Local Computation Algorithms for the Maximal Independent Set Problem

Maximal Independent Set

Let G = (V, E) be a simple undirected graph

- A set $I \subseteq V$ is an **independent set** if no two nodes $u, v \in I$ are adjacent.
- A set *I* is a **maximal independent set** if no other nodes can be added.
 - Not **maximum**: we're trying to satisfy a **local** condition here

Local Computation Algorithms (for graphs under adjacency list model)

- Given
 - the input via an oracle access
 - o a query location on the output
 - o (for randomized LCAs: also a random tape *T*)
- Compute an answer of a computational problem for the input on that query.
- **MIS**: given an oracle access to a graph G and a query vertex v, answer "Is v in the MIS?"
 - Answers from all v must form a valid MIS (with high probability over T)
 - Notice: cannot store any previous answers. Order of queries must not matter.

Other example -- maximal matching: Is (u, v) in the approximate MM?

Probe complexity – the **maximum** number of probes made to the oracle to answer any single query. Old lecture: estimating the size of the maximal matching (or VC) by creating an **oracle**

• Same goal; somewhat different guarantee. Must provide an answer for every node: can't just skip if it's talking too long – an expected probe complexity is not good enough.

Adjacency List Oracle (how LCA accesses G)

- Assume each node v has a unique *ID* from $\{1, ..., n\}$.
- Given a node v (by ID) and an integer i, returns the i^{th} neighbor of v if $\deg v \leq i$ (or \perp otherwise).
- Also assume a known bound Δ on the maximum degree.

Today: **2** LCAs for MIS:

- A deterministic LCA for MIS with probe complexity $\Delta^{o(6^{\Delta})} \log^* n$ Note: many (early) papers assume constant Δ
- A randomized LCA for MIS with probe complexity $\Delta^{O(\log^2 \Delta)} \log n$

Recall: Distributed LOCAL model

- *G* is both the **input graph** and the **network structure**.
- Each communication round: nodes send (unlimited-sized) messages to neighbors.
- Computation done between rounds (no communication
- Goal = minimize #rounds until all nodes have an answer
- PR reduction: an r-round distributed algorithm can be simulated using $\Delta^{O(r)}$ queries
 - probe for all nodes at distance up to *r* away, then simulate distributed LOCAL

A **deterministic** LCA for MIS with probe complexity $\Delta^{O(6^{\Delta})} \log^* n$

version presented here simplified from [Even Medina Ron '14]

Claim: given a *c*-coloring ϕ , can compute an MIS in *c* (distributed) rounds.

• $\phi: V \to \{1, ..., c\}$ such that for $(u, v) \in E$, $\phi_u \neq \phi_v$

Coloring-to-MIS

maintain an independent set I (initially empty)

for each color i = 1, ..., c

each node v with $\phi_v = i$ joins I if no neighbor is already in I

Claim: The algorithm computes a MIS in *c* rounds.

• Output is an independent set: $v \in I$ cannot be adjacent to u of lower color since we check explicitly whether $u \in I$; v cannot be adjacent to node of the same color since ϕ is a valid coloring.

• Output is maximal: If v could have been added, it would have been added during ϕ_v^{th} round.

Note: think of this as a simulation of greedy algorithm

- rather than using a random ranking idea, here colors are used instead
- adjacent nodes are of different colors so there is no need for tie-breaking
- can bound query tree depth by #colors

Parnas-Ron reduction: an LCA can simulate (distributed) **Coloring-to-MIS** with $\Delta^{O(c)}$ probes.

 \Rightarrow If we have a **Coloring-LCA** for 6^{Δ} -coloring, then we can create an LCA for MIS:

- for a query v, first call **Coloring-LCA** on every node at distance $\sim 6^{\Delta}$ from v
- apply PR: simulate **Coloring-to-MIS** on these $\Delta^{O(6^{\Delta})}$ nodes using the obtained colors

Claim: There exists a deterministic **Coloring-LCA** for 6^{Δ} -coloring with $O(\Delta \log^* n)$ probes.

By above, this implies the desired $\Delta^{O(6^{\Delta})} \log^* n$ -probe LCA for computing MIS.

- must **multiply** the probe complexities (unlike distributed, we cannot just add them)
 - Coloring-LCA takes $O(\Delta \log^* n)$ probes to compute the color of a node
 - to compute a MIS we need the colors of up to $\Delta^{O(6^{\Delta})}$ nodes: $\Delta^{O(6^{\Delta})}$ calls to **Coloring-LCA**

Constructing Coloring-LCA

Step 1 Decompose the graph into Δ different oriented forests

- Let $E^i = \{(u, v): ID(u) < ID(v), v \text{ is the } i^{\text{th}} \text{ neighbor of } u\}$ (each (u, v) is in a unique E^i)
- $G^{i} = (V, E^{i})$ has maximum out-degree 1; form trees (roots = whose without an out-neighbor)
- Can find the out-neighbor v of u in one probe by looking at i^{th} neighbor of u and compare IDs
- **Step 2** 6-color oriented trees in each G^i in $O(\log^* n)$ rounds/probes [ColeVishkin'86]

 $\phi_u \leftarrow 0 \qquad \text{if } u \text{ is a root } (i^{\text{th}} \text{ neighbor of } u \text{ has lower } ID \text{ than } u)$ $ID(u) \quad \text{if } u \text{ is not a root } (\in \{1, ..., c\}) \text{ (log } n \text{ bits)}$ Repeat $\Theta(\log^* n)$ rounds compute a new color, ensure valid coloring, hopefully reduce #colors if u is a root, $c_u \leftarrow 0$

else let v be u's "parent" (ith neighbor of u, so edge $u \rightarrow v$)

 $l_u \leftarrow$ index of the least significant bit (little endian) where ϕ_v differs from ϕ_u (0-based)

 $b_u \leftarrow$ the value of u's l_u^{th} bit

 $\phi_u \leftarrow (l_u, b_u)$ (new color: just concatenate l_u and b_u together)

Example 6-coloring

compare with parent, look for first different bit from right to left, put index *l* followed by that bit itself *b*

- Claim: always maintains a valid coloring: (say consider edge $u \rightarrow v$)
 - initial colors: begin with unique ID's; roots cannot be adjacent on E^i
 - induction: after each iteration, need to show $\phi_u \neq \phi_v$ (see example, round 2)
 - if v is a root, $b_u = 1$ while $\phi_v = 0$'s, so $\phi_u \neq \phi_v$
 - else, suppose $l_u = l_v$, then the l^{th} bits b_u and b_v must be different, so $b_u \neq b_v$
- Claim: computes a valid 6-coloring in $O(\log^* n)$ rounds
 - In one round, K bits $\rightarrow [\log K] + 1$ bits, so takes $\Theta(\log^* n)$ (induction: just $1 + \log^* n$)
 - cannot go below 6: $l_u \in \{0, 1, 2\}$, $b_u \in \{0, 1\}$, stuck; needs a different algorithm

Step 3 Combine into a 6^{Δ} -coloring over *G*

- formed by the vector of c_u^i 's: length Δ , each entry is one of the 6 possible colors
- **Claim**: Can implement **Coloring-LCA** using $O(\Delta \log^* n)$ probes
 - For each G^i , must follow i^{th} out-neighbors from v for at most $O(\log^* n)$ steps, learn all the ID's, then apply (simulate) the procedure for 6-coloring.
 - Aside, the distributed version takes $O(\log^* n)$ rounds since can do all Δ graphs in parallel.
- Note: [EMR] can get $\Delta^{O(\Delta^2)} \log^* n$ with more black-box distributed coloring best known: $\Delta^{\tilde{O}(\sqrt{\Delta})} \log^* n$ [Fraigniaud Heinrich Kosowski '16]

A randomized LCA for MIS with probe complexity $\Delta^{O(\log^2 \Delta)} \log n$

version presented here based on distributed algorithm by [Barenboim Elkin Pettie Schneider '15]

Lemma There exist a $O(\log^2 \Delta)$ -round distributed algorithm **Shattering** that computes an independent set I such that with high probability, the graph induced by $V \setminus N^+(I)$ contains no connected component of size $\geq \Delta^4 \log n$. [BEPS'15]

This implies the desired LCA:

- By PR, we have Shattering-LCA that computes whether $v \in I$ (in the lemma) in $\Delta^{O(\log^2 \Delta)}$ probes.
- If $v \in I$ then YES, v is in the MIS
- Else $(v \notin I)$, check v's neighbors: if there's a $u \in N(v) \cap I$ then NO, v is not in the MIS.
- Else $(v \notin N^+(I))$
 - DFS from v, call Shattering-LCA on reached nodes to identify the entire component $C_v \subseteq V \setminus N^+(I)$ containing v. $(|C_v| \leq \Delta^4 \log n$, so need poly $\Delta \cdot \log n$ calls to Shattering-LCA.)

• Solve MIS of C_v deterministically in consistent way, answer YES or NO for v accordingly.

o queries anywhere on this component must give consistent answers;

e.g., compute lexicographically first MIS = greedy via ID order

Strategy: Define base sets *S* of size *t* (later will pick $t = \log n$)

- (1) Construct an algorithm that any base set survives $(S \subseteq V \setminus N^+(I))$ with small prob $(\Delta^{-\Omega(t)})$.
- (2) Show that any connected component of size $t\Delta^4$ must contain a base set of size t.
- (3) Show that there are not too many base sets $(n(4\Delta^5)^t)$.
- (Prob (1) \times # base sets (3)) small \Rightarrow no base set exists \Rightarrow by (2), no large component exists

Base sets

- Let *H* be the distance-5 graph of *G*. Namely, $E(H) = \{(u, v): dist_G(u, v) = 5\}$.
- A set *S* is a base set if
 - S is the vertex set V(T) of a tree T on H, and
 - o for any $u, v \in S$, $dist_G(u, v) \ge 5$.

Constructing the Distributed Algorithm

Luby's Step [Luby '85] – building block for Shattering

each node v selects itself with probability $\frac{1}{\Delta+1}$ (there are many other variations on selection condition) if v is the only node in $N^+(v)$ that selects itself, add v to I and remove $N^+(v)$ from G

Claim: Each node v with deg $v \ge \Delta/2$ is removed with **constant** probability p > 0. "v is **vulnerable**."

- $\Pr[\operatorname{no} u \in N^+(v) \text{ selects itself}] \ge 1 \prod_{u \in N^+(v)} \left(1 \frac{1}{\Delta + 1}\right) \ge 1 \left(1 \frac{1}{\Delta + 1}\right)^{\Delta/2 + 1/2} > 1 \frac{1}{\sqrt{e}}$
- Let u =lowest ID node in $N^+(v)$ that selects itself
 - $\Pr[u \text{ joins } I] \ge \prod_{w \in N(u)} \left(1 \frac{1}{\Delta + 1}\right) \ge \left(1 \frac{1}{\Delta + 1}\right)^{\Delta} > \frac{1}{e}.$
 - enforce "lowest ID" because when we consider $w \in N(u)$, we cannot condition on any other nodes that already select themselves (else probability of u joining I will be 0); more precisely, $\Pr[u \text{ joins } I] = \prod_{w \in N(u) \setminus \{u' \in N^+(v), ID(u') < ID(u)\}} \left(1 - \frac{1}{\Delta + 1}\right)$
- Above argument works for any u, so overall, v is removed with prob $\geq \left(1 \frac{1}{\sqrt{e}}\right) \left(\frac{1}{e}\right) > 0.14 = p$.
 - Note: this already gives $O(\log^2 n)$ -round distributed algorithm (Δ halved whp after $O(\log n)$ rounds); $O(\log n)$ under careful analysis.

<u>Shattering</u> $(O(\log^2 \Delta)$ distributed rounds – putting Luby's steps together)

for $k = \lceil \log \Delta \rceil, ..., 1$ "iteration"

// maximum degree $\leq 2^k$ at the beginning of each iteration

perform $c_1 \log \Delta$ rounds Luby's Step using probability $\frac{1}{2^{k+1}}$

for each v with deg $v \ge 2^{k-1}$, remove v from G, and put v in L (v is lucky; deal with it later) add all remaining (isolated) nodes to I

⇒ After Shattering, surviving nodes are $L \setminus N^+(I)$. We will bound max connected component size in L. Observation

For each node $v \in L$, in the iteration that it finally joins L, it was **vulnerable** throughout the entire **iteration**. (The exact iteration is not known in advance.)

Claim: For any node v, $\Pr[v \in L] \le p^{c_1 \log \Delta} = \Delta^{-c_2}$.

• It must survive all $\Theta(\log \Delta)$ vulnerable rounds of the entire iteration.

Claim (1) For any set S of t nodes such that $\operatorname{dist}_G(u, v) \ge 5$ for every $u, v \in S$, $\Pr[S \subseteq L] \le \Delta^{-c_2 t}$.

• Event that v joins I in each iteration only depends on coin tosses at distance ≤ 2 away, so these events are independent for nodes at distance ≥ 5 away.

• Probability that S survives a particular iteration $\leq p^{\# \text{ vulnerable nodes}}$.

- Outcomes are independent between any Luby's Step.
 - Imagine the whole coin tosses "table" being fixed in advance; only revealed row-by-row.

Claim (2) Any connected component size $t\Delta^4$ must contain a base set of size t.

- pick an initial node $v \in S$, remove the ball $\{u: dist_G(u, v) \le 4\}$ from S
- continue picking a node at distance exactly 5 from some removed node
 - o must be adjacent on *H* to a picked node
 - cannot have distance < 5 to any picked node since balls around picked nodes removed
- each removed ball has $\leq \Delta^4$ nodes $\Rightarrow t$ nodes can be picked \Rightarrow form a base set

Claim (3) There are at most $n(4\Delta^5)^t$ possible base sets.

We show there are $\leq n(4\Delta^5)^t$ possible trees on *H*. (over-count since ignoring distance ≥ 5 condition)

- Structure-wise, there are $\leq 4^t$ plane trees with t nodes
 - o plane trees: the subtrees of each node are linearly ordered
 - # plane trees = # DFS sequences defining the tree structure

 \leq # sequences with $(t-1)\downarrow$'s and $(t-1)\uparrow$'s $< 2^{2(t-1)} < 4^t$

• actually # plane trees with t - 1 edges = C_{t-1} (Catalan number)

- choose the first node in *n* ways (arbitrary node in *H*)
- for each subsequent node (child), its parent is already determined by the tree structure, so can choose each child in $\leq \Delta^5$ ways (max degree in *H*)
- total $4^t \cdot (n \cdot (\Delta^5)^{t-1}) \le n(4\Delta^5)^t$

Lemma With high probability, *L* contains no connected component of size $\Delta^4 \log n$.

Set $t = \log n$, sufficiently large constant c_2 ; probability that there exists a large connected component $\leq n \cdot (4\Delta^5)^t \cdot \Delta^{-c_2t} = n^{1+\log 4+5\Delta-c_2\Delta} = n^{-c}.$

Note: Best known Shattering $O(\log \Delta)$ distributed rounds $\Rightarrow \Delta^{O(\log \Delta)} \log n$ LCA probes [Ghaffari '16]