
1

Local Computation Algorithms for the Maximal Independent Set Problem

Maximal Independent Set

Let 𝐺 = (𝑉, 𝐸) be a simple undirected graph

 A set 𝐼 ⊆ 𝑉 is an independent set if no two nodes 𝑢, 𝑣 ∈ 𝐼 are adjacent.

 A set 𝐼 is a maximal independent set if no other nodes can be added.

o Not maximum: we’re trying to satisfy a local condition here

Local Computation Algorithms (for graphs under adjacency list model)

 Given

o the input - via an oracle access

o a query - location on the output

o (for randomized LCAs: also a random tape 𝑇)

 Compute an answer of a computational problem for the input on that query.

MIS: given an oracle access to a graph 𝐺 and a query vertex 𝑣, answer “Is 𝑣 in the MIS?”

 Answers from all 𝑣 must form a valid MIS (with high probability over 𝑇)

o Notice: cannot store any previous answers. Order of queries must not matter.

Other example -- maximal matching: Is (𝑢, 𝑣) in the approximate MM?

Probe complexity – the maximum number of probes made to the oracle to answer any single query.

Old lecture: estimating the size of the maximal matching (or VC) by creating an oracle

 Same goal; somewhat different guarantee. Must provide an answer for every node: can’t just skip

if it’s talking too long – an expected probe complexity is not good enough.

Adjacency List Oracle (how LCA accesses 𝐺)

 Assume each node 𝑣 has a unique 𝐼𝐷 from {1, … , 𝑛}.

 Given a node 𝑣 (by 𝐼𝐷) and an integer 𝑖 , returns the 𝑖th neighbor of 𝑣 if deg 𝑣 ≤ 𝑖 (or ⊥

otherwise).

 Also assume a known bound Δ on the maximum degree.

Today: 2 LCAs for MIS:

 A deterministic LCA for MIS with probe complexity Δ𝑂(6Δ) log∗ 𝑛

Note: many (early) papers assume constant Δ

 A randomized LCA for MIS with probe complexity Δ𝑂(log2 Δ)log 𝑛

Recall: Distributed LOCAL model

 𝐺 is both the input graph and the network structure.

 Each communication round: nodes send (unlimited-sized) messages to neighbors.

 Computation done between rounds (no communication

 Goal = minimize #rounds until all nodes have an answer

 PR reduction: an 𝑟-round distributed algorithm can be simulated using Δ𝑂(𝑟) queries

o probe for all nodes at distance up to 𝑟 away, then simulate distributed LOCAL

2

A deterministic LCA for MIS with probe complexity Δ𝑂(6Δ) log∗ 𝑛

version presented here simplified from [Even Medina Ron ’14]

Claim: given a 𝑐-coloring 𝜙, can compute an MIS in 𝑐 (distributed) rounds.

 𝜙: 𝑉 → {1, … , 𝑐} such that for (𝑢, 𝑣) ∈ 𝐸, 𝜙𝑢 ≠ 𝜙𝑣

Coloring-to-MIS

 maintain an independent set 𝐼 (initially empty)

 for each color 𝑖 = 1, … , 𝑐

 each node 𝑣 with 𝜙𝑣 = 𝑖 joins 𝐼 if no neighbor is already in 𝐼

Claim: The algorithm computes a MIS in 𝑐 rounds.

 Output is an independent set: 𝑣 ∈ 𝐼 cannot be adjacent to 𝑢 of lower color since we check explicitly

whether 𝑢 ∈ 𝐼; 𝑣 cannot be adjacent to node of the same color since 𝜙 is a valid coloring.

 Output is maximal: If 𝑣 could have been added, it would have been added during 𝜙𝑣
th round.

Note: think of this as a simulation of greedy algorithm

 rather than using a random ranking idea, here colors are used instead

 adjacent nodes are of different colors so there is no need for tie-breaking

 can bound query tree depth by #colors

Parnas-Ron reduction: an LCA can simulate (distributed) Coloring-to-MIS with Δ𝑂(𝑐) probes.

⇒ If we have a Coloring-LCA for 6Δ-coloring, then we can create an LCA for MIS:

 for a query 𝑣, first call Coloring-LCA on every node at distance ~ 6Δ from 𝑣

 apply PR: simulate Coloring-to-MIS on these Δ𝑂(6Δ) nodes using the obtained colors

Claim: There exists a deterministic Coloring-LCA for 6Δ-coloring with 𝑂(Δ log∗ 𝑛) probes.

By above, this implies the desired Δ𝑂(6Δ) log∗ 𝑛-probe LCA for computing MIS.

 must multiply the probe complexities (unlike distributed, we cannot just add them)

o Coloring-LCA takes 𝑂(Δ log∗ 𝑛) probes to compute the color of a node

o to compute a MIS we need the colors of up to Δ𝑂(6Δ) nodes: Δ𝑂(6Δ) calls to Coloring-LCA

Constructing Coloring-LCA

Step 1 Decompose the graph into Δ different oriented forests

 Let 𝐸𝑖 = {(𝑢, 𝑣): 𝐼𝐷(𝑢) < 𝐼𝐷(𝑣), 𝑣 is the 𝑖th neighbor of 𝑢} (each (𝑢, 𝑣) is in a unique 𝐸𝑖)

 𝐺𝑖 = (𝑉, 𝐸𝑖) has maximum out-degree 1; form trees (roots = whose without an out-neighbor)

 Can find the out-neighbor 𝑣 of 𝑢 in one probe by looking at 𝑖th neighbor of 𝑢 and compare 𝐼𝐷s

Step 2 𝟔-color oriented trees in each 𝐺𝑖 in 𝑂(log∗ 𝑛) rounds/probes [ColeVishkin’86]

 𝜙𝑢 ← 0 if 𝑢 is a root (𝑖th neighbor of 𝑢 has lower 𝐼𝐷 than 𝑢)

 𝐼𝐷(𝑢) if 𝑢 is not a root (∈ {1, … , 𝑐}) (log 𝑛 bits)

 Repeat Θ(log∗ 𝑛) rounds compute a new color, ensure valid coloring, hopefully reduce #colors

 if 𝑢 is a root, 𝑐𝑢 ← 0

 else let 𝑣 be 𝑢’s “parent” (𝑖th neighbor of 𝑢, so edge 𝑢 → 𝑣)

 𝑙𝑢 ← index of the least significant bit (little endian) where 𝜙𝑣 differs from 𝜙𝑢 (0-based)

 𝑏𝑢 ← the value of 𝑢’s 𝑙𝑢
th bit

 𝜙𝑢 ← (𝑙𝑢, 𝑏𝑢) (new color: just concatenate 𝑙𝑢 and 𝑏𝑢 together)

3

Example 6-coloring
compare with parent, look for first different bit from right to left, put index 𝑙 followed by that bit itself 𝑏

 Claim: always maintains a valid coloring: (say consider edge 𝑢 → 𝑣)

o initial colors: begin with unique 𝐼𝐷’s; roots cannot be adjacent on 𝐸𝑖
o induction: after each iteration, need to show 𝜙𝑢 ≠ 𝜙𝑣 (see example, round 2)

 if 𝑣 is a root, 𝑏𝑢 = 1 while 𝜙𝑣 = 0’s, so 𝜙𝑢 ≠ 𝜙𝑣

 else, suppose 𝑙𝑢 = 𝑙𝑣, then the 𝑙th bits 𝑏𝑢 and 𝑏𝑣 must be different, so 𝑏𝑢 ≠ 𝑏𝑣

 Claim: computes a valid 6-coloring in 𝑂(log∗ 𝑛) rounds

o In one round, 𝐾 bits → ⌈log 𝐾⌉ + 1 bits, so takes Θ(log∗ 𝑛) (induction: just 1 + log∗ 𝑛)

o cannot go below 6: 𝑙𝑢 ∈ {0, 1, 2}, 𝑏𝑢 ∈ {0, 1}, stuck; needs a different algorithm

Step 3 Combine into a 6Δ-coloring over 𝐺

 formed by the vector of 𝑐𝑢
𝑖 ’s: length Δ, each entry is one of the 6 possible colors

Claim: Can implement Coloring-LCA using 𝑂(Δ log∗ 𝑛) probes

 For each 𝐺𝑖, must follow 𝑖th out-neighbors from 𝑣 for at most 𝑂(log∗ 𝑛) steps, learn all the 𝐼𝐷’s,

then apply (simulate) the procedure for 6-coloring.

 Aside, the distributed version takes 𝑂(log∗ 𝑛) rounds since can do all Δ graphs in parallel.

Note: [EMR] can get Δ𝑂(Δ2) log∗ 𝑛 with more black-box distributed coloring

best known: Δ�̃�(√Δ) log∗ 𝑛 [Fraigniaud Heinrich Kosowski '16]

𝑟

𝑥

𝑦

𝑧

𝐼𝐷’s initial colors

0000

after round 1

000

after round 2

00101101 00000000

0101 001 11010100 11010100

0001 100 01011101 01011101

1101 101 10011101 10011101

root

bit 2 = 0102

bit 0 = 0002

bit 6 = 1102

bit 0 bit 1 bit 2

bit 0 = 002

bit 2 = 102

bit 2 = 102

(in binary)

𝑙𝑥

𝑏𝑥

4

A randomized LCA for MIS with probe complexity Δ𝑂(log2 Δ)log 𝑛

version presented here based on distributed algorithm by [Barenboim Elkin Pettie Schneider ’15]

Lemma There exist a 𝑂(log2 Δ)-round distributed algorithm Shattering that computes an independent set

𝐼 such that with high probability, the graph induced by 𝑉 ∖ 𝑁+(𝐼) contains no connected

component of size ≥ Δ4 log 𝑛. [BEPS’15]

This implies the desired LCA:

 By PR, we have Shattering-LCA that computes whether 𝑣 ∈ 𝐼 (in the lemma) in Δ𝑂(log2 Δ) probes.

 If 𝑣 ∈ 𝐼 then YES, 𝑣 is in the MIS

 Else (𝑣 ∉ 𝐼), check 𝑣’s neighbors: if there’s a 𝑢 ∈ 𝑁(𝑣) ∩ 𝐼 then NO, 𝑣 is not in the MIS.

 Else (𝑣 ∉ 𝑁+(𝐼))

o DFS from 𝑣, call Shattering-LCA on reached nodes to identify the entire component 𝐶𝑣 ⊆

𝑉 ∖ 𝑁+(𝐼) containing 𝑣. (|𝐶𝑣| ≤ Δ4 log 𝑛, so need poly Δ ⋅ log 𝑛 calls to Shattering-LCA.)

o Solve MIS of 𝐶𝑣 deterministically in consistent way, answer YES or NO for 𝑣 accordingly.

o queries anywhere on this component must give consistent answers;

e.g., compute lexicographically first MIS = greedy via 𝐼𝐷 order

Strategy: Define base sets 𝑆 of size 𝑡 (later will pick 𝑡 = log 𝑛)

 (1) Construct an algorithm that any base set survives (𝑆 ⊆ 𝑉 ∖ 𝑁+(𝐼)) with small prob (Δ−Ω(𝑡)).

 (2) Show that any connected component of size 𝑡Δ4 must contain a base set of size 𝑡.

 (3) Show that there are not too many base sets (𝑛(4Δ5)𝑡).

 (Prob (1) × # base sets (3)) small ⇒ no base set exists ⇒ by (2), no large component exists

Base sets

 Let 𝐻 be the distance-5 graph of 𝐺. Namely, 𝐸(𝐻) = {(𝑢, 𝑣): dist𝐺(𝑢, 𝑣) = 5}.

 A set 𝑆 is a base set if

o 𝑆 is the vertex set 𝑉(𝑇) of a tree 𝑇 on 𝐻, and

o for any 𝑢, 𝑣 ∈ 𝑆, dist𝐺(𝑢, 𝑣) ≥ 5.

Constructing the Distributed Algorithm

Luby’s Step [Luby ’85] – building block for Shattering

 each node 𝑣 selects itself with probability
1

Δ+1
 (there are many other variations on selection condition)

 if 𝑣 is the only node in 𝑁+(𝑣) that selects itself, add 𝑣 to 𝐼 and remove 𝑁+(𝑣) from 𝐺

Claim: Each node 𝑣 with deg 𝑣 ≥ Δ/2 is removed with constant probability 𝑝 > 0. “𝑣 is vulnerable.”

 Pr [no 𝑢 ∈ 𝑁+(𝑣) selects itself] ≥ 1 − ∏ (1 −
1

Δ+1
)𝑢∈𝑁+(𝑣) ≥ 1 − (1 −

1

Δ+1
)

Δ 2⁄ +1 2⁄

> 1 −
1

√𝑒

 Let 𝑢 = lowest 𝑰𝑫 node in 𝑁+(𝑣) that selects itself

o Pr [𝑢 joins 𝐼] ≥ ∏ (1 −
1

Δ+1
)𝑤∈𝑁(𝑢) ≥ (1 −

1

Δ+1
)

Δ
>

1

𝑒
.

o enforce “lowest 𝐼𝐷” because when we consider 𝑤 ∈ 𝑁(𝑢), we cannot condition on any

other nodes that already select themselves (else probability of 𝑢 joining 𝐼 will be 0);

more precisely, Pr [𝑢 joins 𝐼] = ∏ (1 −
1

Δ+1
)𝑤∈𝑁(𝑢)∖{𝑢′∈𝑁+(𝑣),𝐼𝐷(𝑢′)<𝐼𝐷(𝑢)}

 Above argument works for any 𝑢, so overall, 𝑣 is removed with prob ≥ (1 −
1

√𝑒
) (

1

𝑒
) > 0.14 = 𝑝.

o Note: this already gives 𝑂(log2 𝑛) -round distributed algorithm (Δ halved whp after

𝑂(log 𝑛) rounds); 𝑂(log 𝑛) under careful analysis.

5

Shattering (𝑂(log2 Δ) distributed rounds – putting Luby’s steps together)

 for 𝑘 = ⌈log Δ⌉, … ,1 “iteration”

 // maximum degree ≤ 2𝑘 at the beginning of each iteration

 perform 𝑐1 log Δ rounds Luby’s Step using probability
1

2𝑘+1

 for each 𝑣 with deg 𝑣 ≥ 2𝑘−1, remove 𝑣 from 𝐺, and put 𝑣 in 𝐿 (𝑣 is lucky; deal with it later)

 add all remaining (isolated) nodes to 𝐼

⇒ After Shattering, surviving nodes are 𝐿 ∖ 𝑁+(𝐼). We will bound max connected component size in 𝐿.

Observation

For each node 𝑣 ∈ 𝐿, in the iteration that it finally joins 𝐿, it was vulnerable throughout the entire iteration.

(The exact iteration is not known in advance.)

Claim: For any node 𝑣, Pr[𝑣 ∈ 𝐿] ≤ 𝑝𝑐1 log Δ = Δ−𝑐2.

 It must survive all Θ(log Δ) vulnerable rounds of the entire iteration.

Claim (1) For any set 𝑆 of 𝑡 nodes such that dist𝐺(𝑢, 𝑣) ≥ 5 for every 𝑢, 𝑣 ∈ 𝑆, Pr[𝑆 ⊆ 𝐿] ≤ Δ−𝑐2𝑡.

 Event that 𝑣 joins 𝐼 in each iteration only depends on coin tosses at distance ≤ 2 away, so these

events are independent for nodes at distance ≥ 5 away.

o Probability that 𝑆 survives a particular iteration ≤ 𝑝# vulnerable nodes.

 Outcomes are independent between any Luby’s Step.

o Imagine the whole coin tosses “table” being fixed in advance; only revealed row-by-row.

Claim (2) Any connected component size 𝑡Δ4 must contain a base set of size 𝑡.

 pick an initial node 𝑣 ∈ 𝑆, remove the ball {𝑢: dist𝐺(𝑢, 𝑣) ≤ 4} from 𝑆

 continue picking a node at distance exactly 5 from some removed node

o must be adjacent on 𝐻 to a picked node

o cannot have distance < 5 to any picked node since balls around picked nodes removed

 each removed ball has ≤ Δ4 nodes ⇒ 𝑡 nodes can be picked ⇒ form a base set

Claim (3) There are at most 𝑛(4Δ5)𝑡 possible base sets.

We show there are ≤ 𝑛(4Δ5)𝑡 possible trees on 𝐻. (over-count since ignoring distance ≥ 5 condition)

 Structure-wise, there are ≤ 4𝑡 plane trees with 𝑡 nodes

o plane trees: the subtrees of each node are linearly ordered

o # plane trees = # DFS sequences defining the tree structure

 ≤ # sequences with (𝑡 − 1) ↓’s and (𝑡 − 1) ↑’s < 22(𝑡−1) < 4𝑡

o actually # plane trees with 𝑡 − 1 edges = 𝐶𝑡−1 (Catalan number)

 choose the first node in 𝑛 ways (arbitrary node in 𝐻)

 for each subsequent node (child), its parent is already determined by the tree structure, so can

choose each child in ≤ Δ5 ways (max degree in 𝐻)

 total 4𝑡 ⋅ (𝑛 ⋅ (Δ5)𝑡−1) ≤ 𝑛(4Δ5)𝑡

Lemma With high probability, 𝐿 contains no connected component of size Δ4 log 𝑛.

Set 𝑡 = log 𝑛, sufficiently large constant 𝑐2; probability that there exists a large connected component

≤ 𝑛 ⋅ (4Δ5)𝑡 ⋅ Δ−𝑐2𝑡 = 𝑛1+log 4+5Δ−𝑐2Δ = 𝑛−𝑐 .

Note: Best known Shattering 𝑂(log Δ) distributed rounds ⇒ Δ𝑂(log Δ)log 𝑛 LCA probes [Ghaffari ’16]

