Lecture 1

Lecturer: Ronitt Rubinfeld Scribe: Yuancheng Yu

1 Diameter of a point set

Given distance matrix D of m points, where $D_{i j}=D_{j i}$ is the distance between i and j, and the triangle inequality is satisfied, i.e., for any $i, j, k, D_{i j} \leq D_{i k}+D_{k j}$, let max $D_{i j}$ be the diameter of the point set. Output (k, l) such that $D_{k l}$ approximates the diameter.

1.1 2-approximation algorithm

For some arbitrary $k \in\{1, \ldots, m\}$, find l that maximizes $D_{k l}$, and output (k, l).
Running time It takes $O(m)=O(\sqrt{n})$ time.
Correctness Let $D_{i j}$ be the diameter, then $D_{k l}=\frac{1}{2}\left(D_{k l}+D_{k l}\right) \geq \frac{1}{2}\left(D_{k i}+D_{k j}\right)=\frac{1}{2}\left(D_{i k}+D_{k j}\right) \geq$ $\frac{1}{2} D_{i j}$, i.e., $D_{k l}$ is a 2-approximation of the diameter.

2 Approximation of the number of connected components

Given a graph $G(V, E)$ (adjacency list representation), max degree d, and ϵ, output y such that $|y-c| \leq$ ϵn with high probability, where c is the number of connected components (additive approximation to within ϵn).

2.1 A different characterization of the number of components

For any node v, let n_{v} be the size of v 's component. Observe that for any component $A \subset V$,

$$
\sum_{u \in A} \frac{1}{n_{u}}=\sum_{u \in A} \frac{1}{|A|}=1
$$

and hence the number of components

$$
c=\sum_{u \in V} \frac{1}{n_{u}}
$$

Computing $\frac{1}{n_{u}}$ and summation over n terms both need $O(n)$ time; can we give a good estimate faster?
2.2 Estimating $c=\sum_{u \in V} \frac{1}{n_{u}}$

We would like to estimate $\frac{1}{n_{u}}$ quickly and estimate $\sum_{u} \frac{1}{n_{u}}$ via sampling bounds. Let $\hat{n_{u}} \equiv \min \left\{n_{u}, \frac{2}{\epsilon}\right\}$, $\hat{c} \equiv \sum_{u \in V} \frac{1}{\hat{n}_{u}}$.
Lemma $1 \hat{n}_{u}$ is a "good" estimate, i.e., for any u,

$$
\left|\frac{1}{\hat{n}_{u}}-\frac{1}{n_{u}}\right| \leq \frac{\epsilon}{2}
$$

Proof If $n_{u} \leq \frac{2}{\epsilon}, \hat{n}_{u}=n_{u}$. Otherwise $n_{u}>\frac{2}{\epsilon}=\hat{n}_{u}$, and $\frac{\epsilon}{2}=\frac{1}{\hat{n}_{u}}>\frac{1}{n_{u}}>0$, so $\left|\frac{1}{\hat{n}_{u}}-\frac{1}{n_{u}}\right| \leq \frac{\epsilon}{2}$.

Corollary $2 \hat{c}$ is a "good" estimate, i.e.,

$$
|c-\hat{c}| \leq \sum_{u \in V}\left|\frac{1}{n_{u}}-\frac{1}{\hat{n}_{u}}\right| \leq \frac{\epsilon n}{2}
$$

This estimation is useful if we can compute \hat{c} faster.

2.3 Algorithm to compute \hat{n}_{u}

Run BFS from u for $\frac{2}{\epsilon}$ steps (stop if the entire component is visited), and output the number of nodes visited.

Correctness If the entire component is visited, $n_{u} \leq \frac{2}{\epsilon}$, and the output is $n_{u}=\hat{n}_{u}$. Otherwise $n_{u}>\frac{2}{\epsilon}$, and the output is $\frac{2}{\epsilon}=\hat{n}_{u}$.

Runtime Since each BFS step takes $O(d)$ time, we can compute \hat{n}_{u} in $O\left(\frac{d}{\epsilon}\right)$ time.
Summing all \hat{n}_{u} gives a linear time algorithm. If we can estimate the average component size faster, we can simply multiply it by n.

2.4 Algorithm to estimate \hat{c}

Let $r=\frac{b}{\epsilon^{3}}$ for some constant b to be determined, sample r random nodes u_{1}, \ldots, u_{r}, compute $\hat{n}_{u_{i}}$ for $i=1, \ldots, r$, and output $\tilde{c}=\frac{n}{r} \sum_{i=1}^{r} \frac{1}{\hat{n}_{u_{i}}}$

Runtime $O\left(\frac{1}{\epsilon^{3}}\right) O\left(\frac{d}{\epsilon}\right)=O\left(\frac{d}{\epsilon^{4}}\right)$.
Theorem 3 (Chernoff Bound) X_{1}, \ldots, X_{r} iid, $X_{i} \in[0,1], S=\sum_{i=1}^{r} X_{i}, p=E\left[X_{i}\right]=E[s] / r$, then

$$
\operatorname{Pr}\left[\left|\frac{s}{r}-p\right| \geq \delta p\right] \leq e^{-\Omega\left(r p \delta^{2}\right)}
$$

Theorem $4 \operatorname{Pr}\left[|\tilde{c}-\hat{c}| \leq \frac{\epsilon n}{2}\right] \geq 3 / 4$.
Proof Let $X_{i}=\frac{1}{\hat{n}_{u_{i}}}, p=E\left(\frac{1}{\hat{n}_{u_{i}}}\right)=\frac{1}{n} \sum_{u \in V} \frac{1}{\hat{n}_{u_{i}}}=\frac{\hat{c}}{n}, \delta=\frac{\epsilon}{2}, \frac{s}{r}=\frac{1}{r} \sum_{i=1}^{r} \frac{1}{\hat{n}_{u_{i}}}=\frac{\tilde{c}}{n}$, by Chernoff

$$
\operatorname{Pr}\left[\left|\frac{\tilde{c}}{n}-\frac{\hat{c}}{n}\right| \geq \frac{\epsilon}{2} \frac{\hat{c}}{n}\right]=\operatorname{Pr}\left[|\tilde{c}-\hat{c}| \geq \frac{\epsilon}{2} \hat{c}\right] \leq \exp \left(-\frac{b}{\epsilon^{3}} \frac{\hat{c}}{n} \frac{\epsilon^{2}}{4}\right) \leq \exp \left(\frac{b}{\epsilon} \frac{\epsilon}{2} \frac{1}{4}\right)<\frac{1}{4}
$$

when we pick $b \geq 16$, and where $\hat{c}=\sum_{u} \frac{1}{\hat{n}_{u}} \geq \frac{\epsilon}{2} n$ since $\frac{1}{\hat{n}_{u}} \geq \frac{\epsilon}{2}$.

Corollary 5 : $\operatorname{Pr}[|c-\tilde{c}| \leq \epsilon n] \geq \frac{3}{4}$.
Proof If $|\tilde{c}-\hat{c}| \leq \frac{\epsilon n}{2}$, by triangle inequality, $|c-\tilde{c}| \leq|c-\hat{c}|+|\hat{c}-\tilde{c}| \leq \frac{\epsilon n}{2}+\frac{\epsilon n}{2}=\epsilon n$, so

$$
\operatorname{Pr}[|c-\tilde{c}| \leq \epsilon n] \geq \operatorname{Pr}\left[|\tilde{c}-\hat{c}| \leq \frac{\epsilon n}{2}\right] \geq \frac{3}{4}
$$

3 Approximating Minimum Spanning Tree (MST)

Given a connected graph $G(V, E)$ (adjacency list representation), max degree d, edge weights $w_{u v} \in$ $\{1, \ldots, w\} \cup\{\infty\}\left(w_{u v}=\infty \Longleftrightarrow(u, v) \notin E\right)$, and ϵ, output $\hat{M} \in[(1-\epsilon) M,(1+\epsilon) M]$, where M is the weight of the MST. Note that the weight range implies that $n-1 \leq M \leq w(n-1)$.

3.1 A different characterization of MST

Let $E^{(i)}=\left\{(u, v) \mid w_{u v} \in\{1, \ldots, i\}\right\}, G^{(i)}=\left(V, E^{(i)}\right)$, and $C^{(i)}$ be the number of components in $G^{(i)}$. For example, when $w=1, G^{(1)}=G$, and $M=n-1$ since G is connected. For $w=2$ such as below,

The idea of Kruskal's algorithm is to use as many weight 1 edges as possible, and only use $C^{(1)}-1$ weight 2 edges to connect the components in $G^{(1)}$. Since the $n-1$ edges of the MST have weight at least 1 , and $C^{(1)}-1$ of them have additional weight $2-1=1$, the total weight of the MST is

$$
M=(n-1)+\left(C^{(1)}-1\right)=n-2+C^{(1)}
$$

Claim 6 In general, $M=n-w+\sum_{i=1}^{w-1} C^{(i)}$.
Proof Let α_{i} be the number of weight i edges in any MST of G (Kruskal's algorithm implies that all MSTs have the same α_{i}). Then $\sum_{i>l} \alpha_{i}=C^{(l)}-1$, where $\sum_{i=1}^{w} \alpha_{i}=C^{(0)}-1=n-1$, and

$$
M=\sum_{i=1}^{w} i \alpha_{i}=\sum_{i=1}^{w} \alpha_{i}+\sum_{i=2}^{w} \alpha_{i}+\cdots+\alpha_{w}=n-1+c^{(1)}-1+\cdots+c^{(w-1)}-1=n-w+\sum_{i=1}^{w-1} c^{(i)}
$$

3.2 Approximation Algorithm

For $i=1$ to $w-1$, approximate the number of components $\hat{C}^{(i)}$ to within $\frac{\epsilon}{2 w} n=\epsilon^{\prime} n$ additive error. Output $\hat{M}=n-2+\sum_{i=1}^{w-1} \hat{C}^{(i)}$.

Runtime Each number of components approximation takes $\tilde{O}\left(d / \epsilon^{\prime 4}\right)=\tilde{O}\left(d w^{4} / \epsilon^{4}\right)$ time (the $\epsilon^{\prime}=\frac{\epsilon}{2 w}$ error introduces poly $\left(\log \frac{w}{\epsilon}\right)$ overhead), and the total runtime is $\tilde{O}\left(d w^{5} / \epsilon^{4}\right)$.

Note that to compute $G^{(i)}$, we can simply ignore edges with weights greater than i. The runtime can be improved to $O\left(d w \log (d w / \epsilon) / \epsilon^{2}\right)$ and has a lower bound of $\Omega\left(d w / \epsilon^{2}\right)$.

Approximation guarantee Approximate the number of components $\hat{C}^{(i)}$ within ϵ^{\prime} error with probability at least $1-1 /(4 w)$. Then by union bound, the probability that all $w-1$ approximations are within ϵ^{\prime} error is at least $1-w /(4 w)=3 / 4$. And $|M-\hat{M}| \leq w \frac{\epsilon}{2 w} n=\frac{\epsilon n}{2}$, a small additive error. Since all weights are at least $1, M \geq n-1 \geq n / 2$, and $|M-\hat{M}| \leq \epsilon M$, a small multiplicative error.

Remark The runtime depends only on $d, w, 1 / \epsilon$, and we can bound additive/multiplicative errors.

