $=\left(\right.$ tie,$\left.h_{i}\right)$).

Proof. Let $A=\left\{x \mid h_{1}(x)>h_{2}(x)\right\}$. Let $a_{i}=h_{i}(A)=\sum_{x \in A} h_{i}(a)$ for $i \in\{1,2\}$.
Claim (1): $\left|h_{1}-h_{2}\right|_{1}=2\left(a_{1}-a_{2}\right)$.
For a proof by picture, seehttps://people.csail.mit.edu/ronitt/COURSE/S19/Handouts/lec16b. pdf. Here, we formalize the proof in words. for $x \in A,\left|h_{1}(x)-h_{2}(x)\right|=h_{1}(x)-h_{2}(x)$ so

$$
\sum_{x \in A}\left|h_{1}(x)-h_{2}(x)\right|=\sum_{x \in A}\left(h_{1}(x)-h_{2}(x)\right)=h_{1}(A)-h_{2}(A)=a_{1}-a_{2}
$$

Similarly, $\sum_{x \notin A}\left|h_{1}(x)-h_{2}(x)\right|=\sum_{x \in A}\left(h_{2}(x)-h_{1}(x)\right)=h_{2}\left(A^{c}\right)-h_{1}\left(A^{c}\right)=\left(1-h_{2}(A)\right)-\left(1-h_{1}(A)\right)=$ $h_{1}(A)-h_{2}(A)$, where A^{c} is the complement of A in the union of the domains of h_{1} and h_{2}.

Thus

$$
\left|h_{1}-h_{2}\right|_{1}=\sum_{x \in A}\left|h_{1}(x)-h_{2}(x)\right|+\sum_{x \notin A}\left|h_{1}(x)-h_{2}(x)\right|=2\left(a_{1}-a_{2}\right)
$$

Algorithm "Choose":

1. If $a_{1}-a_{2} \leq 5 \epsilon^{\prime}$, return (tie, h)
2. Draw $m=\log \left(1 / \delta^{\prime}\right) / \epsilon^{\prime 2}$ samples s_{1}, \cdots, s_{m} from p
3. Let $\alpha \leftarrow \frac{1}{m}\left|\left\{i \mid s_{i} \in A\right\}\right|$.
4. If $\alpha>a_{1}-\frac{3}{2} \epsilon^{\prime}$ returns (win, h_{1})
else if $\alpha<a_{2}+\frac{3}{2} \epsilon^{\prime}$ returns (win, h_{2})
else return (tie, h_{1})
There exists $h^{*} \in\left\{h_{1}, h_{2}\right\}$ that is ϵ^{\prime}-far from p. If algorithm ends at Step 1, then h_{2}, h_{1} are $10 \epsilon^{\prime}$-close to one another thus also $10 \epsilon^{\prime}$-close to h^{*}; hence, they are $11 \epsilon^{\prime}$-close to p. So algorithm can output "tie" along with either h_{1} or h_{2}. On the other hand, if either h_{1} or h_{2} is $>12 \epsilon^{\prime}$-far from p. WLOG, may assume $h^{*}=h_{1}$ and h_{2} is $12 \epsilon^{\prime}$-far from p, then by triangle inequality, h_{2} is $11 \epsilon^{\prime}$-far from h_{1}, so $a_{1}-a_{2}=\left|h_{1}-h_{2}\right|_{1} / 2>5 \epsilon^{\prime}$, and algorithm will reach Step 2 ,

Assume algorithm reaches Step 2. Note that $E(\alpha)=p(A)$, and by Chernoff's bound, with probability $\geq 1-\delta,|\alpha-E(\alpha)|<\epsilon^{\prime} / 2$. Assume this inequality holds. If h_{1} is ϵ^{\prime}-close to p then by triangle inequality, $\left|p(A)-h_{1}(A)\right| \leq \sum_{x \in A}\left|p(x)-h_{1}(x)\right| \leq\left|p-h_{1}\right|_{1} \leq \epsilon^{\prime} ;$ thus,

$$
\alpha>E(\alpha)-\epsilon^{\prime} / 2=p(A)-\epsilon^{\prime} / 2 \geq\left(a_{1}-\epsilon^{\prime}\right)-\epsilon^{\prime} / 2=a_{1}-\frac{3}{2} \epsilon^{\prime}
$$

Similarly, if h_{2} is ϵ^{\prime}-close to p then $\left|p(A)-a_{2}\right| \leq \epsilon^{\prime}$ so $\alpha<a_{2}+\frac{3}{2} \epsilon^{\prime}$. Note that since we reach step 2 , $a_{1}-a_{2}>5 \epsilon^{\prime}$ so $a_{1}-\frac{3}{2} \epsilon^{\prime}>a_{2}+\frac{3}{2} \epsilon^{\prime}$, thus the algorithm wouldn't output "tie" (assuming the inequality $|\alpha-E(\alpha)|<\epsilon^{\prime} / 2$ holds!)

4 Cover method

Using the subtool in Section 3, we can get an algorithm for the case when \mathcal{H} is finite. But as we see in Example 1, \mathcal{H} might be infinite. How do we deal with that? We revisit the idea of ϵ-net discussed in previous lectures. More concretely, given a set of distributions \mathcal{D}, we want to take a smaller set of distributions \mathcal{C} that approximate \mathcal{D} within some ϵ distance. Formally,

Definition 3. Let \mathcal{D} be a set of distributions. Set of distributions \mathcal{C} is a ϵ-cover of \mathcal{D} if $\forall q \in \mathcal{D}$, there exists $p \in \mathcal{C}$ such that $|p-q|_{1} \leq \epsilon$.

This way, we can save time by running algorithms on \mathcal{C} instead of \mathcal{D}.
Theorem 4. There exists an algorithm, that given $p \in \mathcal{D}$, takes $O\left(\frac{1}{\epsilon^{2}} \log |\mathcal{C}|\right)$ samples of p and output $h \in \mathcal{C}^{\mathcal{D}}$ such that $|h-p| \leq 11 \epsilon$.

Proof. Since $p \in \mathcal{D}$, there exists $q \in \mathcal{C}$ such that $|p-q|_{1} \leq \epsilon$. We run Choose on every pair q_{1}, q_{2} in \mathcal{C} with parameter $\epsilon^{\prime}=\epsilon$ and $\delta^{\prime}=\frac{1}{10\binom{(\mathcal{C} \mid}{2}}$. Then by union bound, with probability $\geq 1-\binom{|\mathcal{C}|}{2} \delta^{\prime}=9 / 10$, all output of calls to Choose satisfy their guarantee. Assuming this happens. We can show that there is a q^{\prime} that wins or ties all matches $\left(q^{\prime}, q_{2}\right)$ where $q_{2} \in \mathcal{C} \backslash\left\{q^{\prime}\right\}$. For example, let $q^{\prime}=q$ then by Definition of Algorithm Choose, any match $\left(q, q_{2}\right)$ either ends in a "tie" at Step 1 , or reaches Step 2 and ends in a "win" for q.

But what if there is multiple q^{\prime} that wins or ties all matches? We can just pick an arbitrary such q^{\prime} and output it, since any such q^{\prime} satisfies $\left|q^{\prime}-p\right|_{1} \leq 11 \epsilon$. Indeed, if $q^{\prime}=q$ then we are done, as q is ϵ-close to p. Assume $q^{\prime} \neq q$, and consider the match between q^{\prime} and q : if q^{\prime} wins, then q^{\prime} is $\leq 10 \epsilon^{\prime}$-close to p, else if q^{\prime} tie, then q^{\prime} is 10ϵ-close to q, thus 11ϵ-close to p.

Example 1 revisited. We abuse notation and write q in place of $\operatorname{Ber}(q)$ for brevity's sake. We write $\mathcal{H}=\{q \mid q \in[0,1]\}$. Then $\mathcal{C}=\left\{0, \frac{1}{k}, \frac{2}{k}, \cdots, \frac{k-1}{k}, 1\right\}$ where $k=2 / \epsilon$ is a ϵ-cover of \mathcal{H}. Indeed, let $r \in\{0, \cdots, k\}$ be such that $\frac{r}{k} \leq x<\frac{r+1}{k}$ then $\left|\operatorname{Ber}(x)-\operatorname{Ber}\left(\frac{r}{k}\right)\right|_{1}=2\left|\frac{r}{k}-x\right| \leq 2 / k=\epsilon$. Note that $|\mathcal{C}|=\theta(1 / \epsilon)$. So by Theorem 3, setting $\epsilon^{\prime}=\epsilon / 11$, can learn $\operatorname{Ber}(q) \epsilon$-close to $p=\operatorname{Ber}(x)$ by taking $O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{1}{\epsilon}\right)\right)$ samples from p.

Example 2 (2-Bucket distributions). A 2-bucket distribution $B_{\alpha, \beta}$ is defined by

$$
\operatorname{Pr}_{X \sim B_{\alpha, \beta}}[X=i]=\left\{\begin{array}{l}
\frac{\alpha}{n / 2} \text { if } i \in[n / 2] \\
\frac{\beta}{n / 2} \text { if } i \in[n] \backslash[n / 2] \\
0 \text { else }
\end{array}\right.
$$

Let \mathcal{D} be the set of all 2-bucket distributions $B_{\alpha, \beta}$ where $\alpha, \beta \in[0,1]$. Similar to in Example 1, we can create an ϵ-cover using ϵ-net for each of α, β i.e. $\mathcal{C}=\left\{B_{i / k, j / k} \mid i, j \in\{0, \cdots, k\}\right\}$ where $k=1 / \epsilon$. The size of this cover is $\theta\left(\frac{1}{\epsilon^{2}}\right)$ thus can learn unknown $B_{\alpha, \beta}$ in $O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{1}{\epsilon}\right)\right)$.

Example 3 (Monotone distributions). Let \mathcal{D} be the set of monotone (decreasing) distributions over $[n]=\{1,2, \cdots, n\}$. By lecture 15, the set of Birge distribution ${ }^{2} \mathcal{C}=\left\{\left.\left(w_{1}, \cdots, w_{\theta\left(\frac{\log n}{\epsilon}\right)}\right) \right\rvert\, w_{i}=\frac{j_{i}}{k}, j_{i} \in\right.$ $\{0, \cdots, k\}\}$ where $k=1 / \epsilon$ forms an ϵ-cover. The size of this cover is $|\mathcal{C}|=\theta\left(\frac{1}{\epsilon^{\log n / \epsilon}}\right)^{\epsilon}$, so we can learn $p \in \mathcal{D}$ in $O\left(\frac{\log n}{\epsilon^{3}} \log \left(\frac{1}{\epsilon}\right)\right)$.

[^1]
[^0]: ${ }^{1}$ see https://en.wikipedia.org/wiki/Bernoulli_distribution

[^1]: ${ }^{2}$ see Lecture 15

