Local Computation Algorithms for the Maximal Independent Set Problem

Maximal Independent Set
Let G = (V, E) be a simple undirected graph
e Asetl €V isanindependent set if no two nodes u, v € I are adjacent.
e Aset I is a maximal independent set if no other nodes can be added.
o Not maximum: we’re trying to satisfy a local condition here

Local Computation Algorithms (for graphs under adjacency list model)
e Given
o theinput - via an oracle access
o aquery - location on the output
o (for randomized LCAs: also a random tape T)
e Compute an answer of a computational problem for the input on that query.
MIS: given an oracle access to a graph G and a query vertex v, answer “Is v in the MIS?”
e Answers from all v must form a valid MIS (with high probability over T')
o Notice: cannot store any previous answers. Order of queries must not matter.
Other example -- maximal matching: Is (u, v) in the approximate MM?
Probe complexity — the maximum number of probes made to the oracle to answer any single query.
Old lecture: estimating the size of the maximal matching (or VC) by creating an oracle
e Same goal; somewhat different guarantee. Must provide an answer for every node: can’t just skip
if it’s talking too long — an expected probe complexity is not good enough.

Adjacency List Oracle (how LCA accesses G)
e Assume each node v has a unique ID from {1, ...,n}.
e Given a node v (by ID) and an integer i, returns the i™ neighbor of v if degv <i (or L
otherwise).
e Also assume a known bound A on the maximum degree.

Today: 2 LCAs for MIS:
e A deterministic LCA for MIS with probe complexity 70(6%) log*n
Note: many (early) papers assume constant A
e Arandomized LCA for MIS with probe complexity AO(log? A)log n

Recall: Distributed LOCAL model
e (5 is both the input graph and the network structure.
e Fach communication round: nodes send (unlimited-sized) messages to neighbors.
e Computation done between rounds (no communication
e Goal = minimize #rounds until all nodes have an answer
e PRreduction: an r-round distributed algorithm can be simulated using A9 queries
o probe for all nodes at distance up to r away, then simulate distributed LOCAL



A deterministic LCA for MIS with probe complexity 70(6%) log*n

version presented here simplified from [Even Medina Ron ’14]

Claim: given a c-coloring ¢, can compute an MIS in ¢ (distributed) rounds.
o ¢:V—-{1,..,c}suchthatfor (u,v) EE, ¢, # ¢

Coloring-to-MIS
maintain an independent set I (initially empty)

foreachcolori =1, ...,c
each node v with ¢, = i joins I if no neighbor is already in [

Claim: The algorithm computes a MIS in ¢ rounds.

e Qutputisanindependentset: v € I cannot be adjacent to u of lower color since we check explicitly

whether u € I; v cannot be adjacent to node of the same color since ¢ is a valid coloring.

e Output is maximal: If v could have been added, it would have been added during ¢! round.
Note: think of this as a simulation of greedy algorithm

e rather than using a random ranking idea, here colors are used instead

e adjacent nodes are of different colors so there is no need for tie-breaking

e can bound query tree depth by #colors

Parnas-Ron reduction: an LCA can simulate (distributed) Coloring-to-MIS with A% probes.
= If we have a Coloring-LCA for 6A—coloring, then we can create an LCA for MIS:

e foraquery v, first call Coloring-LCA on every node at distance ~ 62 from v

e apply PR: simulate Coloring-to-MIS on these A°(6%) nodes using the obtained colors
Claim: There exists a deterministic Coloring-LCA for 62-coloring with O (A log* n) probes.
By above, this implies the desired 70(6%) log™ n-probe LCA for computing MIS.

e must multiply the probe complexities (unlike distributed, we cannot just add them)

o Coloring-LCA takes O(Alog* n) probes to compute the color of a node

o tocompute a MIS we need the colors of up to A%(6%) nodes: A2(6%) calls to Coloring-LCA

Constructing Coloring-LCA
Step1 Decompose the graph into A different oriented forests
e LetE!={(u,v):ID(u) < ID(v), vis the i™" neighbor of u} (each (u, v) is in a unique EY)
o (Gi= (V, Ei) has maximum out-degree 1; form trees (roots = whose without an out-neighbor)

e Can find the out-neighbor v of u in one probe by looking at i*" neighbor of u and compare IDs
Step2 6-color oriented trees in each G' in 0(log* n) rounds/probes [ColeVishkin’86]

¢, <0 if u is a root (i™ neighbor of u has lower ID than u)
ID(u) ifuis notaroot (€ {1, ...,c}) (logn bits)
Repeat O(log* n) rounds compute a new color, ensure valid coloring, hopefully reduce #colors
ifuisaroot, ¢, « 0
else let v be u’s “parent” (i neighbor of u, so edge u = v)
l,, < index of the least significant bit (little endian) where ¢,, differs from ¢,, (0-based)
b, « the value of u’s It! bit
¢, < (1, by) (new color: just concatenate [, and b, together)




Example 6-coloring
compare with parent, look for first different bit from right to left, put index [ followed by that bit itself b

ID’s initial colors afterround 1  after round 2
(in binary) bit2 bitl bitO
root \ ‘ /
° 00101101 —> 00000000 ; 0000 000
X
Tbit 2= om
11010100 11010100 b 0101 001
X
bit 0 = OOO/Z-\
01011101 01011101 0001 100

Tbit 6=110," \

10011101 10011101 1101 101
'\_/

e Claim: always maintains a valid coloring: (say consider edge u — v)
o initial colors: begin with unique ID’s; roots cannot be adjacent on E*
o induction: after each iteration, need to show ¢,, # ¢,, (see example, round 2)
» jfvisaroot, b, =1 while ¢, = 0’s,so0 ¢, # ¢,
= else, suppose I, = L, then the [™M bits b, and b, must be different, so b, # b,
e (Claim: computes a valid 6-coloring in O(log* n) rounds
o Inoneround, K bits = [log K] + 1 bits, so takes ©(log™ n) (induction: just 1 + log* n)
o cannot go below 6: 1, € {0, 1,2}, b, € {0, 1}, stuck; needs a different algorithm

Step3 Combine into a 6*-coloring over G
e formed by the vector of ¢’s: length A, each entry is one of the 6 possible colors
Claim: Can implement Coloring-LCA using O(Alog* n) probes
e For each G!, must follow i™ out-neighbors from v for at most 0 (log* n) steps, learn all the ID’s,
then apply (simulate) the procedure for 6-coloring.
e Aside, the distributed version takes O(log* n) rounds since can do all A graphs in parallel.

Note: [EMR] can get A0(8%) log™ n with more black-box distributed coloring
best known: A°(VA) log™ n [Fraigniaud Heinrich Kosowski '16]



A randomized LCA for MIS with probe complexity AO(log? A)log n

version presented here based on distributed algorithm by [Barenboim Elkin Pettie Schneider ’15]

Lemma There exist a O(log? A)-round distributed algorithm Shattering that computes an independent set
I such that with high probability, the graph induced by V \ N*(I) contains no connected
component of size > A*logn. [BEPS'15]

This implies the desired LCA:

e By PR, we have Shattering-LCA that computes whether v € I (in the lemma) in AO(log?8) probes.
e [fv €]thenYES, visinthe MIS
e Else (v & I), check v's neighbors: if there’sau € N(v) NI then NO, v is not in the MIS.
o Else(ve& NT())
o DFS from v, call Shattering-LCA on reached nodes to identify the entire component C,, €
V \ N*(I) containing v. (|C,| < A*logn, so need poly A - logn calls to Shattering-LCA.)
o Solve MIS of C,, deterministically in consistent way, answer YES or NO for v accordingly.
o queries anywhere on this component must give consistent answers;
e.g., compute lexicographically first MIS = greedy via ID order

Strategy: Define base sets S of size t (later will pick t = logn)

(1) Construct an algorithm that any base set survives (S €V \ N*(I)) with small prob (A~R®),

(2) Show that any connected component of size tA* must contain a base set of size t.

(3) Show that there are not too many base sets (n(4A>)¢).

( Prob (1) X # base sets (3) ) small = no base set exists = by (2), no large component exists

Base sets

e Let H be the distance-5 graph of G. Namely, E(H) = {(u, v): dist;(u,v) = 5}.
o AsetSisabasesetif
o Sisthevertexset V(T) of atree T on H, and
o foranyu,v €S, dist;(u,v) =5.
Constructing the Distributed Algorithm
Luby’s Step [Luby "85] — building block for Shattering

each node v selects itself with probability Vel (there are many other variations on selection condition)

if v is the only node in N* (v) that selects itself, add v to I and remove Nt (v) from G

Claim: Each node v with degv = A/2 is removed with constant probability p > 0. “v is vulnerable.”

1 1 \A/2+1/2 1
e Prlnou € N*(v) selects itself] > 1 — [Tyen+(v) (1 - A_+1) >1- (1 - A_+1) >1- NG

e Letu =lowest ID node in N*(v) that selects itself

o Pr{ujoins 1] = Mwencw (1 =)= (1- ALH)A >

o enforce “lowest ID” because when we consider w € N(u), we cannot condition on any

other nodes that already select themselves (else probability of u joining I will be 0);

. .. 1
more precisely, Pr[u joins IT = [Twen\ ' en+w),ipa’)<ipw)} (1 - m)

e Above argument works for any u, so overall, v is removed with prob > (1 - %) (i) > 0.14 = p.

o Note: this already gives 0(log?n)-round distributed algorithm (A halved whp after
0(logn) rounds); O(logn) under careful analysis.




Shattering (0 (log? A) distributed rounds — putting Luby’s steps together)

for k = [logA], ...,1 “iteration”

// maximum degree < 2¥ at the beginning of each iteration
1
2k+1
for each v with degv > 2k=1 remove v from G, and put vin L (v is lucky; deal with it later)
add all remaining (isolated) nodes to I

perform c; log A rounds Luby’s Step using probability

= After Shattering, surviving nodes are L \ N*(I). We will bound max connected component size in L.
Observation
For each node v € L, in the iteration that it finally joins L, it was vulnerable throughout the entire iteration.
(The exact iteration is not known in advance.)
Claim: For any node v, Pr[v € L] < p€11084 = A=C2,
e It must survive all ©(log A) vulnerable rounds of the entire iteration.
Claim (1) For any set S of ¢t nodes such that distg; (u, v) = 5 for every u,v € S, Pr[S € L] < A™%¢,
e Event that v joins I in each iteration only depends on coin tosses at distance < 2 away, so these
events are independent for nodes at distance = 5 away.
o Probability that S survives a particular iteration < p* vulnerable nodes
e QOutcomes are independent between any Luby’s Step.
o Imagine the whole coin tosses “table” being fixed in advance; only revealed row-by-row.

Claim (2) Any connected component size tA* must contain a base set of size t.
e pickaninitial node v € S, remove the ball {u: dist;(u, v) < 4} from S
e continue picking a node at distance exactly 5 from some removed node
o must be adjacent on H to a picked node
o cannot have distance < 5 to any picked node since balls around picked nodes removed
e each removed ball has < A* nodes = t nodes can be picked = form a base set

Claim (3) There are at most n(4A°%)t possible base sets.
We show there are < n(4A>)¢ possible trees on H. (over-count since ignoring distance > 5 condition)
e Structure-wise, there are < 4! plane trees with t nodes

o plane trees: the subtrees of each node are linearly ordered ,/:, ‘:\\

o #planetrees = # DFS sequences defining the tree structure /’/ “\;‘\
< # sequences with (t — 1) I’sand (t — 1) T's < 220D < 4¢ I'H‘ i

o actually # plane trees with t — 1 edges = C;_ (Catalan number) y y"" 1

e choose the first node in n ways (arbitrary node in H)

e for each subsequent node (child), its parent is already determined by the tree structure, so can
choose each child in < A® ways (max degree in H)

e total 4¢- (n- (A%)'1) < n(4A%)

Lemma With high probability, L contains no connected component of size A* logn.
Set t = logn, sufficiently large constant c,; probability that there exists a large connected component
<n- (4A5)t LAt = n1+log4+5A—c2A =n~°C.

Note: Best known Shattering O (log A) distributed rounds = A°(1°8M)]og n LCA probes [Ghaffari '16]




