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Local Computation Algorithms for the Maximal Independent Set Problem 

 

Maximal Independent Set 

Let 𝐺 = (𝑉, 𝐸) be a simple undirected graph 

 A set 𝐼 ⊆ 𝑉 is an independent set if no two nodes 𝑢, 𝑣 ∈ 𝐼 are adjacent. 

 A set 𝐼 is a maximal independent set if no other nodes can be added. 

o Not maximum: we’re trying to satisfy a local condition here 

 

Local Computation Algorithms (for graphs under adjacency list model) 

 Given  

o the input - via an oracle access 

o a query - location on the output 

o (for randomized LCAs: also a random tape 𝑇) 

 Compute an answer of a computational problem for the input on that query. 

MIS: given an oracle access to a graph 𝐺 and a query vertex 𝑣, answer “Is 𝑣 in the MIS?” 

 Answers from all 𝑣 must form a valid MIS (with high probability over 𝑇) 

o Notice: cannot store any previous answers. Order of queries must not matter. 

Other example -- maximal matching: Is (𝑢, 𝑣) in the approximate MM? 

Probe complexity – the maximum number of probes made to the oracle to answer any single query. 

Old lecture: estimating the size of the maximal matching (or VC) by creating an oracle 

 Same goal; somewhat different guarantee. Must provide an answer for every node: can’t just skip 

if it’s talking too long – an expected probe complexity is not good enough. 

 

Adjacency List Oracle (how LCA accesses 𝐺) 

 Assume each node 𝑣 has a unique 𝐼𝐷 from {1, … , 𝑛}. 

 Given a node 𝑣  (by 𝐼𝐷 ) and an integer 𝑖 , returns the 𝑖th  neighbor of 𝑣  if deg 𝑣 ≤ 𝑖  (or ⊥ 

otherwise). 

 Also assume a known bound Δ on the maximum degree. 

 

Today: 2 LCAs for MIS: 

 A deterministic LCA for MIS with probe complexity Δ𝑂(6Δ) log∗ 𝑛 

Note: many (early) papers assume constant Δ 

 A randomized LCA for MIS with probe complexity Δ𝑂(log2 Δ)log 𝑛 

 

Recall: Distributed LOCAL model 

 𝐺 is both the input graph and the network structure. 

 Each communication round: nodes send (unlimited-sized) messages to neighbors. 

 Computation done between rounds (no communication 

 Goal = minimize #rounds until all nodes have an answer 

 PR reduction: an 𝑟-round distributed algorithm can be simulated using Δ𝑂(𝑟) queries 

o probe for all nodes at distance up to 𝑟 away, then simulate distributed LOCAL 
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A deterministic LCA for MIS with probe complexity Δ𝑂(6Δ) log∗ 𝑛 

version presented here simplified from [Even Medina Ron ’14] 

 

Claim: given a 𝑐-coloring 𝜙, can compute an MIS in 𝑐 (distributed) rounds. 

 𝜙: 𝑉 → {1, … , 𝑐} such that for (𝑢, 𝑣) ∈ 𝐸, 𝜙𝑢 ≠ 𝜙𝑣 

Coloring-to-MIS 

 maintain an independent set 𝐼 (initially empty) 

 for each color 𝑖 = 1, … , 𝑐 

  each node 𝑣 with 𝜙𝑣 = 𝑖 joins 𝐼 if no neighbor is already in 𝐼 

Claim: The algorithm computes a MIS in 𝑐 rounds. 

 Output is an independent set: 𝑣 ∈ 𝐼 cannot be adjacent to 𝑢 of lower color since we check explicitly 

whether 𝑢 ∈ 𝐼; 𝑣 cannot be adjacent to node of the same color since 𝜙 is a valid coloring. 

 Output is maximal: If 𝑣 could have been added, it would have been added during 𝜙𝑣
th round. 

Note: think of this as a simulation of greedy algorithm 

 rather than using a random ranking idea, here colors are used instead 

 adjacent nodes are of different colors so there is no need for tie-breaking 

 can bound query tree depth by #colors 

 

Parnas-Ron reduction: an LCA can simulate (distributed) Coloring-to-MIS with Δ𝑂(𝑐) probes. 

⇒ If we have a Coloring-LCA for 6Δ-coloring, then we can create an LCA for MIS: 

 for a query 𝑣, first call Coloring-LCA on every node at distance ~ 6Δ from 𝑣 

 apply PR: simulate Coloring-to-MIS on these Δ𝑂(6Δ) nodes using the obtained colors 

Claim: There exists a deterministic Coloring-LCA for 6Δ-coloring with 𝑂(Δ log∗ 𝑛) probes. 

By above, this implies the desired Δ𝑂(6Δ) log∗ 𝑛-probe LCA for computing MIS. 

 must multiply the probe complexities (unlike distributed, we cannot just add them) 

o Coloring-LCA takes 𝑂(Δ log∗ 𝑛) probes to compute the color of a node 

o to compute a MIS we need the colors of up to Δ𝑂(6Δ) nodes: Δ𝑂(6Δ) calls to Coloring-LCA 

 

Constructing Coloring-LCA 

Step 1 Decompose the graph into Δ different oriented forests  

 Let 𝐸𝑖 = {(𝑢, 𝑣): 𝐼𝐷(𝑢) < 𝐼𝐷(𝑣), 𝑣 is the 𝑖th neighbor of 𝑢} (each (𝑢, 𝑣) is in a unique 𝐸𝑖) 

 𝐺𝑖 = (𝑉, 𝐸𝑖) has maximum out-degree 1; form trees (roots = whose without an out-neighbor) 

 Can find the out-neighbor 𝑣 of 𝑢 in one probe by looking at 𝑖th neighbor of 𝑢 and compare 𝐼𝐷s 

Step 2 𝟔-color oriented trees in each 𝐺𝑖 in 𝑂(log∗ 𝑛) rounds/probes [ColeVishkin’86] 

 𝜙𝑢 ← 0  if 𝑢 is a root (𝑖th neighbor of 𝑢 has lower 𝐼𝐷 than 𝑢) 

   𝐼𝐷(𝑢) if 𝑢 is not a root (∈ {1, … , 𝑐}) (log 𝑛 bits) 

 Repeat Θ(log∗ 𝑛) rounds compute a new color, ensure valid coloring, hopefully reduce #colors 

  if 𝑢 is a root, 𝑐𝑢 ← 0 

  else  let 𝑣 be 𝑢’s “parent” (𝑖th neighbor of 𝑢, so edge 𝑢 → 𝑣) 

    𝑙𝑢 ← index of the least significant bit (little endian) where 𝜙𝑣 differs from 𝜙𝑢 (0-based) 

    𝑏𝑢 ← the value of 𝑢’s 𝑙𝑢
th bit 

    𝜙𝑢 ← (𝑙𝑢, 𝑏𝑢) (new color: just concatenate 𝑙𝑢 and 𝑏𝑢 together) 
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Example 6-coloring  
compare with parent, look for first different bit from right to left, put index 𝑙 followed by that bit itself 𝑏 

 
 Claim: always maintains a valid coloring: (say consider edge 𝑢 → 𝑣) 

o initial colors: begin with unique 𝐼𝐷’s; roots cannot be adjacent on 𝐸𝑖 
o induction: after each iteration, need to show 𝜙𝑢 ≠ 𝜙𝑣 (see example, round 2) 

 if 𝑣 is a root, 𝑏𝑢 = 1 while 𝜙𝑣 = 0’s, so 𝜙𝑢 ≠ 𝜙𝑣 

 else, suppose 𝑙𝑢 = 𝑙𝑣, then the 𝑙th bits 𝑏𝑢 and 𝑏𝑣 must be different, so 𝑏𝑢 ≠ 𝑏𝑣  

 Claim:  computes a valid 6-coloring in 𝑂(log∗ 𝑛) rounds 

o In one round, 𝐾 bits → ⌈log 𝐾⌉ + 1 bits, so takes Θ(log∗ 𝑛) (induction: just 1 + log∗ 𝑛) 

o cannot go below 6: 𝑙𝑢 ∈ {0, 1, 2}, 𝑏𝑢 ∈ {0, 1}, stuck; needs a different algorithm 

 

Step 3 Combine into a 6Δ-coloring over 𝐺 

 formed by the vector of 𝑐𝑢
𝑖 ’s: length Δ, each entry is one of the 6 possible colors 

Claim: Can implement Coloring-LCA using 𝑂(Δ log∗ 𝑛) probes 

 For each 𝐺𝑖, must follow 𝑖th out-neighbors from 𝑣 for at most 𝑂(log∗ 𝑛) steps, learn all the 𝐼𝐷’s, 

then apply (simulate) the procedure for 6-coloring. 

 Aside, the distributed version takes 𝑂(log∗ 𝑛) rounds since can do all Δ graphs in parallel. 

 

Note:  [EMR] can get Δ𝑂(Δ2) log∗ 𝑛 with more black-box distributed coloring 

best known: Δ�̃�(√Δ) log∗ 𝑛 [Fraigniaud Heinrich Kosowski '16] 

 

  

𝑟 

𝑥 

𝑦 

𝑧 

𝐼𝐷’s initial colors 

0000 

after round 1 

000 

after round 2 

00101101 00000000 

0101 001 11010100 11010100 

0001 100 01011101 01011101 

1101 101 10011101 10011101 

root 

bit 2 = 0102 

bit 0 = 0002 

bit 6 = 1102 

bit 0 bit 1 bit 2 

bit 0 = 002 

bit 2 = 102 

bit 2 = 102 

(in binary) 

𝑙𝑥 

 

𝑏𝑥 
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A randomized LCA for MIS with probe complexity Δ𝑂(log2 Δ)log 𝑛  

version presented here based on distributed algorithm by [Barenboim Elkin Pettie Schneider ’15] 

 

Lemma There exist a 𝑂(log2 Δ)-round distributed algorithm Shattering that computes an independent set 

𝐼  such that with high probability, the graph induced by 𝑉 ∖ 𝑁+(𝐼)  contains no connected 

component of size ≥ Δ4 log 𝑛. [BEPS’15] 

This implies the desired LCA:  

 By PR, we have Shattering-LCA that computes whether 𝑣 ∈ 𝐼 (in the lemma) in Δ𝑂(log2 Δ) probes. 

 If 𝑣 ∈ 𝐼 then YES, 𝑣 is in the MIS 

 Else (𝑣 ∉ 𝐼), check 𝑣’s neighbors: if there’s a 𝑢 ∈ 𝑁(𝑣) ∩ 𝐼 then NO, 𝑣 is not in the MIS. 

 Else (𝑣 ∉ 𝑁+(𝐼)) 

o DFS from 𝑣, call Shattering-LCA on reached nodes to identify the entire component 𝐶𝑣 ⊆

𝑉 ∖ 𝑁+(𝐼) containing 𝑣. (|𝐶𝑣| ≤ Δ4 log 𝑛, so need poly Δ ⋅ log 𝑛 calls to Shattering-LCA.) 

o Solve MIS of 𝐶𝑣 deterministically in consistent way, answer YES or NO for 𝑣 accordingly. 

o queries anywhere on this component must give consistent answers; 

e.g., compute lexicographically first MIS = greedy via 𝐼𝐷 order 

Strategy: Define base sets 𝑆 of size 𝑡 (later will pick 𝑡 = log 𝑛) 

 (1) Construct an algorithm that any base set survives (𝑆 ⊆ 𝑉 ∖ 𝑁+(𝐼)) with small prob (Δ−Ω(𝑡)). 

 (2) Show that any connected component of size 𝑡Δ4 must contain a base set of size 𝑡. 

 (3) Show that there are not too many base sets (𝑛(4Δ5)𝑡). 

 ( Prob (1) × # base sets (3) ) small ⇒ no base set exists ⇒ by (2), no large component exists 

Base sets 

 Let 𝐻 be the distance-5 graph of 𝐺. Namely, 𝐸(𝐻) = {(𝑢, 𝑣): dist𝐺(𝑢, 𝑣) = 5}. 

 A set 𝑆 is a base set if 

o 𝑆 is the vertex set 𝑉(𝑇) of a tree 𝑇 on 𝐻, and  

o for any 𝑢, 𝑣 ∈ 𝑆, dist𝐺(𝑢, 𝑣) ≥ 5. 

Constructing the Distributed Algorithm 

Luby’s Step [Luby ’85] – building block for Shattering 

 each node 𝑣 selects itself with probability 
1

Δ+1
 (there are many other variations on selection condition) 

 if 𝑣 is the only node in 𝑁+(𝑣) that selects itself, add 𝑣 to 𝐼 and remove 𝑁+(𝑣) from 𝐺 

Claim: Each node 𝑣 with deg 𝑣 ≥ Δ/2 is removed with constant probability 𝑝 > 0. “𝑣 is vulnerable.” 

 Pr [no 𝑢 ∈ 𝑁+(𝑣) selects itself] ≥ 1 − ∏ (1 −
1

Δ+1
)𝑢∈𝑁+(𝑣) ≥ 1 − (1 −

1

Δ+1
)

Δ 2⁄ +1 2⁄

> 1 −
1

√𝑒
 

 Let 𝑢 = lowest 𝑰𝑫 node in 𝑁+(𝑣) that selects itself 

o Pr [𝑢 joins 𝐼] ≥ ∏ (1 −
1

Δ+1
)𝑤∈𝑁(𝑢) ≥ (1 −

1

Δ+1
)

Δ
>

1

𝑒
. 

o enforce “lowest 𝐼𝐷” because when we consider 𝑤 ∈ 𝑁(𝑢), we cannot condition on any 

other nodes that already select themselves (else probability of 𝑢 joining 𝐼 will be 0); 

more precisely, Pr [𝑢 joins 𝐼] = ∏ (1 −
1

Δ+1
)𝑤∈𝑁(𝑢)∖{𝑢′∈𝑁+(𝑣),𝐼𝐷(𝑢′)<𝐼𝐷(𝑢)}  

 Above argument works for any 𝑢, so overall, 𝑣 is removed with prob ≥ (1 −
1

√𝑒
) (

1

𝑒
) > 0.14 = 𝑝. 

o Note: this already gives 𝑂(log2 𝑛) -round distributed algorithm ( Δ  halved whp after 

𝑂(log 𝑛) rounds); 𝑂(log 𝑛) under careful analysis. 
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Shattering (𝑂(log2 Δ) distributed rounds – putting Luby’s steps together) 

 for 𝑘 = ⌈log Δ⌉, … ,1 “iteration” 

  // maximum degree ≤ 2𝑘 at the beginning of each iteration 

  perform 𝑐1 log Δ rounds Luby’s Step using probability 
1

2𝑘+1
 

  for each 𝑣 with deg 𝑣 ≥ 2𝑘−1, remove 𝑣 from 𝐺, and put 𝑣 in 𝐿 (𝑣 is lucky; deal with it later) 

 add all remaining (isolated) nodes to 𝐼 

⇒ After Shattering, surviving nodes are 𝐿 ∖ 𝑁+(𝐼). We will bound max connected component size in 𝐿. 

Observation 

For each node 𝑣 ∈ 𝐿, in the iteration that it finally joins 𝐿, it was vulnerable throughout the entire iteration. 

(The exact iteration is not known in advance.) 

Claim: For any node 𝑣, Pr[𝑣 ∈ 𝐿] ≤ 𝑝𝑐1 log Δ = Δ−𝑐2.  

 It must survive all Θ(log Δ) vulnerable rounds of the entire iteration. 

Claim (1) For any set 𝑆 of 𝑡 nodes such that dist𝐺(𝑢, 𝑣) ≥ 5 for every 𝑢, 𝑣 ∈ 𝑆, Pr[𝑆 ⊆ 𝐿] ≤ Δ−𝑐2𝑡. 

 Event that 𝑣 joins 𝐼 in each iteration only depends on coin tosses at distance ≤ 2 away, so these 

events are independent for nodes at distance ≥ 5 away. 

o Probability that 𝑆 survives a particular iteration ≤ 𝑝# vulnerable nodes. 

 Outcomes are independent between any Luby’s Step. 

o Imagine the whole coin tosses “table” being fixed in advance; only revealed row-by-row. 

 

Claim (2) Any connected component size 𝑡Δ4 must contain a base set of size 𝑡. 

 pick an initial node 𝑣 ∈ 𝑆, remove the ball {𝑢: dist𝐺(𝑢, 𝑣) ≤ 4} from 𝑆 

 continue picking a node at distance exactly 5 from some removed node 

o must be adjacent on 𝐻 to a picked node 

o cannot have distance < 5 to any picked node since balls around picked nodes removed 

 each removed ball has ≤ Δ4 nodes ⇒ 𝑡 nodes can be picked ⇒ form a base set 

 

Claim (3) There are at most 𝑛(4Δ5)𝑡 possible base sets. 

We show there are ≤ 𝑛(4Δ5)𝑡 possible trees on 𝐻. (over-count since ignoring distance ≥ 5 condition) 

 Structure-wise, there are ≤ 4𝑡 plane trees with 𝑡 nodes 

o plane trees: the subtrees of each node are linearly ordered 

o # plane trees = # DFS sequences defining the tree structure 

 ≤ # sequences with (𝑡 − 1) ↓’s and (𝑡 − 1) ↑’s < 22(𝑡−1) < 4𝑡 

o actually # plane trees with 𝑡 − 1 edges = 𝐶𝑡−1 (Catalan number) 

 choose the first node in 𝑛 ways (arbitrary node in 𝐻) 

 for each subsequent node (child), its parent is already determined by the tree structure, so can 

choose each child in ≤ Δ5 ways (max degree in 𝐻) 

 total 4𝑡 ⋅ (𝑛 ⋅ (Δ5)𝑡−1) ≤ 𝑛(4Δ5)𝑡 

 

Lemma With high probability, 𝐿 contains no connected component of size Δ4 log 𝑛. 

Set 𝑡 = log 𝑛, sufficiently large constant 𝑐2; probability that there exists a large connected component 

≤ 𝑛 ⋅ (4Δ5)𝑡 ⋅ Δ−𝑐2𝑡 = 𝑛1+log 4+5Δ−𝑐2Δ = 𝑛−𝑐 . 

 

Note: Best known Shattering 𝑂(log Δ) distributed rounds ⇒ Δ𝑂(log Δ)log 𝑛 LCA probes [Ghaffari ’16] 


