This lecture discusses the relationship between pseudorandomness and hard functions. The main result, accompanied by proof, is Theorem 3.

First, let's review the definition of a useful construction from the previous lecture:
Definition $1 A$ collection of sets $S_{1}, \ldots, S_{m} \subseteq[d]=\{1, \ldots, d\}$ is an (l, a)-design if

- $\forall i,\left|S_{i}\right|=l$
- $\forall i \neq j,\left|S_{i} \cap S_{j}\right| \leq a$.

Note that if $a=0$, then the sets S_{1}, \ldots, S_{l} are all disjoint as they each have l elements, d is forced to be at least $m \cdot l$. For the purposes of this lecture, it is useful to think of m as being big and a relatively small.

We will use the following theorem, which we don't prove here:
Theorem 1 For any constant γ, there exists an (l,a)-design with $a=\gamma \log m$, constructible in time $2^{O(d)}$ and such that $d=O\left(l^{2} / a\right)$.

We now introduce another definition
Definition $2 f:\{0,1\}^{l} \rightarrow\{0,1\}$ is (t, α)-average case hard if for any nonuniform (circuit with advice) algorithm A running in time $t(l)$ the following inequality holds for large l :

$$
\operatorname{Pr}_{x, A}[A(x)=f(x)]<1-\alpha(l)
$$

Note that x is of size l. We will use $\alpha(l)=1-\epsilon(l)$ for $\epsilon(l) \leq \frac{1}{t(l)}$, hence $1-\alpha(l) \leq \frac{1}{2}+\epsilon(l) \leq \frac{1}{2}+\frac{1}{t(l)}$.
The following theorem allows us to extend by 1-bit:
Theorem 2 If f is $(t, 1-\epsilon)$-average case hard, then $G(y):=y \circ f(y)$ is a $(t, \epsilon)-P R G$.
We want to stretch this. Our approach is to use the Nisan-Wigderson generator, which we present here.

Definition 3 (Nisan-Wigderson generator) Given (l, a)-design $S_{1}, \ldots, S_{m} \subseteq[d]$, define $G:\{0,1\}^{d} \rightarrow$ $\{0,1\}^{m}$ to be

$$
G(x):=f\left(\left.x\right|_{S_{1}}\right) \circ f\left(\left.x\right|_{S_{2}}\right) \circ \cdots \circ f\left(\left.x\right|_{S_{m}}\right)
$$

where $\left.x\right|_{S_{i}}$ is the string of length $l=\left|S_{i}\right|$ obtained by selecting the bits of x indexed by S_{i}. For convenience, use the notation $f_{i}(x):=f\left(\left.x\right|_{S_{i}}\right)$. Note that the domain of each f_{i} is $\{0,1\}^{l}$.

The intuition behind this construction is that if the sets S_{i} were completely disjoint, then the strings $\left.x\right|_{S_{i}}$ would be completely independent, since they would have no common bits, making G hard to predict. However, in this case, as we saw, $d \geq m l$.

What we hope is that by trading independence of the strings $\left.x\right|_{S_{i}}$, by allowing a bit of overlap (bounded above by $\left|S_{i} \cap S_{j}\right| \leq a$), we can still achieve satisfactory unpredictability. The following theorem quantifies these ideas:

Theorem 3 (NW) Assume that the following two conditions hold (to be used in the Nisan-Wigderson generator):

- there exists $f:\{0,1\}^{l} \rightarrow\{0,1\}$ such that $f \in E:=\operatorname{DTIME}\left(2^{O(l)}\right)$ and

$$
f \text { is }\left(t, \frac{1}{2}-\frac{1}{\epsilon(l)}\right)-\text { averagecasehard }
$$

- there exists an (l, a)-design $S_{1}, \ldots, S_{m} \subseteq[d]$ such that

$$
m=t(l)^{1 / 3} \quad \text { and } \quad a=\frac{1}{3} \log t(l)
$$

Then the Nisan-Wigderson generator G is a $\frac{1}{m}$-PRG against non-uniform time m.
Before we move on to the proof of theorem 3, we mention two interesting corollaries.
Corollary 4 If $f \in E=\operatorname{DTIME}\left(2^{O(l)}\right)$ such that f is $\left(t, \frac{1}{2}-t\right)$-average case hard for

$$
\begin{aligned}
& t=2^{\Omega(l)} \Longrightarrow P=B P P \\
& t=2^{l^{\Omega(1)}} \Longrightarrow \tilde{P}=B P P \\
& t=l^{\omega(1)} \Longrightarrow B P P \subseteq S U B E X P
\end{aligned}
$$

Corollary 5 There exists ($m, 1 / m$) PRG for depth d circuits of size m such that the PRG is computable in polynomial time.

Now we present the proof of theorem 3:

Proof

Suppose the result is not true. Then there exists a next-bit predictor P such that

$$
\begin{equation*}
\operatorname{Pr}_{i, x}\left[P\left(f_{1}(x) \circ f_{2}(x) \circ \cdots \circ f_{i-1}(x)\right)=f_{i}(x)\right] \geq \frac{1}{2}+\frac{\epsilon}{m} \tag{1}
\end{equation*}
$$

Note that the circuit size of P is the sum of the runtime of the PRG, which is m and the size of the advice we gave P in the proof, which is $O(m)$, hence size $(P)=O(m)$.

Using a standard argument (seen before in other lectures), there exists i^{*} that achieves the expectation, in other words

$$
\begin{equation*}
\text { bits of } x \text { in } S_{i^{*}}, \text { bits of } x \text { not in } S_{i^{*}}\left[P\left(f_{1}(x) \circ f_{2}(x) \circ \cdots \circ f_{i^{*}-1}(x)\right)=f_{i^{*}}(x)\right] \geq \frac{1}{2}+\frac{\epsilon}{m} \tag{2}
\end{equation*}
$$

Note that this is just inequality (1) as before, rewritten for i^{*} and with the probability split over two sets.

Now using an averaging process, we see that there must exist a setting Z of the bits of x not in S_{i} which achieves (2). We change notation and use the variable y to denote the x 's that has its bits not in S_{i} set according to the setting Z. Then (2) becomes

$$
\begin{equation*}
\operatorname{Pr}_{y}\left[P\left(f_{1}(y) \circ f_{2}(y) \circ \cdots \circ f_{i^{*}-1}(y)\right)=f_{i^{*}}(y)\right] \geq \frac{1}{2}+\frac{\epsilon}{m} \tag{3}
\end{equation*}
$$

Note that in (3), in $f_{i^{*}}(y)$, the unset variables are those indexed by $S_{i^{*}}$ and $f_{i^{*}}$ depends on all these. However, on the left hand side of the equality inside the probability in (3), each $f_{j}, 1 \leq j \leq i^{*}-1$ depends only on the unset variables index by $S_{j} \cap S_{i}$, for the other variable of y have been fixed according to the setting Z chose above.

Hence, each f_{j} depends on $\left|S_{i} \cap S_{j}\right| \leq a$ variables. The 2^{a} values can be encoded as advice, giving a total advice size of $m \cdot 2^{a}$. This relatively small size of the advice (for special m and a) is crucial in what follows.

Define $A(y)=P\left(f_{1}(y) \circ \cdots \circ f_{i^{*}-1}(y)\right)$.

- predicts $f(y)$ with advantage at least $\frac{\epsilon}{m} \approx \frac{1}{m^{2}}$
- has circuit size $m \cdot 2^{a}+$ size of (P). The latter we saw to be $O(m)$. Since we picked a, m to satisfy $a=\frac{1}{3} \log t(l)$ and $m=t(l)^{\frac{1}{3}}$, we have that

$$
\operatorname{size}(A(y))=m \cdot 2^{a}+O(m)=t(l)^{\frac{1}{3}} \cdot t(l)^{\frac{1}{3}}+O\left(t(l)^{\frac{1}{3}}\right) \ll t(l)
$$

contradicting the first assumption of theorem 3. (the average case hardness assumption)

