## Lecture 7

Lecturer: Ronitt Rubinfeld

## 1 Overview

- Derandomization via the Method of Conditional Expectations
- Application to Max-Cut
- Markov Chains
- Definitions
- Random walk on graphs
- Cover time


## 2 Method of Conditional Expectations

Essentially, this is a "guided search for a good random string." At each node, we pick the next node such that the probability of reaching a "good" final leaf does not decrease.

## Coin Toss

1

2
$\bullet$
-
-

-
-
-

-depth $m$
$-2^{m}$ leaves
-leaves "good" or "bad"
-most leaves are "good" for a good randomized algorithm
"Good" leaves correspond to sequences of randomized bits that result in the randomized algorithm being correct (accepting if the input $x \in L$, rejecting otherwise). For $L \in B P P$, this means that the majority of leaves are "good," since the algorithm is correct with probability at least $\frac{2}{3}$.

### 2.1 The Procedure

Fix randomized algorithm $A$, input $x$. Let $m \equiv \#$ of random bits used by $A$ on $x$.
For $1 \leq i \leq m$ :
$r_{1}, \ldots, r_{i} \in\{0,1\}$ (random bits already chosen)
Let $p\left(r_{1}, \ldots, r_{i}\right) \equiv$ fraction of continuations leading to a good leaf $=\frac{1}{2} p\left(r_{1}, \ldots, r_{i}, 0\right)+\frac{1}{2} p\left(r_{1}, \ldots, r_{i}, 1\right)$.
[Note: $p(\Lambda) \geq \frac{2}{3}$ for a "good" randomized algorithm for a language in $B P P$.]
By averaging, $\exists r_{i+1}$ s.t. $p\left(r_{1}, \ldots, r_{i}, r_{i+1}\right) \geq p\left(r_{1}, \ldots, r_{i}\right)$.
$(\star)$ Pick $r_{i+1}$ that maximizes $p\left(r_{1}, \ldots, r_{i+1}\right)$.
This procedure gives: $p\left(r_{1}, \ldots, r_{m}\right) \geq \cdots \geq p\left(r_{1}, r_{2}\right) \geq p\left(r_{1}\right) \geq p(\Lambda)=\frac{2}{3}$. Since $p\left(r_{1}, \ldots, r_{m}\right) \in\{0,1\}$ and $p\left(r_{1}, \ldots, r_{m}\right) \geq \frac{2}{3} \Rightarrow p\left(r_{1}, \ldots, r_{m}\right)=1$, so the procedure finds a good leaf.

Question: how do we implement $(\star)$ ? Note that it is often sufficient for the $p$ 's for each continuation to be approximated. Also we have not yet made use of $p(\Lambda) \geq \frac{2}{3}$ beyond the weaker condition $p(\Lambda)>0$. However having $p(\Lambda)$ be greater than a constant makes implementing $(\star)$ easier.

### 2.2 Application to Max-Cut

Recall the randomized algorithm:
Pick $r_{1}, \ldots, r_{n} \in\{0,1\}$
Put node $i$ in $S$ if $r_{i}=0$; put it in $T$ if $r_{i}=1$.
Output $S, T$.
Derandomization:
Let $e\left(r_{1}, \ldots, r_{i}\right)=E_{R_{i+1}, \ldots, R_{n}}\left[|\operatorname{cut}(S, T)| \mid\right.$ choices of $r_{1}, \ldots, r_{i}$ made so far]. $e(\Lambda)=\frac{m}{2}(m=\#$ edges in the graph $)$.

To calculate $e\left(r_{1}, \ldots, r_{i+1}\right)$, let:
$S_{i+1}=\left\{j \mid j \leq i+1, r_{j}=0\right\}$
$T_{i+1}=\left\{j \mid j \leq i+1, r_{j}=1\right\}$
$U_{i+1}=\{j \mid j \geq i+2\}$ ("undecided").
So $e\left(r_{1}, \ldots, r_{i+1}\right)=\overbrace{\left(\# \text { edges between } S_{i+1} \text { and } T_{i+1}\right)}^{\text {Term I }}+\overbrace{\frac{1}{2}\left(\# \text { edges touching } U_{i+1}\right)}^{\text {Term II }}$.
We do not actually need to calculate $e\left(r_{1}, \ldots, r_{i+1}\right)$ for the procedure; we need only determine whether $e\left(r_{1}, \ldots, r_{i}, 0\right) \stackrel{?}{\lesssim} e\left(r_{1}, \ldots, r_{i}, 1\right)$. Note that Term II is the same for both choices of $r_{i+1}$ and that Term I differs only in edges adjacent to the $(i+1)^{\text {st }}$ node. Thus to maximize $e\left(r_{1}, \ldots, r_{i}\right)$, maximize Term I according to $\max \left\{\#\right.$ edges between node $i+1$ and $S_{i+1}$, \# edges between node $i+1$ and $\left.T_{i+1}\right\}$.

This corresponds to the greedy algorithm for Max-Cut:
$S, T \leftarrow \emptyset$
For $i=0, \ldots, n-1$ :
If \# edges between node $i+1$ and $T>\#$ edges between node $i+1$ and $S$
Set $S \leftarrow S \cup\{i+1\}$
Else set $T \leftarrow T \cup\{i+1\}$

## 3 Markov Chains

Definition: Given $\Omega=$ ground set. (For this class, $\Omega$ will always be finite. Can think of it as the nodes in a graph or states of a finite system.) A Markov chain is a finite sequence of random variables, $X_{0}, \ldots, X_{t} \in \Omega$ such that:

$$
\begin{equation*}
\forall t, \forall x_{0}, \ldots, x_{t}, y \in \Omega, \mathbb{P}\left[X_{t+1}=y \mid X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right]=\mathbb{P}\left[X_{t+1}=y \mid X_{t}=x_{t}\right] \tag{1}
\end{equation*}
$$

Note that (1) is known as the Markovian Property and is also referred to as "memorylessness." It says that the next state in a Markov chain only depends on the current state.

For this course, we will assume that transition probabilities are independent of time, so $\forall t, \forall x, y \in \Omega$, $\mathbb{P}\left[X_{t+1}=y \mid X_{t}=x\right]=\mathbb{P}\left[X_{1}=y \mid X_{0}=x\right]$.

### 3.1 Representations

- Completed directed graph (with self loops)


Note that the outgoing edges sum to 1 , but they are otherwise arbitrary nonnegative numbers.

- Transition Matrix
$P(x, y)=\mathbb{P}\left[X_{t+1}=y \mid X_{t}=x\right]$.
The probability distribution of states at a given time $t$ is represented by a vector $\pi_{t}$. $\pi_{0}$ is the start state and it can be a single state (e.g. $\left.\pi_{0}=(1,0)\right)$ or a distribution $\left(\pi_{0}=(1 / 2,1 / 2)\right)$.
The transition matrix corresponding to the above graph is $P=\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 / 4 & 3 / 4\end{array}\right)$
Given an initial distribution $\pi_{0}$, the distributions at time $t$ is given by:
$\pi_{1}=\pi_{0} P$
$\pi_{2}=\pi_{1} P=\left(\pi_{0} P\right) P=\pi_{0} P^{2}$
$\vdots$
$\pi_{t}=\pi_{0} P^{t}$.
Example: In the graph above, start in state 1. Then at $t=1$, the distribution is $\pi_{1}=\pi_{0} P=$ $(1,0)\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 4 & 3 / 4\end{array}\right)=(1 / 2,1 / 2)$.

Definition: A stationary distribution $\pi$ satisfies $\pi=\pi P$.
Question: When does $\pi$ exist? When is it unique?

Definition: An ergodic Markov chain is one where $\exists t_{0}$ such that $\forall t>t_{0}, \forall x, y \in \Omega, P^{t}(x, y)>0$.

Theorem: For $\Omega$ finite, a Markov chain is ergodic if and only if

1. it is irreducible $\left(\forall x, y \exists t_{x, y}\right.$ such that $\left.P^{t_{x, y}}(x, y)>0\right)$.
2. it is aperiodic $\left(\forall x \in \Omega, \operatorname{gcd}\left\{t \mid P^{t}(x, x)>0\right\}=1\right)$.

### 3.2 Random Walks on Graphs

- At each step, go to a uniformly chosen neighbor.
- Can have multi-edges and self-loops.


For the above graph, the transition matrix is $P=\left(\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)$.
In general the transition matrix is given by $P_{i j}=\frac{\#(i, j) \in E}{\text { out degree of } i}$.
Note that this implies that $\sum_{j} P_{i j}=1 \forall i$. Such a matrix is called a stochastic matrix.
Definition: A stochastic matrix is one where all rows sum to 1 .
Definition: A doubly stochastic matrix is one where all rows and all columns sum to 1 .
Examples of doubly stochastic matrices are the transition matrices for undirected graphs and graphs with the same in degree and out degree at every node $\left(d_{\text {in }}=d_{\text {out }}=d \forall\right.$ nodes $)$.

Fact: for such matrices, the stationary distribution is given by $\pi=\left(\frac{\operatorname{deg}\left(x_{1}\right)}{2^{m}}, \frac{\operatorname{deg}\left(x_{2}\right)}{2^{m}}, \ldots\right)$. Thus for a $d$-regular graph, the stationary distribution is uniform.

