6.889 Sublinear Time Algorithms March 11, 2019

Lecture 10
Lecturer: Ronitt Rubinfeld Scribe: Rogers Epstein

1 Lower Bounds via Yao’s Principle

This approach actually works for any randomized algorithm! But we will use it for sublinear ones.
Overall, this is a game theoretic viewpoint introduced by Andrew Yao in 1977 to lower bound the query
complexity of a randomized algorithm.

Principle 1 If 3 probability distribution D on a union of "positive” and "negative” inputs (on which
the algorithm should output "yes” or "no,” respectively) such that any deterministic algorithm of query
complezity < t s incorrect with probability > %, then t is a lower bound on the randomized query
complexity of this language.

Moral of Yao’s: Average case lower bound on a deterministic algorithm implies a worst case lower
bound on randomized algorithms.

Note that D must be over a large (w(t))) number of inputs, otherwise there always exists an easy
algorithm that outputs the right answer and fails the conditional statement.

For the game theoretic interpretation, suppose we have a game where Alice gets to choose any
deterministic algorithm A, and Bob chooses some input x. Here, the range of A is always {0,1}. Here
the outcome of the game is whether or not A gives the right answer (which we represent by a cost of 0)
or the wrong answer (which we represent by a cost of 1). In this case, Alice aims to minimize her cost
and Bob aims to maximize it. Thus, the payoff matrix can be viewed as zero-sum, and we can apply the
minimax theorem. This theorem implies that Bob has a randomized strategy that is at least as good
when Alice’s selection of A is randomized. This phrasing is analagous to the original statement of the
principle.

2 Palindrome Example

Let L = {ww’ : w € {0,1}"/2}. Here, w™ means the reverse of the string w. Thus, L is the set of n bit
palindromes.

Definition 2 w is e-close to L if Fw’ € L such that w and w' are e-close in Hamming distance (i.e.
they differ in at most en bits).

We can easily check if some w is e-close to L by checking if the bits at index ¢ and n — ¢ match, and
if there are more than en mismatches, we fail the input. Thus, we can randomly sample O(%) such bits
to create a sublinear algorithm with o(1) probability of failure. ‘

Now, let L,, = {vvfww® : 2(|v| +|w|) = n} be the set of n bit strings that are concatenations of two
palindromes. We use the same definition of e-close for some string to L,,.

Theorem 3 To test if an input string is e-close to L, with error less than %, we need Q(y/n) queries.

We will prove this by finding a ”bad” input distribution D for any deterministic algorithm. Then,
by Yao, we get our randomized lower bound. For this construction, we assume 6|n. Then:

e Our distribution on negative (e-far) inputs will be the uniform distribution. Call this N.

e Our distribution on positive (in L,) inputs will be constructed by first choosing a length k = |v].
Then we output a randomly constructed element of L,, with this constraint. Call this distribution
P:

1. Randomly pick k €r [§ +1, 5]

n—2k
5 -

3. Output vvfuuf (which by construction is of length n and thus in L,)

2. Pick random v, u such that |v| = k and |u| =

e Finally, our overall distribution is to sample from either N or P with equal probability of %

Now we must show this distribution is "hard” for any deterministic algorithm using < ¢ = o(y/n)
queries. We can model any such algorithm as a binary decision tree of depth ¢, where children of a node
represent the next index queried given the information from querying all nodes from the root down to
it. WLOG, all leaves reach depth ¢, where leaves represent the output of the algorithm, either P or N
(?yes” or ”n0). Note there are 2! = 2°(vV7) Jeaves.

3 Error of a Leaf

Let E~(I) = {inputs w € {0,1}" : w is e-far from L, and w reaches leaf [}. Similarly, let E*(l) = {
inputs w € {0,1}" : w € L, and w reaches leaf I}. These are the inputs that reach a leaf that the
algorithm should fail or pass, respectively. We aim to show that these sets have equal size at every leaf.

For notation, let PL be the set of leaves which are passing, and PF be the set of leaves that are
failing. The total error of A on D is then

> Pryeplwe E-()]+ Y Pryeplw € ET(1)] (1)
lePL lePF

To analyze this quantity, we present two claims. They essentially say that each leaf node sees about
the number of both "negative” and ”positive” inputs you'd expect (since we expect about 27 fraction
of either to end up at each leaf.

Claim 4 Ift = o(n), VI at depth t, Prplw € E~(1)] > (3 — o(1)) x 27"
Claim 5 Ift = o(y/n), VI at depth t, Prplw € E*(1)] > (3 —o(1)) x 27"

Under these claims, the error can be simplified from Equation 1:

> Prucplwe E-()]+ > Prueplw € E¥(1)]

lePL lePF
1 1 1 1
> Y (G-o)x27 + Y (5—o0(1)x27" =5 —o(1) >> 5
lePL leEPF

This gives us the desired result, so it only remains to prove these claims.

4 Proof of Claims

First, we prove Claim 4:

Proof If we pick w €p {0,1}", then the probability that w reaches I must be % since for each of the
t index queries, w is equally likely to have a 0 or 1.

Next, note that |L,| < %2”/2 since there are & possible lengths for v (2,4,6,...,n), and exactly %
degrees of freedom when assigning the bits in the first halves of v and w.

Additionally, the number of words that are e-close from L, is at most |L,| 3" (7) < 28 +2nlog <
since we can construct all of them by choosing an element of L, and changing at most en bits. Here
we’ve applied a Chernoff bound on the Binomial Distribution.

So, [E~(1)| > 27—t — 28 +2en1o8 ¢ If t = o(n) and we choose € << 1 so that n —t >> 2 + 2enlog L,
we can lower bound the above expression by (1 — o(1))2" 7.

Then, Prplw € E~()] = +Pryfw e E-(1)] > LE_ UL > (1 _p1))2-". m

Now, we prove Claim 5:

Proof For leaf I, let Q; = {q1,92,...,q:} be the indices queried on the path to I. Since there are
(%) pairs of g;,¢; in @, then for each pair there are at most 2 choices (possibly 1) of k such that g1, g

symmetric with respect to k or %%

Thus, the number of choices of "good k” such that no pair in @; are symmetric around k or "*T% is
at least § — 2n(;) = (1 —-o0(1))g since t = o(y/n). For these "good k,” the number of strings that follow
this path is 22 7.

So, Prplw e ET()] =3, Pre[w]lyep+uy = Yo 2o Pre[wlk]Prik]lyep+q)
_n6 6 _=n n o -
= ;%:2 2 £1u16E+(Z) 2 gZ 2 % (1 - o(l))g %2270 = (1-o0(1))27"

Finally, we then get Prplw € ET(l)] = %Prp[w e Et(l)] > (% —o(1))2"t. W

Thus, we’ve proven Theorem 3 by applying Yao.

