
6.889 Sublinear Time Algorithms February 7, 2017

Lecture 1
Lecturer: Ronitt Rubinfeld Scribe: Yuancheng Yu

1 Diameter of a point set

Given distance matrix D of m points, where Dij = Dji is the distance between i and j, and the triangle
inequality is satisfied, i.e., for any i, j, k, Dij ≤ Dik +Dkj , let maxDij be the diameter of the point set.
Output (k, l) such that Dkl approximates the diameter.

1.1 2-approximation algorithm

For some arbitrary k ∈ {1, . . . ,m}, find l that maximizes Dkl, and output (k, l).

Running time It takes O(m) = O(
√
n) time.

Correctness Let Dij be the diameter, then Dkl = 1
2 (Dkl + Dkl) ≥ 1

2 (Dki + Dkj) = 1
2 (Dik + Dkj) ≥

1
2Dij , i.e., Dkl is a 2-approximation of the diameter.

2 Approximation of the number of connected components

Given a graph G(V,E) (adjacency list representation), max degree d, and ε, output y such that |y − c| ≤
εn with high probability, where c is the number of connected components (additive approximation to
within εn).

2.1 A different characterization of the number of components

For any node v, let nv be the size of v’s component. Observe that for any component A ⊂ V ,∑
u∈A

1

nu
=
∑
u∈A

1

|A|
= 1,

and hence the number of components

c =
∑
u∈V

1

nu
.

Computing 1
nu

and summation over n terms both need O(n) time; can we give a good estimate faster?

2.2 Estimating c =
∑
u∈V

1

nu

We would like to estimate 1
nu

quickly and estimate
∑
u

1
nu

via sampling bounds. Let n̂u ≡ min{nu, 2
ε },

ĉ ≡
∑
u∈V

1
n̂u

.

Lemma 1 n̂u is a “good” estimate, i.e., for any u,∣∣∣∣ 1

n̂u
− 1

nu

∣∣∣∣ ≤ ε

2
.

Proof If nu ≤ 2
ε , n̂u = nu. Otherwise nu >

2
ε = n̂u, and ε

2 = 1
n̂u

> 1
nu

> 0, so
∣∣∣ 1
n̂u
− 1

nu

∣∣∣ ≤ ε
2 .

1

Corollary 2 ĉ is a “good” estimate, i.e.,

|c− ĉ| ≤
∑
u∈V

∣∣∣∣ 1

nu
− 1

n̂u

∣∣∣∣ ≤ εn

2

This estimation is useful if we can compute ĉ faster.

2.3 Algorithm to compute n̂u

Run BFS from u for 2
ε steps (stop if the entire component is visited), and output the number of nodes

visited.

Correctness If the entire component is visited, nu ≤ 2
ε , and the output is nu = n̂u. Otherwise nu >

2
ε ,

and the output is 2
ε = n̂u.

Runtime Since each BFS step takes O(d) time, we can compute n̂u in O(dε) time.

Summing all n̂u gives a linear time algorithm. If we can estimate the average component size faster,
we can simply multiply it by n.

2.4 Algorithm to estimate ĉ

Let r = b
ε3 for some constant b to be determined, sample r random nodes u1, . . . , ur, compute n̂ui

for

i = 1, . . . , r, and output c̃ =
n

r

r∑
i=1

1

n̂ui

Runtime O
(

1
ε3

)
O
(
d
ε

)
= O

(
d
ε4

)
.

Theorem 3 (Chernoff Bound) X1, . . . , Xr iid, Xi ∈ [0, 1], S =
∑r
i=1Xi, p = E[Xi] = E[s]/r, then

Pr
[∣∣∣s
r
− p
∣∣∣ ≥ δp] ≤ e−Ω(rpδ2).

Theorem 4 Pr
[
|c̃− ĉ| ≤ εn

2

]
≥ 3/4.

Proof Let Xi =
1

n̂ui

, p = E

(
1

n̂ui

)
=

1

n

∑
u∈V

1

n̂ui

=
ĉ

n
, δ =

ε

2
,
s

r
=

1

r

r∑
i=1

1

n̂ui

=
c̃

n
, by Chernoff

Pr

[∣∣∣∣ c̃n − ĉ

n

∣∣∣∣ ≥ ε

2

ĉ

n

]
= Pr

[
|c̃− ĉ| ≥ ε

2
ĉ
]
≤ exp

(
− b

ε3
ĉ

n

ε2

4

)
≤ exp

(
b

ε

ε

2

1

4

)
<

1

4
,

when we pick b ≥ 16, and where ĉ =
∑
u

1
n̂u
≥ ε

2n since 1
n̂u
≥ ε

2 .

Corollary 5 : Pr [|c− c̃| ≤ εn] ≥ 3
4 .

Proof If |c̃− ĉ| ≤ εn
2 , by triangle inequality, |c− c̃| ≤ |c− ĉ|+ |ĉ− c̃| ≤ εn

2 + εn
2 = εn, so

Pr [|c− c̃| ≤ εn] ≥ Pr
[
|c̃− ĉ| ≤ εn

2

]
≥ 3

4
.

2

3 Approximating Minimum Spanning Tree (MST)

Given a connected graph G(V,E) (adjacency list representation), max degree d, edge weights wuv ∈
{1, . . . , w} ∪ {∞} (wuv =∞ ⇐⇒ (u, v) 6∈ E), and ε, output M̂ ∈ [(1− ε)M, (1 + ε)M], where M is the
weight of the MST. Note that the weight range implies that n− 1 ≤M ≤ w(n− 1).

3.1 A different characterization of MST

Let E(i) = {(u, v) | wuv ∈ {1, . . . , i}}, G(i) = (V,E(i)), and C(i) be the number of components in G(i).
For example, when w = 1, G(1) = G, and M = n− 1 since G is connected. For w = 2 such as below,

G : G(1) :

1

1

1

2

2

1

1

1

The idea of Kruskal’s algorithm is to use as many weight 1 edges as possible, and only use C(1) − 1
weight 2 edges to connect the components in G(1). Since the n − 1 edges of the MST have weight at
least 1, and C(1) − 1 of them have additional weight 2− 1 = 1, the total weight of the MST is

M = (n− 1) +
(
C(1) − 1

)
= n− 2 + C(1)

Claim 6 In general, M = n− w +
∑w−1
i=1 C(i).

Proof Let αi be the number of weight i edges in any MST of G (Kruskal’s algorithm implies that all
MSTs have the same αi). Then

∑
i>l αi = C(l) − 1, where

∑w
i=1 αi = C(0) − 1 = n− 1, and

M =

w∑
i=1

iαi =

w∑
i=1

αi +

w∑
i=2

αi + · · ·+ αw = n− 1 + c(1) − 1 + · · ·+ c(w−1) − 1 = n− w +

w−1∑
i=1

c(i).

3.2 Approximation Algorithm

For i = 1 to w − 1, approximate the number of components Ĉ(i) to within ε
2wn = ε′n additive error.

Output M̂ = n− 2 +
∑w−1
i=1 Ĉ(i).

Runtime Each number of components approximation takes Õ(d/ε′4) = Õ(dw4/ε4) time (the ε′ = ε
2w

error introduces poly
(
log w

ε

)
overhead), and the total runtime is Õ(dw5/ε4).

Note that to compute G(i), we can simply ignore edges with weights greater than i. The runtime can
be improved to O(dw log(dw/ε)/ε2) and has a lower bound of Ω(dw/ε2).

Approximation guarantee Approximate the number of components Ĉ(i) within ε′ error with prob-
ability at least 1 − 1/(4w). Then by union bound, the probability that all w − 1 approximations are

within ε′ error is at least 1−w/(4w) = 3/4. And
∣∣∣M − M̂ ∣∣∣ ≤ w ε

2wn = εn
2 , a small additive error. Since

all weights are at least 1, M ≥ n− 1 ≥ n/2, and
∣∣∣M − M̂ ∣∣∣ ≤ εM , a small multiplicative error.

Remark The runtime depends only on d,w, 1/ε, and we can bound additive/multiplicative errors.

3

