Lecture 11: Fourier Basics for Boolean functions. Linearity testing.

Lecturer: Ronitt Rubinfeld
Spring 2014
6.842: Randomness and Computation

Why all the fuss about Boolean functions?

- Truth table of a function (complexity theory)
- Concept to be learned (machine learning)
- Subset of the Boolean cube (coding theory, combinatorics,...)
- Etc.

Why Fourier/Harmonic Analysis?

- Study "structural properties" of Boolean functions
- Low complexity
- Depends on few inputs (dictator, junta)
- "fair" (no variable has too much influence)
- Homomorphism
- Spread out/concentrated

The Boolean function

$$
\begin{gathered}
f:\{0,1\}^{n} \rightarrow\{0,1\} \\
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \oplus\left(x_{1}, y_{2}, \ldots, y_{n}\right) \\
=\left(x_{1} \oplus y_{1}, \ldots, x_{n} \oplus y_{n}\right)
\end{gathered}
$$

$$
f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}
$$

$$
\left(x_{1}, x_{2}, \ldots, \mathrm{x}_{n}\right) \odot\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

$$
=\left(x_{1} \cdot y_{1}, \ldots, x_{n} \cdot y_{n}\right)
$$

The slick (notational) trick:

$$
\begin{aligned}
& 0 \rightarrow+1 \\
& 1 \rightarrow-1
\end{aligned}
$$

$$
\begin{array}{c|cc|}
\hline \oplus & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array} \quad \rightarrow \quad \begin{array}{ccc}
\times & +1 & -1 \\
+1 & +1 & -1 \\
-1 & +1 & +1 \\
\hline
\end{array}
$$

The set of functions and inner

 product- $G=\left\{g \mid g:\{ \pm 1\}^{n} \rightarrow \mathbb{R}\right\}$ (all n-bit fctns into Reals)
- A vector space of dimension 2^{n}
- For any set of basis functions of size 2^{n}, every $g \in G$ is a linear combination of basis functions.
- Which basis to use?

Which basis?

- $G=\left\{g \mid g:\{ \pm 1\}^{n} \rightarrow \mathbb{R}\right\}$ (all n-bit fctns into Reals)
- A "natural" basis: indicator functions
- $e_{a}(x)=\left\{\begin{array}{cc}1 & \text { if } x=a \\ 0 & \text { o. } w .\end{array}\right.$
- Orthonormal
- Used to describe function via "truth table"

$$
f(x)=\Sigma_{a} f(a) e_{a}(x)
$$

A very useful basis:

- $G=\left\{g \mid g:\{ \pm 1\}^{n} \rightarrow \mathbb{R}\right\}$ (all n-bit fctns into Reals)
- Parity functions
- For $S \subseteq[n], \chi_{S}(x)=\prod_{i \in S} x_{i}$
- Let's agree that $\chi_{\varnothing}(x)=1 \forall x$

A useful property:

■ Fact 0: $\chi_{S}(x) \cdot \chi_{T}(x)=\chi_{S \Delta T}(x)$

Proof: $\chi_{S}(x) \cdot \chi_{T}(x)=\prod_{i \in S} x_{i} \prod_{j \in T} x_{j}$

Inner product

$$
\mathbf{n}^{\mathbf{n}}<f, g>=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) g(x)^{p 0^{10}}
$$

- Note:

$$
\begin{aligned}
< & \chi_{S}, \chi_{S}>=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}}\left(\chi_{S(x)}\right)^{2}= \\
& 1 \\
& \text { Always 1 }
\end{aligned}
$$

Orthogonal:

If $S \neq T$:

$$
\begin{aligned}
& \left.x_{j}\left(\Pi_{(i \in S \Delta T \backslash j j)}\right) x_{i}\right)-x_{j}\left(\Pi_{(i \in S \Delta T \backslash j j))} x_{i}\right)=0
\end{aligned}
$$

So we have an orthonormal basis!

-. Every function can be written as a linear combination of these $\chi_{S}{ }^{\prime} s$

Fourier Coefficients

- Theorem:
$\forall f, f(x)=\Sigma_{S} \hat{f}(S) \chi_{S}(x)$ where
$\hat{f}(S)=<f, \chi_{S}>=\frac{1}{2^{n}} \Sigma_{x \in\{ \pm 1\}^{n}} f(x) \chi_{S}(x)$

Some examples:

Function
$f(x)=1=\chi(\varnothing)$
$\mathrm{f}(\mathrm{x})=\mathrm{x}_{\mathrm{i}}=\chi(\{i\})$
$f(x)=\operatorname{AND}\left(x_{1}, x_{2}\right)$

Fourier Representation

1
x_{i}
$1 / 2+1 / 2 x_{1}+1 / 2 x_{2}-1 / 2 x_{1} x_{2}$

Fourier coefficients of parity functions:

■ Fact 1: f is a parity function

$$
\text { iff } f=\chi_{S}(x)
$$

iff (1) $\hat{f}(S)=1$ and
(2) for all $T \neq S$,
$\hat{f}(T)=<\chi_{S}, \chi_{T}>=0$

Agreement with parity function vs. max Fourier coefficient

Fact 2: $\hat{f}(S)=1-2 \operatorname{Pr}_{x \in \pm 1^{n}}\left[f(x) \neq \chi_{S}(x)\right]$

Proof:
$\hat{f}(S)=\frac{1}{2^{n}} \Sigma_{x} f(x) \chi_{S}(x)$
$=\frac{1}{2^{n}} \sum_{\mathrm{x} \text { s.t. } \mathrm{f}(\mathrm{x})=\chi_{S(\mathrm{x})}(+1)+\frac{1}{2^{n}} \sum_{x \text { s.t. } f(x) \neq \chi_{S(x)}}(-1), ~(1)}$
$=\left(1-\operatorname{Pr}_{x \in \pm 1^{n}}\left[f(x) \neq \chi_{S}(x)\right]\right)-\operatorname{Pr}_{x \in \pm 1^{n}}\left[f(x) \neq \chi_{S}(x)\right]$

Distance between parity

functions

Fact 3: if $S \neq T$ then $\operatorname{Pr}_{x \in\{ \pm 1\}^{n}}\left[\chi_{S}(x)=\chi_{T}(x)\right]=1 / 2$

Proof: Let $f=\chi_{T}$, then

$$
\begin{aligned}
\hat{f}(S) & =0(\text { fact } 1) \\
& =1-2 \operatorname{Pr}\left[\chi_{T}(x) \neq \chi_{S}(x)\right](\text { fact } 2)
\end{aligned}
$$

Plancherel's Theorem

-Theorem: For $f, g:\{ \pm 1\}^{n} \rightarrow \Re$ we have $<f, g>\equiv E_{\{ \pm 1\}^{n}}[f(x) g(x)]=\Sigma_{S \subseteq[n]} \hat{f}(S) \cdot \hat{g}(S)$

Proof:

$$
\begin{array}{rlr}
<f, g>=< & <\Sigma_{S} \hat{f}(S) \chi_{S}, \Sigma_{T} \hat{g}(T) \chi_{T}> & \text { (def) } \\
& =\Sigma_{S} \Sigma_{T} \hat{f}(S) \hat{g}(T)<\chi_{S}, \chi_{T}> & \text { (bilinearity) } \\
& =\Sigma_{S} \widehat{f}(S) \hat{g}(S) \quad \text { (orthogonality) }
\end{array}
$$

Parseval's Theorem

-Corollary: For $f:\{ \pm 1\}^{n} \rightarrow \mathfrak{R}$ we have

$$
<f, f>\equiv E_{\{ \pm 1\}^{n}}\left[f^{2}(x)\right]=\Sigma_{S \subseteq[n]} \hat{f}(S)^{2}
$$

Boolean Parseval's: For $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$

$$
\Sigma_{S \subseteq[n]} \hat{f}(S)^{2}=E_{\{ \pm 1\}^{n}}\left[f^{2}(x)\right]=1
$$

More useful facts:

Plancherel
Fdt 4: $E[f]=E[f(x) \cdot 1]=E\left[f(x) \chi_{\phi}(x)\right]$

$$
=\Sigma \hat{f}(S) \hat{\chi}_{\phi}(S)=\hat{f}(\phi) \cdot \hat{\chi}_{\phi}(\phi)=\hat{f}(\phi)
$$

Fact 5: (corollary to fact 4 and to fact 1)

$$
E\left[\chi_{S}(x)\right]=\left\{\begin{array}{c}
1 \text { if } S=\phi \\
0 \text { o.w. }
\end{array}\right.
$$

Linearity (homomorphism)

testing

$$
\forall x, y f(x)+f(y)=f(x+y)
$$

Linearity Property

- Want to quickly test if a function over a group is linear, that is

$$
\forall x, y f(x)+f(y)=f(x+y)
$$

- Useful for
- Checking correctness of programs computing matrix, algebraic, trigonometric functions
- Probabilistically Checkable Proofs

Is the proof of the right format?

- In these cases, enough for f to be close to homomorphism

What do we mean by "close"?

Definition: f, over domain of size N, is ε-close to linear if can change at most εN values to turn it into one.

Otherwise, ε-far.

What do we mean by "quick"?

- query complexity measured in terms of domain size N
- Our goal (if possible):
- constant independent of N ?

Linearity Testing

- If f is linear (i.e., $\forall x, y f(x)+f(y)=f(x+y)$) then test should PASS with probability $>2 / 3$
- If f is ε-far from linear then test should FAIL with probability >2/3
- Note: If f not linear, but ε-close, then either output is ok

Linearity Testing for
 $$
\mathrm{f}: G F(2)^{n} \rightarrow G F(2)
$$

- $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in\{0,1\}^{n}$

$$
\text { - } x+y=\left(x_{1} \oplus y_{1}, \ldots, x_{n} \oplus y_{n}\right)(\oplus \text { is "xor" })
$$

- $\forall x, y f(x) \oplus f(y)=f(x+y)$
- Linear functions are exactly

$$
\left\{f_{a} \mid f_{a}(x)=\Sigma a_{i} \cdot x_{i} \bmod 2 \text { for } a \in\{0,1\}^{n}\right\}
$$

Linearity Testing for

$$
f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}
$$

- $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in\{ \pm 1\}^{n}$
- $x \odot y=\left(x_{1} \cdot y_{1}, \ldots, x_{n} \cdot y_{n}\right)$
- $\forall x, y \quad f(x) \cdot f(y)=f(x \odot y)$
- Linear functions are exactly the parity functions $\left\{\chi_{S}\right\}$

Proposed Tester:

■ Repeat $r=O\left(\frac{1}{\rho}\right)$ times:

- Pick $x, y \in_{R}\{0,1\}^{n}$
- If $f(x) f(y) \neq f(x \odot y)$ output "fail" and halt
- Output "pass"
- Easy to see:
- If f is linear, then tester passes with probability 1
- If f is such that $\operatorname{Pr}_{x, y}[f(x) f(y) \neq f(x \odot y)] \geq \rho$ then (constant in O notation can be chosen so that) tester fails with probability at least 2/3

Characterizing "close" to linear

- Suppose $\operatorname{Pr}_{x, y}[f(x) f(y) \neq f(x \odot y)]$ is small... is f close to linear?

Nontriviality [Coppersmith]:

- $f: Z_{3 k} \rightarrow Z_{3 k-1}$
- $f(3 h+d)=h$, for $h<3^{k}, d \in\{-1,0,1\}$
- f satisfies $f(x)+f(y) \neq f(x+y)$ for only $2 / 9$ of choices of x, y (i.e. $\delta_{f}=2 / 9$)
- f is $2 / 3$-far from a linear!

Our goal:

-Theorem: If f is ϵ - far from linear, then

Main Lemma:
$1-\delta \equiv \operatorname{Pr}_{x, y}[f(x) f(y) f(x \odot y)=1]=\frac{1}{2}+\frac{1}{2} \Sigma_{S \subseteq[n]} \hat{f}(S)^{3}$

Lemma \rightarrow Theorem

Theorem: If f is ϵ - far from linear, then
$\operatorname{Pr}_{x, y}[f(x) f(y) f(x \odot y) \neq 1] \geq \epsilon$

Proof:

Main Lemma implies $1-\delta \leq \frac{1}{2}+\frac{1}{2} \Sigma_{S \subseteq[n]} \hat{f}(S)^{3}$
So

$$
\begin{aligned}
1-2 \delta & \leq \Sigma \hat{f}(S)^{3} \\
& \leq \max _{S}(\hat{f}(S)) \Sigma \hat{f}(S)^{2}
\end{aligned}
$$

$$
\leq \max _{\mathrm{S}}(\hat{f}(S))
$$

$$
\leq \hat{f}(T)
$$

$$
\leq 1-2 \operatorname{Pr}\left[f(x) \neq \chi_{T}(x)\right]
$$

So $\delta \geq \operatorname{Pr}\left[f(x) \neq \chi_{T}(x)\right] \geq \epsilon$

Before the main lemma:

$$
\text { - } \frac{1+f(x) f(y) f(x \odot y)}{2}\left\{\begin{array}{l}
=1 \text { if } x, y \text { PASS } \\
=0 \text { if } x, y \text { FAIL }
\end{array}\right.
$$

Indicator variable describing result of test!

Main Lemma:
$1-\delta \equiv$
$\operatorname{Pr}_{x, y}[f(x) f(y) f(x \odot y)=1]=\frac{1}{2}+\frac{1}{2} \Sigma_{S \subseteq[n]} \hat{f}(S)^{3}$

■ Proof: $1-\delta=E_{x, y}\left[\frac{1+f(x) f(y) f(x \odot y)}{2}\right]$

$$
=\frac{1}{2}+\underbrace{\frac{1}{2} \underbrace{}_{x, y}[f(x) f(y) f(x \odot y)]}
$$

Focus here

$$
\begin{aligned}
E_{x, y}[& f(x) f(y) f(x \odot y)] \\
& =E\left[\left(\Sigma_{S} \hat{f}(S) \chi_{S}(x)\right)\left(\Sigma_{T} \hat{f}(T) \chi_{T}(y)\right)\left(\Sigma_{U} \hat{f}(U) \chi_{U}(x \odot y)\right)\right. \\
& =\Sigma_{S, T, U} \hat{f}(S) \hat{f}(T) \hat{f}(U) \underbrace{}_{\text {What is this? }} \underbrace{2}(x) \chi_{T}(y) \chi_{U}(x \odot y)
\end{aligned}
$$

A final calculation:

$\boldsymbol{E}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x \odot y)\right]$
$=E\left[\Pi_{i \in S} x_{i} \Pi_{j \in T} y_{j} \Pi_{k \in U}\left(x_{k} \cdot y_{k}\right)\right]$
$=E\left[\Pi_{i \in S \Delta U} x_{i} \Pi_{j \in T \Delta U} y_{j}\right]$
$=E\left[\Pi_{i \in S \Delta U} x_{i}\right] E\left[\Pi_{j \in T \Delta U} y_{j}\right]$

$\begin{array}{ll}1 \text { if } S \Delta U=\phi & 1 \text { if } T \Delta U=\phi \\ 0 \text { o.w. } & 0 \text { o.w. }\end{array}$
$=1$ if $\mathrm{S}=\mathrm{T}=\mathrm{U}$ and 0 otherwise

Main Lemma:
$1-\delta \equiv$
$\operatorname{Pr}_{x, y}[f(x) f(y) f(x \odot y)=1]=\frac{1}{2}+\frac{1}{2} \Sigma_{S \subseteq[n]} \hat{f}(S)^{3}$

■ Proof: $1-\delta=E_{x, y}\left[\frac{1+f(x) f(y) f(x \odot y)}{2}\right]$

$$
=\frac{1}{2}+\underbrace{\frac{1}{2} E_{x, y}[f(x) f(y) f(x \odot y)}]
$$

Focus here

$$
\begin{aligned}
E_{x, y}[& f(x) f(y) f(x \odot y)] \\
& =E\left[\left(\Sigma_{S} \hat{f}(S) \chi_{S}(x)\right)\left(\Sigma_{T} \hat{f}(T) \chi_{T}(y)\right)\left(\Sigma_{U} \hat{f}(U) \chi_{U}(x \odot y)\right)\right. \\
& =\Sigma_{S, T, U} \hat{f}(S) \hat{f}(T) \hat{f}(U) E\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x \odot y)\right] \\
& =\Sigma_{S} \hat{f}(S)^{3}
\end{aligned}
$$

Linearity tests over other domains

- Still constant, even for general nonabelian groups
- Slightly weaker relationship between parameters

Self-correction

- Given program P computing linear f that is correct on at least $7 / 8$ of the inputs (BUT YOU DON'T KNOW WHICH ONES!)
- Can you correctly compute f on each input?
- To compute $\mathrm{f}(\mathrm{x})$, can't just call P on x ...

Self-corrector:

m Repeat $r=O\left(\frac{1}{\rho}\right)$ times:

- Pick $y \in_{R}\{0,1\}^{n}$
- Let guess $(x) \leftarrow P(y) \cdot P(x \odot y)$
- Output most common guess
- If P correct on both calls, then guess is correct
- What is probability of this?
- Observe: Since y uniformly distributed, so is $x \odot y$
- $\operatorname{Pr}[P$ wrong on either y or $x \odot y] \leq \frac{1}{4}$

