
6.842 Randomness and Computation May 14, 2012

Lecture 25
Lecturer: Ronitt Rubinfeld Scribe: Cesar A. Cuenca

1 Review from last time:

Definition 1 f is a one-way function if

1. f is computable in polynomial time.

2. For all PPT algorithms A, there exists a negligible function ε such that for all sufficiently large n,
we have

PrA,x←{0,1}n [A(f(x)) ∈ f−1(f(x))] ≤ ε(n). (1)

Observation 2 If f is a one-way permutation, the definition above can be changed by replacing equa-
tion (1) with:

PrA,x←{0,1}n [A(f(x)) = x] ≤ ε(n). (2)

Theorem 3 One-Way Functions exist iff Efficient Pseudo-Random Generators (PRGs) exist.

Last time we proved that any efficient PRG G is also a one-way function. Proving the forward
direction of the theorem is much more involved. The plan for today is to show instead that if one-way
permutations exist, then efficient PRGs exist. The fact that one-way permutations are used instead helps
us in two ways. First, we can make use of the definition in Observation 2. Second, if f : {0, 1}n → {0, 1}n
and x is uniformly chosen in {0, 1}n, then the distribution of f(x) is also uniform in {0, 1}n. Before
proving our desired result, we will need some prior definitions and theorems.

2 Hardcore bits

Definition 4 The function b : {0, 1}∗ → {0, 1} is a hard-core predicate for the one-way function f if
for all PPT algorithm A, there is a negligible function ε such that for all sufficiently large n, we have

Prx←{0,1}n [A(f(x)) = b(x)] ≤ 1

2
+ ε(n). (3)

Observation 5 Most commonly, b is called a hard-core predicate, but in class and hereinafter, we will
call b a hardcore bit.

Theorem 6 If b is a hardcore bit for the one-way permutation f : {0, 1}n → {0, 1}n, then the function
G : {0, 1}n → {0, 1}n+1 defined by G(x) = f(x)|b(x) (concatenation of b(x) to f(x)) is a PRG that maps
any value x ∈ {0, 1}n to some value in {0, 1}n+1 (i.e. one-bit stretch).

Proof First, observe that f(x) is next-bit unpredictable because if x ← {0, 1}n is chosen uniformly,
then the distribution of f(x) is also uniform in {0, 1}n implying that knowing the first i bits of f(x) does
not help in predicting the i+1 bit with probability better than 1

2 + 1
nk for any k. Second, note that from

the definition of hardcore bit, for any PPT algorithm A, inequality (3) is satisfied; this implies that no
algorithm can predict b(x) (the last bit of G(x)) even if it knows f(x) (the previous bits of G(x)). Both
points imply that G is next-bit unpredictable. From a theorem we proved last class, we conclude that
G is a PRG.

The theorem above shows how to obtain one-bit stretch in randomness. We can extend the construc-
tion to obtain k bits of stretch as follows:

Define for any j ∈ Z+, the function f (j) = f ◦ f ◦ . . . ◦ f , which is f composed with itself j times.

1

Theorem 7 If f : {0, 1}l → {0, 1}l is a one-way function with an efficiently computable hardcore bit b,
then the function G : {0, 1}l → {0, 1}n defined by G(x) = b(f (n−1)(x))|b(f (n−2)(x))| . . . |b(f(x))|b(x) is
a PRG for all n, polynomial in l (i.e. n = P (l) for some polynomial P).

Proof We will assume the opposite, which is that G is not a PRG. Then G is next-bit predictable.
This implies there exists a PPT algorithm P that can predict bit i of the output of G for some i, i.e.

Prx←{0,1}l [P (b(f (n−1)(x))|b(f (n−2)(x))| . . . |b(f (n−i+1)(x))) = b(f (n−i)(x))] ≥ 1

2
+

1

nk
(4)

for some constant k. After setting y = f (n−i)(x), notice that because f is a permutation (and so is
f (n−i)), then y is uniform in {0, 1}l if x is. Then we can rewrite this equation as

Pry←{0,1}l [P (b(f (i−1)(y))|b(f (i−2)(y))| . . . |b(f(y))) = b(y)] ≥ 1

2
+

1

nk
. (5)

Having (5), we will construct a PPT algorithm P ′, such that Pry←{0,1}l [P
′(f(y)) = b(y)] ≥ 1

2 + 1
nk ,

contradicting the fact that b is a hardcore bit of f . Algorithm P ′, on an input x, will compute f (j)(x)
for 1 ≤ j ≤ i − 2. Then P ′ computes b(f (j)(x)) for all 0 ≤ j ≤ i − 2, obtains the concatenation
z = b(f (i−2)(x))|b(f (i−3)(x))| . . . |b(f (2)(x))|b(f(x))|b(x), applies algorithm P to z and finally outputs
the result of P (z). Note the following two points. First, if x = f(y), then it is clear from (5) that
the probability that P ′ succeeds is 1

2 + 1
nk . Second, because b is efficiently computable, then P ′ is a

PPT algorithm. Both points imply that P ′ successfully computes b(y) from input f(y) with at least
probability 1

2 + 1
nk , i.e. b is not a hardcore bit (=⇒⇐=). Hence G is a PRG.

The above theorem shows how to construct a PRG from a hardcore bit for a one-way function, but we
are not even sure a hardcore bit exists. In the next section, we show that for any one-way permutation
f , we can construct a one-way permutation f ′ from f , and a hardcore bit b for f ′.

3 Goldreich-Levin Theorem

Theorem 8 (Goldreich-Levin) If f is a one-way function, then b : {0, 1}∗ → {0, 1}, defined by
b(x, r) = 〈x, r〉, is a hardcore bit for the one-way function f ′ defined by f ′(x, r) = (f(x), r), with
|x| = |r|.

As we said before, the proof of this theorem is quite involved. In lecture, we saw the proof for the case
of a one-way permutation f : {0, 1}l → {0, 1}l. Also, we made the simplifying assumption that f is a
one-way permutation in the circuit complexity model. The proof will go by contradiction by assuming
there is a PPT algorithm A that can predict b(x, r) from f ′(x, r). From our last assumption, we can
assume A is a deterministic algorithm.

Finally, before starting with the proof, convince yourself that if f : {0, 1}l → {0, 1}l is a one-way permu-
tation, then f ′ : {0, 1}2l → {0, 1}2l, defined as in the theorem for |x| = |r|, is also a one-way permutation.
It is clear that f ′ is a permutation of {0, 1}2n if f is a permutation of {0, 1}n. It is also true that f ′ is a
one-way function if f is one-way. This is an easy exercise (prove that if there is a PPT algorithm that
inverts f ′ with non-negligible probability, then one can construct a PPT algorithm that inverts f with
non-negligible probability).

Proof (Simplified Version) We assume the opposite, i.e. there is a poly-time deterministic algo-

rithm A such that Prx,r[A(f(x), r) = b(x, r) = 〈x, r〉] ≥ 1

2
+ ε for some ε = ε(l) ≥ 1

lk
where k is a

constant and l = |x| = |r| is the number of bits of x and r.

2

Let us define hx(r) = A(f(x), r) and call good to a value x if Prr[hx(r) = 〈x, r〉] ≥ 1

2
+
ε

2
. We claim

that there are at least ε/2 good values of x. In fact, assume this is not the case, so there are at most
ε/2 good values of x. Observe that for bad values of x, the probability that A guesses b(x, r) correctly is
at most 1

2 + ε
2 . Therefore

Prx,r[A(f(x), r) = 〈x, r〉] = Prx[x is good]Prr[A(f(x), r) = 〈x, r〉] + Prx[x is bad]Prr[A(f(x), r) = 〈x, r〉]

<
ε

2
× 1 + 1× (

1

2
+
ε

2
)

=
1

2
+ ε

which is a contradiction with our initial assumption. Therefore, there are at least ε
2 good values of x, as

desired.

Our goal now is to obtain a PPT algorithm B that inverts f for a non-negligible fraction of the inputs,
therefore proving that f is not a one-way function. In fact, we will construct B so that it outputs x
on input z = f(x) if x is good. Consider the function h : {0, 1}l → {0, 1}, defined by h(r) = A(z, r).
To proceed, we translate the functions we are working with to the Boolean analysis notation (i.e. bit
1 becomes −1 and bit 0 becomes +1). Observe that if Sx ⊆ [l] is the set that defines x (j ∈ Sx iff the
j bit of x is 1), then 〈x, r〉 becomes χSx

(r) in Boolean notation. Therefore, if x is good, we have that

Prr[h(r) = χSx
(r)] ≥ 1

2
+
ε

2
, or ĥ(Sx) ≥ ε. This makes it simple to construct PPT B. In fact, B first

runs the Goldreich-Levin algorithm to find all the heavy Fourier coefficients of h, the ones for which

ĥ(S) > ε
2 . For those sets, we have that Prr[h(r) = χS(r)] >

1

2
+
ε

4
. Thus, if z = f(x) with good x,

then Sx is among the sets outputted by the Goldreich-Levin algorithm with high probability. Then B
can compute f(x) for all x for which Sx was outputted by the Goldreich-Levin algorithm and output a
particular x0 if f(x0) = z. Otherwise, B just outputs a random value.

The probability that B succeeds on z = f(x), for good x, can be made at least 1
2 if we set the confidence

parameter δ = 1
2 in Goldreich-Levin. Note that since at least ε

2 ≥
1

2nk fraction of the inputs x are good,

then B succeeds with probability at least 1
4nk for a random z = f(x). This shows that f is not a one-way

permutation (=⇒⇐=). Hence, we conclude that the theorem is true.

Observation 9 It may not be clear that B runs in polynomial time, because we do not know how many
heavy coefficients ĥ(S) there are. However, remember that there are at most poly(1

ε) of these coefficients,
and since ε ≥ 1

nk , then this is also polynomial, as desired.

4 For next lecture

Next lecture, we will study the Nisan Pseudorandom Generator. As a warm-up, you might want to think
of the following definition and try to prove the next theorem.

Definition 10 A collection of subsets S1, S2, . . . , Sm ⊆ [d] = {1, 2, . . . , d} is a (l, a)−design if

• |Si| = l for all 1 ≤ i ≤ m.

• |Si ∩ Sj | ≤ a for all 1 ≤ i 6= j ≤ m.

Theorem 11 There exists a (l, a)−design with a = γ logm and d = O(l2/a) for some m ∈ Z+ and all
γ > 0.

3

