Lecture 26

Lecturer: Ronitt Rubinfeld

Scribe: Andrei Frimu

This lecture discusses the relationship between pseudorandomness and hard functions. The main result, accompanied by proof, is Theorem 3.

First, let's review the definition of a useful construction from the previous lecture:

Definition 1 A collection of sets $S_1, \ldots, S_m \subseteq [d] = \{1, \ldots, d\}$ is an (l, a)-design if

- $\forall i, |S_i| = l$
- $\forall i \neq j, |S_i \cap S_j| \leq a.$

Note that if a = 0, then the sets S_1, \ldots, S_l are all disjoint as they each have l elements, d is forced to be at least $m \cdot l$. For the purposes of this lecture, it is useful to think of m as being big and a relatively small.

We will use the following theorem, which we don't prove here:

Theorem 1 For any constant γ , there exists an (l, a)-design with $a = \gamma \log m$, constructible in time $2^{O(d)}$ and such that $d = O(l^2/a)$.

We now introduce another definition

Definition 2 $f : \{0,1\}^l \to \{0,1\}$ is (t,α) -average case hard if for any nonuniform (circuit with advice) algorithm A running in time t(l) the following inequality holds for large l:

$$\Pr_{x,A} \left[A(x) = f(x) \right] < 1 - \alpha(l)$$

Note that x is of size l. We will use $\alpha(l) = 1 - \epsilon(l)$ for $\epsilon(l) \leq \frac{1}{t(l)}$, hence $1 - \alpha(l) \leq \frac{1}{2} + \epsilon(l) \leq \frac{1}{2} + \frac{1}{t(l)}$. The following theorem allows us to extend by 1-bit:

Theorem 2 If f is $(t, 1 - \epsilon)$ -average case hard, then $G(y) := y \circ f(y)$ is a (t, ϵ) -PRG.

We want to stretch this. Our approach is to use the Nisan-Wigderson generator, which we present here.

Definition 3 (Nisan-Wigderson generator) Given (l, a)-design $S_1, \ldots, S_m \subseteq [d]$, define $G : \{0, 1\}^d \rightarrow \{0, 1\}^m$ to be

$$G(x) := f(x|_{S_1}) \circ f(x|_{S_2}) \circ \cdots \circ f(x|_{S_m}),$$

where $x|_{S_i}$ is the string of length $l = |S_i|$ obtained by selecting the bits of x indexed by S_i . For convenience, use the notation $f_i(x) := f(x|_{S_i})$. Note that the domain of each f_i is $\{0,1\}^l$.

The intuition behind this construction is that if the sets S_i were completely disjoint, then the strings $x|_{S_i}$ would be completely independent, since they would have no common bits, making G hard to predict. However, in this case, as we saw, $d \ge ml$.

What we hope is that by trading independence of the strings $x|_{S_i}$, by allowing a bit of overlap (bounded above by $|S_i \cap S_j| \leq a$), we can still achieve satisfactory unpredictability. The following theorem quantifies these ideas:

Theorem 3 (NW) Assume that the following two conditions hold (to be used in the Nisan-Wigderson generator):

• there exists $f: \{0,1\}^l \to \{0,1\}$ such that $f \in E := DTIME(2^{O(l)})$ and

$$f$$
 is $\left(t, \frac{1}{2} - \frac{1}{\epsilon(l)}\right) - average case hard$

• there exists an (l, a)-design $S_1, \ldots, S_m \subseteq [d]$ such that

$$m = t(l)^{1/3}$$
 and $a = \frac{1}{3}\log t(l)$

Then the Nisan-Wigderson generator G is a $\frac{1}{m}$ -PRG against non-uniform time m.

Before we move on to the proof of theorem 3, we mention two interesting corollaries.

Corollary 4 If $f \in E = DTIME(2^{O(l)})$ such that f is $(t, \frac{1}{2} - t)$ -average case hard for

$$t = 2^{\Omega(l)} \implies P = BPP$$
$$t = 2^{l^{\Omega(1)}} \implies \tilde{P} = BPP$$
$$t = l^{\omega(1)} \implies BPP \subseteq SUBEXP$$

Corollary 5 There exists (m, 1/m) PRG for depth d circuits of size m such that the PRG is computable in polynomial time.

Now we present the proof of theorem 3:

Proof

Suppose the result is not true. Then there exists a next-bit predictor P such that

$$\Pr_{i,x}\left[P\left(f_1(x)\circ f_2(x)\circ\cdots\circ f_{i-1}(x)\right)=f_i(x)\right]\geq \frac{1}{2}+\frac{\epsilon}{m}.$$
(1)

Note that the circuit size of P is the sum of the runtime of the PRG, which is m and the size of the advice we gave P in the proof, which is O(m), hence size(P) = O(m).

Using a standard argument (seen before in other lectures), there exists i^* that achieves the expectation, in other words

$$\Pr_{\text{bits of } x \text{ in } S_{i^*}, \text{ bits of } x \text{ not in } S_{i^*}} \left[P\Big(f_1(x) \circ f_2(x) \circ \dots \circ f_{i^*-1}(x)\Big) = f_{i^*}(x) \right] \ge \frac{1}{2} + \frac{\epsilon}{m}.$$
(2)

Note that this is just inequality (1) as before, rewritten for i^* and with the probability split over two sets.

Now using an averaging process, we see that there must exist a setting Z of the bits of x not in S_i which achieves (2). We change notation and use the variable y to denote the x's that has its bits not in S_i set according to the setting Z. Then (2) becomes

$$\Pr_{y}\left[P\left(f_{1}(y)\circ f_{2}(y)\circ\cdots\circ f_{i^{*}-1}(y)\right)=f_{i^{*}}(y)\right]\geq\frac{1}{2}+\frac{\epsilon}{m}$$
(3)

Note that in (3), in $f_{i^*}(y)$, the unset variables are those indexed by S_{i^*} and f_{i^*} depends on all these. However, on the left hand side of the equality inside the probability in (3), each f_j , $1 \le j \le i^* - 1$ depends only on the unset variables index by $S_j \cap S_i$, for the other variable of y have been fixed according to the setting Z chose above.

Hence, each f_j depends on $|S_i \cap S_j| \leq a$ variables. The 2^a values can be encoded as advice, giving a total advice size of $m \cdot 2^a$. This relatively small size of the advice (for special m and a) is crucial in what follows.

Define $A(y) = P(f_1(y) \circ \cdots \circ f_{i^*-1}(y)).$

• predicts f(y) with advantage at least $\frac{\epsilon}{m} \approx \frac{1}{m^2}$

• has circuit size $m \cdot 2^a + \text{size of}(P)$. The latter we saw to be O(m). Since we picked a, m to satisfy $a = \frac{1}{3} \log t(l)$ and $m = t(l)^{\frac{1}{3}}$, we have that

 $\operatorname{size}(A(y)) = m \cdot 2^a + O(m) = t(l)^{\frac{1}{3}} \cdot t(l)^{\frac{1}{3}} + O(t(l)^{\frac{1}{3}}) \ll t(l),$

contradicting the first assumption of theorem 3. (the average case hardness assumption)