Maximal Independent Set

Let $G=(V, E)$ be a simple undirected graph

- A set $I \subseteq V$ is an independent set if no two nodes $u, v \in I$ are adjacent.
- A set I is a maximal independent set if no other nodes can be added.
- Not maximum: we're trying to satisfy a local condition here

Local Computation Algorithms (for graphs under adjacency list model)

- Given
- the input - via an oracle access
- a query - location on the output
- (for randomized LCAs: also a random tape T)
- Compute an answer of a computational problem for the input on that query.

MIS: given an oracle access to a graph G and a query vertex v, answer "Is v in the MIS?"

- Answers from all v must form a valid MIS (with high probability over T)
- Notice: cannot store any previous answers. Order of queries must not matter.

Other example -- maximal matching: Is (u, v) in the approximate MM?
Probe complexity - the maximum number of probes made to the oracle to answer any single query.
Old lecture: estimating the size of the maximal matching (or VC) by creating an oracle

- Same goal; somewhat different guarantee. Must provide an answer for every node: can't just skip if it's talking too long - an expected probe complexity is not good enough.

Adjacency List Oracle (how LCA accesses G)

- Assume each node v has a unique $I D$ from $\{1, \ldots, n\}$.
- Given a node v (by $I D$) and an integer i, returns the $i^{\text {th }}$ neighbor of v if $\operatorname{deg} v \leq i$ (or \perp otherwise).
- Also assume a known bound Δ on the maximum degree.

Today: 2 LCAs for MIS:

- A deterministic LCA for MIS with probe complexity $\Delta^{O\left(6^{\Delta}\right)} \log ^{*} n$

Note: many (early) papers assume constant Δ

- A randomized LCA for MIS with probe complexity $\Delta^{0\left(\log ^{2} \Delta\right)} \log n$

Recall: Distributed LOCAL model

- G is both the input graph and the network structure.
- Each communication round: nodes send (unlimited-sized) messages to neighbors.
- Computation done between rounds (no communication
- Goal = minimize \#rounds until all nodes have an answer
- PR reduction: an r-round distributed algorithm can be simulated using $\Delta^{O(r)}$ queries
- probe for all nodes at distance up to r away, then simulate distributed LOCAL

A deterministic LCA for MIS with probe complexity $\Delta^{O\left(6^{\Delta}\right)} \log ^{*} n$
version presented here simplified from [Even Medina Ron '14]

Claim: given a c-coloring ϕ, can compute an MIS in c (distributed) rounds.

- $\phi: V \rightarrow\{1, \ldots, c\}$ such that for $(u, v) \in E, \phi_{u} \neq \phi_{v}$

Coloring-to-MIS

maintain an independent set I (initially empty)
for each color $i=1, \ldots, c$ each node v with $\phi_{v}=i$ joins I if no neighbor is already in I
Claim: The algorithm computes a MIS in c rounds.

- Output is an independent set: $v \in I$ cannot be adjacent to u of lower color since we check explicitly whether $u \in I ; v$ cannot be adjacent to node of the same color since ϕ is a valid coloring.
- Output is maximal: If v could have been added, it would have been added during $\phi_{v}^{\text {th }}$ round.

Note: think of this as a simulation of greedy algorithm

- rather than using a random ranking idea, here colors are used instead
- adjacent nodes are of different colors so there is no need for tie-breaking
- can bound query tree depth by \#colors

Parnas-Ron reduction: an LCA can simulate (distributed) Coloring-to-MIS with $\Delta^{O(c)}$ probes.
\Rightarrow If we have a Coloring-LCA for 6^{Δ}-coloring, then we can create an LCA for MIS:

- for a query v, first call Coloring-LCA on every node at distance $\sim 6^{\Delta}$ from v
- apply PR: simulate Coloring-to-MIS on these $\Delta^{O\left(6^{\Delta}\right)}$ nodes using the obtained colors

Claim: There exists a deterministic Coloring-LCA for 6^{Δ}-coloring with $O\left(\Delta \log ^{*} n\right)$ probes.
By above, this implies the desired $\Delta^{O\left(6^{\Delta}\right)} \log ^{*} n$-probe LCA for computing MIS.

- must multiply the probe complexities (unlike distributed, we cannot just add them)
- Coloring-LCA takes $O\left(\Delta \log ^{*} n\right)$ probes to compute the color of a node
- to compute a MIS we need the colors of up to $\Delta^{O\left(6^{\Delta}\right)}$ nodes: $\Delta^{O\left(6^{\Delta}\right)}$ calls to Coloring-LCA

Constructing Coloring-LCA

Step 1 Decompose the graph into Δ different oriented forests

- Let $E^{i}=\left\{(u, v): I D(u)<I D(v), v\right.$ is the $i^{\text {th }}$ neighbor of $\left.u\right\}$ (each (u, v) is in a unique E^{i})
- $G^{i}=\left(V, E^{i}\right)$ has maximum out-degree 1 ; form trees (roots $=$ whose without an out-neighbor)
- Can find the out-neighbor v of u in one probe by looking at $i^{\text {th }}$ neighbor of u and compare IDs

Step 2 6-color oriented trees in each G^{i} in $O\left(\log ^{*} n\right)$ rounds/probes [ColeVishkin'86]
$\phi_{u} \leftarrow 0 \quad$ if u is a root ($i^{\text {th }}$ neighbor of u has lower $I D$ than u)
$I D(u)$ if u is not a root $(\in\{1, \ldots, c\})$ ($\log n$ bits)
Repeat $\Theta\left(\log ^{*} n\right)$ rounds compute a new color, ensure valid coloring, hopefully reduce \#colors
if u is a root, $c_{u} \leftarrow 0$
else let v be u^{\prime} s "parent" ($i^{\text {th }}$ neighbor of u, so edge $u \rightarrow v$)
$l_{u} \leftarrow$ index of the least significant bit (little endian) where ϕ_{v} differs from ϕ_{u} (0-based)
$b_{u} \leftarrow$ the value of $u^{\prime} s l_{u}^{\text {th }}$ bit
$\phi_{u} \leftarrow\left(l_{u}, b_{u}\right)$ (new color: just concatenate l_{u} and b_{u} together)

Example 6-coloring

compare with parent, look for first different bit from right to left, put index l followed by that bit itself b

- Claim: always maintains a valid coloring: (say consider edge $u \rightarrow v$)
- initial colors: begin with unique $I D^{\prime}$; roots cannot be adjacent on E^{i}
- induction: after each iteration, need to show $\phi_{u} \neq \phi_{v}$ (see example, round 2)
- if v is a root, $b_{u}=1$ while $\phi_{v}=0$'s, so $\phi_{u} \neq \phi_{v}$
- else, suppose $l_{u}=l_{v}$, then the $l^{\text {th }}$ bits b_{u} and b_{v} must be different, so $b_{u} \neq b_{v}$
- Claim: computes a valid 6 -coloring in $O\left(\log ^{*} n\right)$ rounds
- In one round, K bits $\rightarrow\lceil\log K\rceil+1$ bits, so takes $\Theta\left(\log ^{*} n\right)$ (induction: just $1+\log ^{*} n$)
- cannot go below 6: $l_{u} \in\{0,1,2\}, b_{u} \in\{0,1\}$, stuck; needs a different algorithm

Step 3 Combine into a 6^{Δ}-coloring over G

- formed by the vector of c_{u}^{i} 's: length Δ, each entry is one of the 6 possible colors

Claim: Can implement Coloring-LCA using $O\left(\Delta \log ^{*} n\right)$ probes

- For each G^{i}, must follow $i^{\text {th }}$ out-neighbors from v for at most $O\left(\log ^{*} n\right)$ steps, learn all the $I D^{\prime}$ s, then apply (simulate) the procedure for 6 -coloring.
- Aside, the distributed version takes $O\left(\log ^{*} n\right)$ rounds since can do all Δ graphs in parallel.

Note: [EMR] can get $\Delta^{O\left(\Delta^{2}\right)} \log ^{*} n$ with more black-box distributed coloring best known: $\Delta^{\tilde{O}(\sqrt{\Delta})} \log ^{*} n$ [Fraigniaud Heinrich Kosowski '16]

A randomized LCA for MIS with probe complexity $\Delta^{O\left(\log ^{2} \Delta\right)} \log n$
version presented here based on distributed algorithm by [Barenboim Elkin Pettie Schneider '15]

Lemma There exist a $O\left(\log ^{2} \Delta\right)$-round distributed algorithm Shattering that computes an independent set I such that with high probability, the graph induced by $V \backslash N^{+}(I)$ contains no connected component of size $\geq \Delta^{4} \log n$. [BEPS'15]
This implies the desired LCA:

- By PR, we have Shattering-LCA that computes whether $v \in I$ (in the lemma) in $\Delta^{O\left(\log ^{2} \Delta\right)}$ probes.
- If $v \in I$ then YES, v is in the MIS
- Else $(v \notin I)$, check v^{\prime} s neighbors: if there's a $u \in N(v) \cap I$ then NO, v is not in the MIS.
- Else $\left(v \notin N^{+}(I)\right)$
- DFS from v, call Shattering-LCA on reached nodes to identify the entire component $C_{v} \subseteq$ $V \backslash N^{+}(I)$ containing v. $\left(\left|C_{v}\right| \leq \Delta^{4} \log n\right.$, so need poly $\Delta \cdot \log n$ calls to Shattering-LCA.)
- Solve MIS of C_{v} deterministically in consistent way, answer YES or NO for v accordingly.
- queries anywhere on this component must give consistent answers; e.g., compute lexicographically first MIS = greedy via $I D$ order

Strategy: Define base sets S of size t (later will pick $t=\log n$)

- (1) Construct an algorithm that any base set survives $\left(S \subseteq V \backslash N^{+}(I)\right)$ with small prob $\left(\Delta^{-\Omega(t)}\right)$.
- (2) Show that any connected component of size $t \Delta^{4}$ must contain a base set of size t.
- (3) Show that there are not too many base sets $\left(n\left(4 \Delta^{5}\right)^{t}\right)$.
- (Prob (1) $\times \#$ base sets (3)) small \Rightarrow no base set exists \Rightarrow by (2), no large component exists

Base sets

- Let H be the distance-5 graph of G. Namely, $E(H)=\left\{(u, v)\right.$: $\left.\operatorname{dist}_{G}(u, v)=5\right\}$.
- A set S is a base set if
- S is the vertex set $V(T)$ of a tree T on H, and
- for any $u, v \in S, \operatorname{dist}_{G}(u, v) \geq 5$.

Constructing the Distributed Algorithm

Luby's Step [Luby '85] - building block for Shattering
each node v selects itself with probability $\frac{1}{\Delta+1}$ (there are many other variations on selection condition)
if v is the only node in $N^{+}(v)$ that selects itself, add v to I and remove $N^{+}(v)$ from G
Claim: Each node v with $\operatorname{deg} v \geq \Delta / 2$ is removed with constant probability $p>0$. " v is vulnerable."

- $\operatorname{Pr}\left[\right.$ no $u \in N^{+}(v)$ selects itself $] \geq 1-\prod_{u \in N^{+}(v)}\left(1-\frac{1}{\Delta+1}\right) \geq 1-\left(1-\frac{1}{\Delta+1}\right)^{\Delta / 2+1 / 2}>1-\frac{1}{\sqrt{e}}$
- Let $u=$ lowest $I \boldsymbol{D}$ node in $N^{+}(v)$ that selects itself
- $\operatorname{Pr}[u$ joins $I] \geq \prod_{w \in N(u)}\left(1-\frac{1}{\Delta+1}\right) \geq\left(1-\frac{1}{\Delta+1}\right)^{\Delta}>\frac{1}{e}$.
- enforce "lowest $I D$ " because when we consider $w \in N(u)$, we cannot condition on any other nodes that already select themselves (else probability of u joining I will be 0); more precisely, $\operatorname{Pr}[u$ joins $I]=\prod_{w \in N(u) \backslash\left\{u^{\prime} \in N^{+}(v), I D\left(u^{\prime}\right)<I D(u)\right\}}\left(1-\frac{1}{\Delta+1}\right)$
- Above argument works for any u, so overall, v is removed with prob $\geq\left(1-\frac{1}{\sqrt{e}}\right)\left(\frac{1}{e}\right)>0.14=p$.
- Note: this already gives $O\left(\log ^{2} n\right)$-round distributed algorithm (Δ halved whp after $O(\log n)$ rounds); $O(\log n)$ under careful analysis.

Shattering $\left(O\left(\log ^{2} \Delta\right)\right.$ distributed rounds - putting Luby's steps together)
for $k=\lceil\log \Delta\rceil, \ldots, 1$ "iteration"
// maximum degree $\leq 2^{k}$ at the beginning of each iteration
perform $c_{1} \log \Delta$ rounds Luby's Step using probability $\frac{1}{2^{k}+1}$
for each v with $\operatorname{deg} v \geq 2^{k-1}$, remove v from G, and put v in L (v is lucky; deal with it later)
add all remaining (isolated) nodes to I
\Rightarrow After Shattering, surviving nodes are $L \backslash N^{+}(I)$. We will bound max connected component size in L.

Observation

For each node $v \in L$, in the iteration that it finally joins L, it was vulnerable throughout the entire iteration. (The exact iteration is not known in advance.)
Claim: For any node $v, \operatorname{Pr}[v \in L] \leq p^{c_{1} \log \Delta}=\Delta^{-c_{2}}$.

- It must survive all $\Theta(\log \Delta)$ vulnerable rounds of the entire iteration.

Claim (1) For any set S of t nodes such that $\operatorname{dist}_{G}(u, v) \geq 5$ for every $u, v \in S, \operatorname{Pr}[S \subseteq L] \leq \Delta^{-c_{2} t}$.

- Event that v joins I in each iteration only depends on coin tosses at distance ≤ 2 away, so these events are independent for nodes at distance ≥ 5 away.
- Probability that S survives a particular iteration $\leq p^{\# \text { vulnerable nodes }}$.
- Outcomes are independent between any Luby's Step.
- Imagine the whole coin tosses "table" being fixed in advance; only revealed row-by-row.

Claim (2) Any connected component size $t \Delta^{4}$ must contain a base set of size t.

- pick an initial node $v \in S$, remove the ball $\left\{u\right.$: $\left.\operatorname{dist}_{G}(u, v) \leq 4\right\}$ from S
- continue picking a node at distance exactly 5 from some removed node
- must be adjacent on H to a picked node
- cannot have distance <5 to any picked node since balls around picked nodes removed
- each removed ball has $\leq \Delta^{4}$ nodes $\Rightarrow t$ nodes can be picked \Rightarrow form a base set

Claim (3) There are at most $n\left(4 \Delta^{5}\right)^{t}$ possible base sets.
We show there are $\leq n\left(4 \Delta^{5}\right)^{t}$ possible trees on H. (over-count since ignoring distance ≥ 5 condition)

- Structure-wise, there are $\leq 4^{t}$ plane trees with t nodes
- plane trees: the subtrees of each node are linearly ordered
- \# plane trees = \# DFS sequences defining the tree structure
$\leq \#$ sequences with $(t-1) \downarrow^{\prime} s$ and $(t-1) \uparrow^{\prime} s<2^{2(t-1)}<4^{t}$
- actually \# plane trees with $t-1$ edges $=C_{t-1}$ (Catalan number)
- choose the first node in n ways (arbitrary node in H)
- for each subsequent node (child), its parent is already determined by the tree structure, so can choose each child in $\leq \Delta^{5}$ ways (max degree in H)
- total $4^{t} \cdot\left(n \cdot\left(\Delta^{5}\right)^{t-1}\right) \leq n\left(4 \Delta^{5}\right)^{t}$

Lemma With high probability, L contains no connected component of size $\Delta^{4} \log n$.
Set $t=\log n$, sufficiently large constant c_{2}; probability that there exists a large connected component

$$
\leq n \cdot\left(4 \Delta^{5}\right)^{t} \cdot \Delta^{-c_{2} t}=n^{1+\log 4+5 \Delta-c_{2} \Delta}=n^{-c} .
$$

Note: Best known Shattering $O(\log \Delta)$ distributed rounds $\Rightarrow \Delta^{O(\log \Delta)} \log n$ LCA probes [Ghaffari '16]

