
6.896 Sublinear Time Algorithms February 28, 2017

Lecture 5
Lecturer: Ronitt Rubinfeld Scribe: Jianing Xiong

1 Property testing

It takes linear time to distinguish graphs that are connected and disconnected. However, it is much
quicker to distinguish two graphs if they are close to each other. If there is a graph with property p and
there is another one that is ε-close to P, then to distinguish these two may only take the sub-linear time.

All graphs

ε close to P

property P

1.1 Compromise

Can We distinguish the graphs with propoerty P and those that are far away from P?

i.e. G (degree ≤ d) is ”ε-far” from planar if we need to remove ≥ εdmaxn edges to make it planar.

1.2 Property testing algorithm

i f G p l a n a r
then o u t p u t pass wi t h p r o b a b i l i t y ≥ 1− β

i f G i s ”ε− f a r ” from p l a n a r
then o u t p u t f a i l w i t h p r o b a b i l i t y ≥ 1− β

2 Testing Planarity

All graphs have max degree ≤ d
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2.1 Testing H-minor freeness

Definition 1 H is minor of G if you could obtain H from G via either vertex removals, edge removals
or edge contractions.

Definition 2 G is ”H-minor-free” if H is not a minor of G.

Definition 3 G is ”ε to H-minor-free” if we can remove ≤ εdn edges to make it H-minor-free.

Definition 4 G is has minor closed property p if all the minors of G have property P.

Theorem 5 (Robertson & Seymour) Every minor-closed property is expressible as a constant num-
ber of excluded minors.

because the minor closed graph has this unique property: breaking them into pieces will only require
remove very few edges.

Definition 6 G is (k, ε)-hyperfinite if one can remove ≤ εn edges and remain with components of size
≤ k.

Definition 7 G is p-hyperfinite if ∀ ε > 0, G is (ε, p(ε))-hyperfinite.

Theorem 8 (Useful Theorem) Given H ∃ CH such that ∀ 0 < ε < 1, every H-minor free graph of
deg ≤ d is (CH

ε2 , εd)-hyperfinite. ( i.e. Remove ≤ εdn edges and components of size O( 1
ε2 ) )

note:
whenever you have a minor close property, this graph has hyper-finite, they depends on ε.
Each of εk is still planar, which is still hyperfinite, can even be broke down to smaller planars.
sub-graphs of H-minor free graphs are also H-minor free and hyperfinite but only remove number of

edges in porportion to number of nodes in the subgraphs

2.2 Why is hyperfinite useful?

P a r t i t i o n G i n t o G’
−remove a t most ε′dn e d ge s
− Constant s i z e component remain
− i f no way t o do t h i s , G i s not a p l a n a r

I f G’ i s c l o s e t o p lanar , so i s G
− so l e t G’ by p i c k i n g random components & s e e i n g i f t h e y have t h e p r o p e r t y

3 Partition oracle

3.1 Partition Oracle

Assume we have ”partition oracle” P with parameter k, εd
4 , such that ∀ v ∈ V ,

|P [v]| ≤ k

P [v]connected

If G is H-minor free with prob ≥ 9
10

Given partition oracle:

2



e s t i m a t e f̂ = number o f ed g e s (u, v) such t h a t P [u] 6= P [v] t o a d d i t i v e e r r o r ≤ εdn
8 .

i f f̂ > 3
8εdn , o u t p u t ” f a i l ” and h a l t

e l s e choose S = O( 1
ε ) nodes randomly

i f f o r any s ∈ S , P [ s ] not p lanar , ” f a i l ” and h a l t

Accept

If G planar, E[f̂ ] = εdn
4

Sampling bounds f̂ ≤ εdn
4 + εdn

8 = 3
8εnd

A l l p a r t i t i o n s p lanar , then pass

If G is ”ε-far” from H-minor free,

Case 1

p ’ s o u t p u t i s such t h a t |ε(u, v) ∈ E|p(u) 6= p(v)| ≤ εdn
2

sampl ing bounds f̂ ≤ εdn
4 + εdn

8 = 3
8εnd

o u t p u t f a i l w i t h prob ≥ 9
10

Case 2

p ’ s o u t p u t s a t i s f i e s |ε(u, v) ∈ E|p(u) 6= p(v)| ≤ εdn
2

G’ = G w i th c r o s s ed g e s removed
i f G’ i s ε

2− f a r from hav ing proper ty , t h i r d s t e p l i k e l y t o f a i l
e l s e G’ i s ε

2 c l o s e t o p r o p e r t y & G i s ε
2 c l o s e t o G’

so G i s ε−c l o s e t o hav ing p r o p e r t y

i f G’ i s ε
2− f a r from planar , need t o remove ≥ ε

2dn e d ge s t o make p l a n a r

3.2 Global partitioning algorithm

l e t π1, . . . , πn be random l a b e l l i n g o f nodes , πi 6= πj , πi ∈ [n]
p = φ
For i = 1 . . . n do

i f πi i s s t i l l in t h e graph then
i f ∃(k, δ) − i s o l a t e d ne ighborhood o f πi in remaining graph

then s = t h i s nbhd
e l s e s = {πi}
p = p ∪ s
remove s from graph

For hyperfinite graphs, most nodes have (k, δ)-isolated nbhds

Lemma 9 if G is hyperfinite, most nodes have (k, δ)-isolated nbhd

To compute p[v] locally, recursively compute p[w] ∀ w of rank ¡ rank[v] with distance k of v

i f ∃ w such t h a t v ∈ p[w] and rk(w) ≤ rk(v) , then p[v] = p[u]
e l s e l o o k f o r (k, δ) i s o l a t e d nbrhd o f v

i f f i n d i t p[v]
e l s e p[v]
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3.3 Local simulation of oracle

a s s i g n random number ∈ (0, 1) t o v
when f i r s t se e i t , use rank o r d e r s t o d e f i n e π

t o compute p[v]
r e c u r s i v e l y compute p[w] ∀w o f rank < v w i t h i n d i s t a n c e ≤ k o f v
i f ∃w such t h a t v ∈ p[w] then p[v] = p[w]
e l s e l o o k f o r (k, δ)− i s o l a t e d nbhd o f v
( i g n o r i n g any node which i s in p [ w ] f o r any w w i t h s m a l l e r rank )
i f f i n d i t , p[v] = t h i s nbhd
e l s e p[v] = {v}

3.4 Query complexity

dk nodes w i t h i n d i s t a n c e k

2d
O(k)

u s i n g [NO] a n a l y s i s & k ≈ p( ε3

big constant )
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