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1 Outline

Today, we will continue our discussion about testing the uniformity of a distribution in sub-linear time.
We will focus on the analysis of the algorithm that we went over in the previous lecture.

• Setup and Review from Last Lecture

• Analysis

2 Setup and Review from Last Lecture

Our overall goal is to be able to pass a distribution, D, if it is uniform with probability greater than 2
3

and reject a distribution D with probability greater than 2
3 , if the dist(D,Uniform) > ε. There are two

definitions that we consider for distance functions, L1 and L2.

Definition 1 The L1(p, q) or the L1 distance between distributions p and q is

L1(p, q) = ||p− q1||1 =
∑
x∈D
|p(x)− q(x)|

Definition 2 The L2(p, q) or the L2 distance between distributions p and q as

L2(p, q) = ||p− q||2 =

√∑
x∈D

(p(x)− q(x))2

It is important to note the relationship between these two definitions:

||p− q||2 ≤ ||p− q||1 ≤
√
n||p− q||2

where n is the number of points in p and q.

We can also identify an important fact about the squared L2 distance when determining the distance
between a distribution p and the uniform distribution U

||p− u||22 =
∑
x∈D

p2(x)− 1

n

where we will define ||p||22 as the collision probability. Please see Lecture 12 notes for a more detailed
explanation of this fact.

The last part we will review from last lecture is the algorithm we will use for determining the distance
between a distribution and the uniform distribution.

Algorithm 1 Uniformity Testing

Take s Samples
ĉ← estimate of ||p||22 from sample
if ĉ < 1

n + δ then
Pass

else
Fail

end if
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3 Analysis

The rest of the lecture will cover three questions we can ask about the algorithm (described at the end
of the last section):

• How well should we estimate ||p||22?

• What should δ be for the last statement?

• How many samples should we take?

3.1 Estimating Collision Probability

We will start with a naive idea for estimating ||p||22 or the collision probablility.

Algorithm 2 Naive ||p||22
Take s samples from p
for each pair k do

if Xk = Xk+1 then
σk = 1 where σk is an indicator variable

else
σk = 0

end if
end for
Output ĉ←

∑k
k=1 σk

k

This algorithm gives us Θ(k) samples of collision probability from k samples of p. We would like a
better query complexity than this.

A better idea is to ‘recycle’ pairs and use all pairs in a sample. This way we can get Θ(k2) samples of
collision probability from k samples.

Algorithm 3 Recycle ||p||22
Take s samples from p
for each 1 ≤ i ≤ j ≤ s do

if Xi = Xj then
σij = 1

else
σij = 0

end if
end for
Output Ĉ ←

∑
i<j σij

(S
2)

Note that σijs are not independent so we cannot use Chernoff to bound our error. Also, note that
the expectation of both algorithms is correct and equals to the collision probability.

The goal of the rest of our analysis is to show that with enough samples the expectation of our es-
timate is close enough to the collision probability. Formally, we want to show

E[ĉ] =
1(
s
2

)(s
2

)
E[σij ] = ||p||22
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3.2 Picking δ

Since we are approximating the collision probability, we need to determine how good of an estimate we
need to satisfy the algorithm we described in the first section.

Let ∆ = ε2

2 . Then we have:

|ĉ− ||p||22| < ∆ =
ε2

2

When ∆ = ε2

2 , the algorithm will produce the correct behavior (with enough samples taken):

• If p = U[n] then ĉ ≤ ||U[n]||2 + ∆ = 1
n + ε2

2 , so the test will pass.

• If ||p − U[n]||2 > ε then ||p − U[n]||22 > ε2. We will also show that if this happens then ||p||22 =

||p−U[n]||22 + 1
n > ε2 + 1

n and ĉ > ||p||22 −∆ ≥ ε2 + 1
n −∆ = ε2 + 1

n −
ε2

2 = ε2

2 + 1
n , so the test will

fail.

Now we have answered two of our three questions. To estimate the collision probability, we will use the

‘Recycle’ algorithm and δ should equal ε2

2 . The next section will show that the number of samples we
need to take can be done in sub-linear queries.

3.3 Determining the Number of Samples

The samples we are drawing are not independent, we will be using Chebyshev’s inequality to bound our
error:

Pr[|ĉ− ||p||22| > p] ≤ V ar[ĉ]

p2

From the previous section, we can say the following

V ar[ĉ] = V ar[
1(
s
2

) ∑
i<j

σij ] =
1(
s
2

)2V ar[∑
i<j

σij ]

Noting that V ar[aX] = a2V ar[x], we will bound V ar[
∑
i<j σij ].

Lemma 3 V ar[
∑
i<j σij ] ≤ 4

((
s
2

)
||p||22

) 3
2

Proof We will start with a definition:

Definition 4 σij = σij − E[σij ] = 0

The reason why we need this definition is because we will use it as a trick to rewrite E[
∑
σij ]

2:

V ar[
∑

σij ] = E[(
∑

σij − E[
∑

σij ])
2] = E[(

∑
σij − E[

∑
σij ])

2] = V ar[
∑

σij ]

So E[σij ] = 0. We will also use several other facts:

• E[σij σkl] ≤ E[σijσkl]

•
(∑

p(x)3
) 1

3 ≤
(∑

p(x)2
) 1

2

• s2 ≤ 3
(
s
2

)
•
(
s
3

)
≤ s3

6
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Now, we can say

V ar[
∑
i<j

σij ] = E[

∑
i<j

σij − E[
∑
i<j

σij ]

2

] = E[(
∑
i<j

σij)
2] =

E[
∑
i<j

(σij
2) (1)

+
∑

i<j,k<l

σij σkl (2)

+
∑

i<j,k<l

σij σil (3)

+
∑

i<j,k<j

σij σkj (4)

+
∑

i<j,j<l

σij σjl (5)

+
∑

i<j,k<i

σij σki] (6)

We will go through each part of the equation and simplify it using the facts we stated earlier.

1. E[
∑
i<j σ

2
ij ] ≤ E[

∑
σ2
ij ] =

(
s
2

)
||p||22. Note that we can make this statement because E[σij ] = E[σ2

ij ]
since σij is an indicator variable.

2. We can use our trick to simplify the second term where i, j, k, l are all distinct.

E[
∑

i<j,k<l

σij σkl] ≤
∑

E[σij ]E[σkl] = 0

3. E[
∑
σij σil] ≤ E[

∑
i,j,l distinct σijσil] =

∑
i,j,l distinct Pr[xi = xj = xl]. The probability that the

three indicator variables are equal to each other is the same as the probability of a three way

collision, which we can simplify using the facts:
(
s
3

)∑
x p(x)3 ≤ s3

6 (
∑
x p(x)2)

3
2 ≤

√
3
2

(
s
2

) 3
2 (||p||22)

3
2

4. Same as 3

5. Same as 3

6. Same as 3

We can put all of this together to say the following

V ar[
∑
i<j

σij ] = V ar[
∑
i<j

σij ] ≤
(
s

2

)
||p||22 + 0 + 4(

√
3

2
)(

(
s

2

)
||p||22)

3
2 ≤ 4[

(
s

2

)
||p||22]

3
2

We can now plug the lemma into Chebyshev with p = ε2

2 :

Pr[|ĉ− ||p||22| >
ε2

2
] ≤ V ar[ĉ]

ε4
4 ≤

4[
(
s
2

)
||p||22]

3
2(

s
2

)2
ε4

4 ≤ 32

ε4
1

s
||p||32

Thus, to get the approximating we would like, we can set the number of samples, s to be ≥ ω 1
ε4 .
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3.4 Adjustment for L1

For the analysis above, we were assuming that the number of samples needed for the L2 distance was
sufficient. However, we need to modify that value to satisfy the L1 distance as well. If a distribution is
uniform, then we can say the following

||p− U ||1 = 0⇔ ||p− U ||22 = 0⇔ ||p||22 =
1

n

If a distribution is ε-far from uniform, then

||p− U ||1 > ε⇒ ||p− U ||2 >
ε√
n
⇒ ||p− U ||22 >

ε2

n
⇒ ||p||22 >

1

n
+
ε2

n

This implies that we can have an addistive estimate with error ≤ ε2

2n or multiplicative error ≤ (1 ± ε2

3 )

which would occur if additive error is ≤ ε2

3n ||p||
2
2. Now, we need to figure out how to choose the right

number of samples such that our additive error is less than or equal to ε2

3n ||p||
2
2. We can state the

following where k is a constant:

Pr[|ĉ− ||p||22|] ≥ δ||p||22] ≤ k||p||32
sδ2(||p||22)2

≤ k

sδ2||p||2
≤ k
√
n

sδ2

The statement is true because ||p||22 > 1
n so ||p||2 > 1√

n
meaning 1

||p||2 <
√
n. Because of the statements

above, if we pick the number of samples s to be >>
√
n
ε4 then we have a small probability of error which

is approximately k
√
n

sε4 .
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