
6.889 Sublinear Time Algorithms March 18, 2019

Lecture 12
Lecturer: Ronitt Rubinfeld Scribe: Sandeep Silwal

1 Distribution Testing Model

So far in the class we have mainly discussed graph property testing. In this setting, the models that we
used were adjacency list queries for sparse graphs and adjacency matrix queries for dense graphs. We will
now transition to a different model when discussing distribution property testing where we assume there
is an oracle (or a stream) that gives us an independent copy of random variable from some distribution
P in every query.

X ∼ PP

Figure 1: We can imagine querying the oracle as pushing a button on a black box which spits out
independent copies of a random variable from some distribution P

Throughout the next few lectures, we will assume that the domain of our probability distributions are
discrete and over [n] = {1, · · · , n}. We are interested in testing properties of our distributions such as:
Is the distribution uniform, monotone, bimodal, · · · and does the distribution have high entropy, large
support, · · · . Similar to graph property testing, we measure the complexity of algorithms in this model
in terms of the number of queries that we make to our oracle/stream. Our goal is to get this sample
complexity to be sublinear in the size of the domain. In this lecture, we focus on testing uniformity. We
expand upon this in the next section.

2 Uniform Testing

2.1 Setup

Given an oracle or steram to some unknown distribution P, our goal is to design an algorithm that tests
if P is close to U , the uniform distribution over [n]. More specifically, we want an algorithm that does
the following:

• If P = U , pass with probability at least 2
3 .

• If dist(P,U) ≥ ε, fail with probability at least 2
3 .

This raises two questions. First, why do we insist on our algorithm having two sided error and second,
what is our definition of distance. To answer the first question, we note that our algorithm necessarily
needs to have two sided error since there is some (small) probability that even if P = U , our oracle only
spits out the same value in every query. For the second question, we will use two notions of distance: `1
and `2. For two distributions P and Q, the `1 distance is defined as

‖P −Q‖1 =
∑
i∈[n]

|p(i)− q(i)|

1

where p(i) = P(P = i) and similarly q(i) = P(Q = i). The `2 distance is defined as

‖P −Q‖2 =

∑
i∈[n]

(p(i)− q(i))2
2

.

Note that we have the following relationship between these two distances

‖P −Q‖2 ≤ ‖P −Q‖1 ≤
√
n‖P −Q‖2 (1)

where the left inequality follows by expansion and the right inequality is just Cauchy Schwarz.

2.2 Understanding the Metrics

At first glance one might expect both `1 and `2 to behave similarly. However, it turns out that these
two metrics are quite different. This is illustrated by the following example. Let P1 be the distribution
that assigns all of its mass to i = 1 and let Q1 = U . Then

‖P1 −Q1‖1 = 1 ·
(

1− 1

n

)
+ (n− 1) · 1

n
≈ 2

‖P1 −Q1‖2 =

√
1 ·
(

1− 1

n

)2

+ (n− 1) · 1

n2
≈ 1.

In this case, both the `1 and `2 distances between P1 and Q1 are large. Now consider the example where
P2 is uniform over the first n/2 elements of [n] while Q2 is uniform over the last n/2 elements of [n].
We can compute that

‖P2 −Q2‖1 = n · 2

n
= 2

‖P2 −Q2‖2 =

√
n · 4

n2
=

2√
n
.

1 2 · · · n− 1 n
0

1
n

· · ·

1

1 2 · · · n− 1 n
0

1
n

· · ·

1

Figure 2: Right: Distribution P1. Left: Distribution Q1.

2

1 · · · n
2

· · · n− 1 n
0

2
n

· · ·

1

1 · · · n
2

· · · n− 1 n
0

2
n

· · ·

1

Figure 3: Right: Distribution P2. Left: Distribution Q2.

In this example. the `1 distance between P2 and Q2 is large while the `2 distance is very small
even though the distributions are disjoint! This suggests that testing `2 distance is a lot easier than
testing `1 distance since we have to distinguish fewer things! Our strategy then is to first get an efficient
uniform tester for `2 distance and use (1) to get a (less)efficient tester for `1 distance that incurs an extra
multiplicative factor of O(

√
n). This will be explored more in the later sections and the next lecture.

We first begin with a naive algorithm to test `1 distance to U , the uniform distribution.

3 Naive `1 Tester

The following naive algorithm is also called “Plug in estimate.”

Algorithm 1: Plug-In Estimate

Input : Oracle access to P, ε
Output: Accept or Reject

1 Take m samples of P from the oracle

2 For all i ∈ [n], estimate p(i) = P(P = i) by p̂(i) = # of times i is in sample
m

3 Reject if
∑

i∈[n] |p̂(i)− 1/n| > ε/2 and accept otherwise

Intuitively, the Plug-In Estimate tries to get a good estimate of p(i) for all i using m samples.
Now suppose that we pick m such that

|p̂(i)− p(i)| ≤ ε

2n
(2)

for all i. Then if P = U , we clearly have ‖P − U‖1 ≤ ε so Plug-In Estimate will accept P. On the

3

other hand, if ‖P − U‖1 ≥ ε, then by the reverse triangle inequality,∑
i∈[n]

∣∣∣∣p̂(i)− 1

n

∣∣∣∣ =
∑
i∈[n]

∣∣∣∣p̂(i)− p(i) + p(i)− 1

n

∣∣∣∣
≥ ‖P − U‖1 −

∑
i∈[n]

|p̂(i)− p(i)|

≥ ε− ε

2
=
ε

2

so Plug-In Estimate will reject P. Now the question is how pick should we take m such that (2) holds.
This ties into why Plug-In Estimate is a naive algorithm. Note that we want (2) to hold for all i
which means that we are actually learning the whole distribution P, a harder task than learning just the
distance to U . For (2) to hold, its reasonable to assume that we need Ω(n log n) samples due to coupon
collection. We now do a tight analysis to show that m = O(n) suffices. Note that

E

∑
i∈[n]

|p̂(i)− p(i)|

 =
∑
i∈[n]

E[|p̂(i)− p(i)|] ≤
∑
i∈[n]

√
E(p̂(i)− p(i))2

Note that Ep̂(i) = p(i) for all i since we can write p̂(i) as the sum of m Bernoulli random variables
with parameter p(i). Hence, E(p̂(i)− p(i))2 = Var(p̂(i)). Again using the fact that p̂(i) is the sum of m
independent Bernoulli random variables with parameter p(i), we have that

Var(p̂(i)) =
1

m
p(i)(1− p(i)) ≤ p(i)

m
.

Therefore,

E

∑
i∈[n]

|p̂(i)− p(i)|

 ≤ 1√
m

∑
i∈[n]

√
p(i) ≤

√
n

m

where we have used Cauchy-Schwarz for the last inequality. Hence, if m = O(n/ε2), we have

E

∑
i∈[n]

|p̂(i)− p(i)|

 ≤ O(ε)

and our analysis above goes through (with sufficiently large probability from Markov’s inequality).
Leaving `1 aside, we now move onto testing closeness to U using the `2 metric.

4 `2 Tester

We first reduce testing ‖P − U‖2 to a simpler property about P. We compute that

‖P − U‖22 =
∑
i∈[n]

(
p(i)− 1

n

)2

=
∑
i∈[n]

p(i)2 − 2

n

∑
i∈[n]

p(i) +
1

n2

∑
i∈[n]

1

=

∑
i∈[n]

p(i)2

− 1

n
.

4

Now note that
∑

i∈[n] p(i)
2 = ‖P‖22 is the collision probability, that is, it is the probability that two

elements drawn from P are the same. This tells us that testing the distance from P to U using `2 is
equivalent to testing the collision probability of P. (It also tells us that the uniform distribution has the
smallest collision probability which intuitively makes sense.) This suggests the following algorithm for
testing `2 distance to U :

Algorithm 2: `2 −Attempt 1

Input : Oracle access to P, ε
Output: Accept or Reject

1 Take m samples of P from the oracle
2 Let ĉ be our estimate for ‖P‖22 =

∑
i∈[n] p(i)

2

3 If ĉ < 1
n + δ pass, else fail

(We are purposely leaving out a lot of important details in the description of `2 −Attempt 1 since
we will propose another algorithm later.) If we take m samples and group them into m/2 groups of size
2, we get to see O(m) possible collisions that are all independent. However, this does not quite work.
To estimate the collision probability, we need to see a collision which can take upto Ω(n) samples. The
better idea is to recycle the samples we have seen. This means that we can see O(m2) potential collisions
from m samples at a cost of messier analysis since these collisions are not independent. This leads us to
our final algorithm for testing `2 distance to U .

Algorithm 3: `2 −Recycling

Input : Oracle access to P, ε
Output: Accept or Reject

1 δ ← ε2/2
2 Take m samples of P from the oracle
3 Let σij be indicator variable if sample i is equal to sample j

4 ĉ←
∑

i<j σij/
(
m
2

)
5 If ĉ < 1

n + δ pass, else fail

Note that

E[ĉ] =

(
m

2

)
1(
m
2

)E[σij] = P(sample i = sample j) =
∑
k∈[n]

p(k)2 = ‖P‖22

so ĉ is an unbiased estiamtor for ‖P‖22. Now suppose that

|ĉ− E[ĉ]| = |ĉ− ‖P‖22| < δ =
ε2

2
. (3)

We will analyze `2 −Recycling under assumption (3) and show its correctness. In the next lecture,
we will show that we need m = poly(1/ε) for 3 to hold which will complete the analysis. Now suppose
that P = U . Then under assumption (3),

ĉ < ‖P‖22 + δ =
1

n
+
ε2

2

so `2 −Recycling will accpet P. Now if ‖P − U‖2 > ε, we have

‖P − U‖22 = ‖P‖22 −
1

n
= E[ĉ]− 1

n
> ε2.

5

Therefore, under assumption (3),

ĉ >
1

n
+ ε2 − ε2

2
=

1

n
+ δ

so `2 −Recycling will reject P. Now the challenge is to pick m in `2 −Recycling such that (3) holds.
This will involve calculating the variance of ĉ which will be done in the next lecture.

6

