1 Review from last time:

Definition $1 f$ is a one-way function if

1. f is computable in polynomial time.
2. For all PPT algorithms A, there exists a negligible function ϵ such that for all sufficiently large n, we have

$$
\begin{equation*}
\operatorname{Pr}_{A, x \leftarrow\{0,1\}^{n}}\left[A(f(x)) \in f^{-1}(f(x))\right] \leq \epsilon(n) . \tag{1}
\end{equation*}
$$

Observation 2 If f is a one-way permutation, the definition above can be changed by replacing equation (1) with:

$$
\begin{equation*}
\operatorname{Pr}_{A, x \leftarrow\{0,1\}^{n}}[A(f(x))=x] \leq \epsilon(n) . \tag{2}
\end{equation*}
$$

Theorem 3 One-Way Functions exist iff Efficient Pseudo-Random Generators (PRGs) exist.
Last time we proved that any efficient PRG G is also a one-way function. Proving the forward direction of the theorem is much more involved. The plan for today is to show instead that if one-way permutations exist, then efficient PRGs exist. The fact that one-way permutations are used instead helps us in two ways. First, we can make use of the definition in Observation 2. Second, if $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and x is uniformly chosen in $\{0,1\}^{n}$, then the distribution of $f(x)$ is also uniform in $\{0,1\}^{n}$. Before proving our desired result, we will need some prior definitions and theorems.

2 Hardcore bits

Definition 4 The function $b:\{0,1\}^{*} \rightarrow\{0,1\}$ is a hard-core predicate for the one-way function f if for all PPT algorithm A, there is a negligible function ϵ such that for all sufficiently large n, we have

$$
\begin{equation*}
P r_{x \leftarrow\{0,1\}^{n}}[A(f(x))=b(x)] \leq \frac{1}{2}+\epsilon(n) . \tag{3}
\end{equation*}
$$

Observation 5 Most commonly, b is called a hard-core predicate, but in class and hereinafter, we will call b a hardcore bit.

Theorem 6 If b is a hardcore bit for the one-way permutation $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, then the function $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ defined by $G(x)=f(x) \mid b(x)$ (concatenation of $b(x)$ to $f(x)$) is a PRG that maps any value $x \in\{0,1\}^{n}$ to some value in $\{0,1\}^{n+1}$ (i.e. one-bit stretch).

Proof First, observe that $f(x)$ is next-bit unpredictable because if $x \leftarrow\{0,1\}^{n}$ is chosen uniformly, then the distribution of $f(x)$ is also uniform in $\{0,1\}^{n}$ implying that knowing the first i bits of $f(x)$ does not help in predicting the $i+1$ bit with probability better than $\frac{1}{2}+\frac{1}{n^{k}}$ for any k. Second, note that from the definition of hardcore bit, for any PPT algorithm A, inequality (3) is satisfied; this implies that no algorithm can predict $b(x)$ (the last bit of $G(x))$ even if it knows $f(x)$ (the previous bits of $G(x)$). Both points imply that G is next-bit unpredictable. From a theorem we proved last class, we conclude that G is a PRG.

The theorem above shows how to obtain one-bit stretch in randomness. We can extend the construction to obtain k bits of stretch as follows:

Define for any $j \in \mathbb{Z}_{+}$, the function $f^{(j)}=f \circ f \circ \ldots \circ f$, which is f composed with itself j times.

Theorem 7 If $f:\{0,1\}^{l} \rightarrow\{0,1\}^{l}$ is a one-way function with an efficiently computable hardcore bit b, then the function $G:\{0,1\}^{l} \rightarrow\{0,1\}^{n}$ defined by $G(x)=b\left(f^{(n-1)}(x)\right)\left|b\left(f^{(n-2)}(x)\right)\right| \ldots|b(f(x))| b(x)$ is a $P R G$ for all n, polynomial in l (i.e. $n=P(l)$ for some polynomial P).

Proof We will assume the opposite, which is that G is not a PRG. Then G is next-bit predictable. This implies there exists a PPT algorithm P that can predict bit i of the output of G for some i, i.e.

$$
\begin{equation*}
\operatorname{Pr}_{x \leftarrow\{0,1\}^{l}}\left[P\left(b\left(f^{(n-1)}(x)\right)\left|b\left(f^{(n-2)}(x)\right)\right| \ldots \mid b\left(f^{(n-i+1)}(x)\right)\right)=b\left(f^{(n-i)}(x)\right)\right] \geq \frac{1}{2}+\frac{1}{n^{k}} \tag{4}
\end{equation*}
$$

for some constant k. After setting $y=f^{(n-i)}(x)$, notice that because f is a permutation (and so is $\left.f^{(n-i)}\right)$, then y is uniform in $\{0,1\}^{l}$ if x is. Then we can rewrite this equation as

$$
\begin{equation*}
P r_{y \leftarrow\{0,1\}^{l}}\left[P\left(b\left(f^{(i-1)}(y)\right)\left|b\left(f^{(i-2)}(y)\right)\right| \ldots \mid b(f(y))\right)=b(y)\right] \geq \frac{1}{2}+\frac{1}{n^{k}} \tag{5}
\end{equation*}
$$

Having (5), we will construct a PPT algorithm P^{\prime}, such that $\operatorname{Pr}_{y \leftarrow\{0,1\}^{l}}\left[P^{\prime}(f(y))=b(y)\right] \geq \frac{1}{2}+\frac{1}{n^{k}}$, contradicting the fact that b is a hardcore bit of f. Algorithm P^{\prime}, on an input x, will compute $f^{(j)}(x)$ for $1 \leq j \leq i-2$. Then P^{\prime} computes $b\left(f^{(j)}(x)\right)$ for all $0 \leq j \leq i-2$, obtains the concatenation $z=b\left(f^{(i-2)}(x)\right)\left|b\left(f^{(i-3)}(x)\right)\right| \ldots\left|b\left(f^{(2)}(x)\right)\right| b(f(x)) \mid b(x)$, applies algorithm P to z and finally outputs the result of $P(z)$. Note the following two points. First, if $x=f(y)$, then it is clear from (5) that the probability that P^{\prime} succeeds is $\frac{1}{2}+\frac{1}{n^{k}}$. Second, because b is efficiently computable, then P^{\prime} is a PPT algorithm. Both points imply that P^{\prime} successfully computes $b(y)$ from input $f(y)$ with at least probability $\frac{1}{2}+\frac{1}{n^{k}}$, i.e. b is not a hardcore bit $(\Longrightarrow \Longleftarrow)$. Hence G is a PRG.

The above theorem shows how to construct a PRG from a hardcore bit for a one-way function, but we are not even sure a hardcore bit exists. In the next section, we show that for any one-way permutation f, we can construct a one-way permutation f^{\prime} from f, and a hardcore bit b for f^{\prime}.

3 Goldreich-Levin Theorem

Theorem 8 (Goldreich-Levin) If f is a one-way function, then $b:\{0,1\}^{*} \rightarrow\{0,1\}$, defined by $b(x, r)=\langle x, r\rangle$, is a hardcore bit for the one-way function f^{\prime} defined by $f^{\prime}(x, r)=(f(x), r)$, with $|x|=|r|$.

As we said before, the proof of this theorem is quite involved. In lecture, we saw the proof for the case of a one-way permutation $f:\{0,1\}^{l} \rightarrow\{0,1\}^{l}$. Also, we made the simplifying assumption that f is a one-way permutation in the circuit complexity model. The proof will go by contradiction by assuming there is a PPT algorithm A that can predict $b(x, r)$ from $f^{\prime}(x, r)$. From our last assumption, we can assume A is a deterministic algorithm.

Finally, before starting with the proof, convince yourself that if $f:\{0,1\}^{l} \rightarrow\{0,1\}^{l}$ is a one-way permutation, then $f^{\prime}:\{0,1\}^{2 l} \rightarrow\{0,1\}^{2 l}$, defined as in the theorem for $|x|=|r|$, is also a one-way permutation. It is clear that f^{\prime} is a permutation of $\{0,1\}^{2 n}$ if f is a permutation of $\{0,1\}^{n}$. It is also true that f^{\prime} is a one-way function if f is one-way. This is an easy exercise (prove that if there is a PPT algorithm that inverts f^{\prime} with non-negligible probability, then one can construct a PPT algorithm that inverts f with non-negligible probability).

Proof (Simplified Version) We assume the opposite, i.e. there is a poly-time deterministic algorithm A such that $\operatorname{Pr}_{x, r}[A(f(x), r)=b(x, r)=\langle x, r\rangle] \geq \frac{1}{2}+\epsilon$ for some $\epsilon=\epsilon(l) \geq \frac{1}{l^{k}}$ where k is a constant and $l=|x|=|r|$ is the number of bits of x and r.

Let us define $h_{x}(r)=A(f(x), r)$ and call good to a value x if $\operatorname{Pr}_{r}\left[h_{x}(r)=\langle x, r\rangle\right] \geq \frac{1}{2}+\frac{\epsilon}{2}$. We claim that there are at least $\epsilon / 2$ good values of x. In fact, assume this is not the case, so there are at most $\epsilon / 2$ good values of x. Observe that for bad values of x, the probability that A guesses $b(x, r)$ correctly is at most $\frac{1}{2}+\frac{\epsilon}{2}$. Therefore

$$
\begin{aligned}
\operatorname{Pr}_{x, r}[A(f(x), r)=\langle x, r\rangle] & =\operatorname{Pr}_{x}[x \text { is good }] \operatorname{Pr}_{r}[A(f(x), r)=\langle x, r\rangle]+\operatorname{Pr}_{x}[x \text { is bad }] \operatorname{Pr}_{r}[A(f(x), r)=\langle x, r\rangle] \\
& <\frac{\epsilon}{2} \times 1+1 \times\left(\frac{1}{2}+\frac{\epsilon}{2}\right) \\
& =\frac{1}{2}+\epsilon
\end{aligned}
$$

which is a contradiction with our initial assumption. Therefore, there are at least $\frac{\epsilon}{2}$ good values of x, as desired.

Our goal now is to obtain a PPT algorithm B that inverts f for a non-negligible fraction of the inputs, therefore proving that f is not a one-way function. In fact, we will construct B so that it outputs x on input $z=f(x)$ if x is good. Consider the function $h:\{0,1\}^{l} \rightarrow\{0,1\}$, defined by $h(r)=A(z, r)$. To proceed, we translate the functions we are working with to the Boolean analysis notation (i.e. bit 1 becomes -1 and bit 0 becomes +1). Observe that if $S_{x} \subseteq[l]$ is the set that defines $x\left(j \in S_{x}\right.$ iff the j bit of x is 1), then $\langle x, r\rangle$ becomes $\chi_{S_{x}}(r)$ in Boolean notation. Therefore, if x is good, we have that $\operatorname{Pr}_{r}\left[h(r)=\chi_{S_{x}}(r)\right] \geq \frac{1}{2}+\frac{\epsilon}{2}$, or $\hat{h}\left(S_{x}\right) \geq \epsilon$. This makes it simple to construct PPT B. In fact, B first runs the Goldreich-Levin algorithm to find all the heavy Fourier coefficients of h, the ones for which $\hat{h}(S)>\frac{\epsilon}{2}$. For those sets, we have that $\operatorname{Pr}_{r}\left[h(r)=\chi_{S}(r)\right]>\frac{1}{2}+\frac{\epsilon}{4}$. Thus, if $z=f(x)$ with good x, then S_{x} is among the sets outputted by the Goldreich-Levin algorithm with high probability. Then B can compute $f(x)$ for all x for which S_{x} was outputted by the Goldreich-Levin algorithm and output a particular x_{0} if $f\left(x_{0}\right)=z$. Otherwise, B just outputs a random value.

The probability that B succeeds on $z=f(x)$, for good x, can be made at least $\frac{1}{2}$ if we set the confidence parameter $\delta=\frac{1}{2}$ in Goldreich-Levin. Note that since at least $\frac{\epsilon}{2} \geq \frac{1}{2 n^{k}}$ fraction of the inputs x are good, then B succeeds with probability at least $\frac{1}{4 n^{k}}$ for a random $z=f(x)$. This shows that f is not a one-way permutation $(\Longrightarrow \Longleftarrow)$. Hence, we conclude that the theorem is true.

Observation 9 It may not be clear that B runs in polynomial time, because we do not know how many heavy coefficients $\hat{h}(S)$ there are. However, remember that there are at most poly $\left(\frac{1}{\epsilon}\right)$ of these coefficients, and since $\epsilon \geq \frac{1}{n^{k}}$, then this is also polynomial, as desired.

4 For next lecture

Next lecture, we will study the Nisan Pseudorandom Generator. As a warm-up, you might want to think of the following definition and try to prove the next theorem.

Definition 10 A collection of subsets $S_{1}, S_{2}, \ldots, S_{m} \subseteq[d]=\{1,2, \ldots, d\}$ is a $(l, a)-$ design if

- $\left|S_{i}\right|=l$ for all $1 \leq i \leq m$.
- $\left|S_{i} \cap S_{j}\right| \leq a$ for all $1 \leq i \neq j \leq m$.

Theorem 11 There exists a (l,a)-design with $a=\gamma \log m$ and $d=O\left(l^{2} / a\right)$ for some $m \in \mathbb{Z}_{+}$and all $\gamma>0$.

