Sublinear Time Algorithms

April 3, 2019

Homework 4

Lecturer: Ronitt Rubinfeld Due Date: April 20, 2019

Turn in your solution to each problem on a separate sheet of paper, with your name on each one.

- 1. The goal of this problem is to carefully prove a lower bound on testing whether a distribution is uniform.
 - (a) For a distribution p over [n] and a permutation π on [n], define $\pi(p)$ to be the distribution such that for all i, $\pi(p)_{\pi(i)} = p_i$.

Let \mathcal{A} be an algorithm that takes samples from a black-box distribution over [n] as input. We say that \mathcal{A} is *symmetric* if, once the distribution is fixed, the output distribution of \mathcal{A} is identical for any permutation of the distribution.

- Show the following: Let \mathcal{A} be an arbitrary testing algorithm for uniformity (as defined in class and in problem 1(c), a testing algorithm passes distributions that are uniform with probability at least 2/3 and fails distributions that are ϵ -far in L_1 distance from uniform with probability at least 2/3). Suppose \mathcal{A} has sample complexity at most s(n), where n is the domain size of the distributions. Then, there exists a symmetric algorithm that tests uniformity with sample complexity at most s(n).
- (b) Define a fingerprint of a sample as follows: Let S be a multiset of at most s samples taken from a distribution p over [n]. Let the random variable C_i , for $0 \le i \le s$, denote the number of elements that appear exactly i times in S. The collection of values that the random variables $\{C_i\}_{0 \le i \le s}$ take is called the fingerprint of the sample.

For example, let $D = \{1..7\}$ and the sample set be $S = \{5,7,3,3,4\}$. Then, $C_0 = 3$ (elements 1, 2 and 6), $C_1 = 3$ (elements 4, 5 and 7), $C_2 = 1$ (element 3), and $C_i = 0$ for all i > 2.

Show the following: If there exists a symmetric algorithm \mathcal{A} for testing uniformity, then there exist an algorithm for testing uniformity that gets as input only the fingerprint of the sample that \mathcal{A} takes.

- (c) Show that any algorithm making $o(\sqrt{n})$ queries cannot have the following behavior when given error parameter ϵ and access to samples of a distribution p over a domain D of size n:
 - if $p = U_D$, then \mathcal{A} outputs "pass" with probability at least 2/3.
 - if $|p U_D|_1 > \epsilon$, then \mathcal{A} outputs "fail" with probability at least 2/3
- 2. Suppose an algorithm has the following behavior when given error parameter ϵ and access to samples of a distribution p over a domain $D = \{1, ..., n\}$:
 - if p is monotone, then A outputs "pass" with probability at least 2/3.
 - if for all monotone distributions q over D, $|p-q|_1 > \epsilon$, then \mathcal{A} outputs "fail" with probability at least 2/3

Show that this algorithm must make $\Omega(\sqrt{n})$ queries.

Hint: Reduce from the problem of testing uniformity.

- 3. This problem concerns testing closeness to a distribution that is entirely known to the algorithm. Though you will give a tester that is less efficient than the one seen in lecture, this method employs a useful bucketing scheme. In the following, assume that p and q are distributions over D. The algorithm is given access to samples of p, and knows an exact description of the distribution q in advance the query complexity of the algorithm is only the number of samples from p. Assume that |D| = n.
 - (a) Let p be a distribution over domain S. Let S_1, S_2 be a partition of S. Let $r_1 = \sum_{j \in S_1} p(j)$ and $r_2 = \sum_{j \in S_2} p(j)$. Let the restrictions p_1, p_2 be the distribution p conditioned on falling in S_1 and S_2 respectively that is, for $i \in S_1$, let $p_1(i) = p(i)/r_1$ and for $i \in S_2$, let $p_2(i) = p(i)/r_2$. For distribution q over domain S, let $t_1 = \sum_{j \in S_1} q(j)$ and $t_2 = \sum_{j \in S_2} q(j)$, and define q_1, q_2 analogously. Suppose that $|r_1 t_1| + |r_2 t_2| < \epsilon_1$, $||p_1 q_1||_1 < \epsilon_2$ and $||p_2 q_2||_1 < \epsilon_2$. Show that $||p q||_1 \le \epsilon_1 + \epsilon_2$.
 - (b) Define $Bucket(q, D, \epsilon)$ as a partition $\{D_0, D_1, \dots, D_k\}$ of D with $k = \lceil \log(|D|/\epsilon)/(\log(1+\epsilon)) \rceil$, $D_0 = \{i \mid q(i) < \epsilon/|D|\}$, and for all i in [k],

$$D_i = \left\{ j \in D \mid \frac{\epsilon(1+\epsilon)^{i-1}}{|D|} \le q(j) < \frac{\epsilon(1+\epsilon)^i}{|D|} \right\}.$$

Show that if one considers the restriction of q to any of the buckets D_i , then the distribution is close to uniform: i.e., Show that if q is a distribution over D and $\{D_0, \ldots, D_k\} = Bucket(q, D, \epsilon)$, then for $i \in [k]$ we have $|q_{|D_i} - U_{D_i}|_1 \le \epsilon$, $||q_{|D_i} - U_{D_i}||_2^2 \le \epsilon^2/|D_i|$, and $q(D_0) \le \epsilon$ (where $q(D_0)$ is the total probability that q assigns to set D_0).

Hint: it may be helpful to remember that $1/(1+\epsilon) > 1-\epsilon$.

- (c) Let $(D_0, \ldots, D_k) = Bucket(q, [n], \epsilon)$. For each i in [k], if $||p_{|D_i}||_2^2 \le (1 + \epsilon^2)/|D_i|$ then $|p_{|D_i} U_{D_i}|_1 \le \epsilon$ and $|p_{|D_i} q_{|D_i}|_1 \le 2\epsilon$.
- (d) Show that for any fixed q, there is an $\tilde{O}(\sqrt{npoly}(1/\epsilon))$ query algorithm \mathcal{A} with the following behavior:

Given access to samples of a distribution p over domain D, and an error parameter ϵ .

- if p = q, then \mathcal{A} outputs "pass" with probability at least 2/3.
- if $|p-q|_1 > \epsilon$, then \mathcal{A} outputs "fail" with probability at least 2/3
- (e) (Don't turn in) Note that the last problem part generalizes uniformity testing. As a sanity check, what does the algorithm do in the case that $q = U_D$? Also, it is open whether the time complexity of the algorithm can also be made to be $\tilde{O}(\sqrt{npoly}(1/\epsilon))$ (assume that q is given as an array, in which accessing q_i requires one time step).

- 4. Let p be a distribution over $[n] \times [m]$. We say that p is *independent* if the induced distributions $\pi_1 p$ and $\pi_2 p$ are independent, i.e., that $p = (\pi_1 p) \times (\pi_2 p)$. Equivalently, p is independent if for all $i \in [n]$ and $j \in [m]$, $p(i,j) = (\pi_1 p)(i) \cdot (\pi_2 p)(j)$.
 - We say that p is ϵ -independent if there is a distribution q that is independent and $|p-q|_1 \le \epsilon$. Otherwise, we say p is not ϵ -independent or is ϵ -far from being independent.
 - Given access to independent samples of a distribution p over $[n] \times [m]$, an *independence* tester outputs "pass" if p is independent, and "fail" if p is ϵ -far from independent (with error probability at most 1/3).
 - (a) Prove the following: Let A, B be distributions over $S \times T$. If $|A B| \le \epsilon/3$ and B is independent, then $|A (\pi_1 A) \times (\pi_2 A)| \le \epsilon$.
 - Hint: It may help to first prove the following. Let X_1, X_2 be distributions over S and Y_1, Y_2 be distributions over T. Then $|X_1 \times Y_1 X_2 \times Y_2|_1 \le |X_1 X_2|_1 + |Y_1 Y_2|_1$.
 - (b) Give an independence tester which makes $\tilde{O}((nm)^{2/3}poly(1/\epsilon))$ queries. (You may use the L1 tester mentioned in class, which uses $\tilde{O}(n^{2/3}poly(1/\epsilon))$ samples, without proving its correctness.)

¹For a distribution A over $[n] \times [m]$, and for $i \in \{1, 2\}$, we use $\pi_i A$ to denote the distribution you get from the procedure of choosing an element according to A and then outputting only the value of the the i-th coordinate.