1 Pseudorandom Generators and Next bit predictability

We saw the definition of a pseudorandom generator before
Definition 1 A function $G:\{0,1\}^{\ell(n)} \rightarrow\{0,1\}^{n}$ is a pseudorandom generator if

- $\ell(n)<n$
- G is computationally indistinguishable from the uniform random distribution.

We say a pseudorandom generator is efficient if the function can be computed in polynomial time. This are the kind of generators we are interested.

1.1 Next bit predictability

As we will see, computationally indistinguishability is tightly related with the notion of next bit predictability, which we define bellow
Definition $2 A$ sequence $X=x_{1} x_{2} \ldots x_{n}$ is next bit predictable if for all polynomial time algorithm P there is a negligible function $\epsilon(n)$ such that

$$
\operatorname{Pr}_{X_{i} \in[n]}\left[P\left(x_{1}, x_{2} \ldots x_{i-1}\right)=x_{i}\right]>\frac{1}{2}+\epsilon
$$

Theorem $3 X$ is a pseudorandom generator if and only if it is next bit unpredictable.
Proof We proved one side of the theorem last class. Then we will prove that if X is next bit unpredictable then it is also a pseudorandom generator. To do so we will show the contrapositive. So, let X be a generator, but not pseudorandom. Then there is a polynomial time algorithm T such that

$$
\left|\operatorname{Pr}_{X}[T(X)=1]-\operatorname{Pr}_{U}[T(U)=1]\right|>\frac{1}{n^{k}}
$$

for some k and infinitely many n 's. Notice that there is a polynomial time algorithm \bar{T} that always returns the opposite of T. By considering either of them we can suppose, without loss of generality that

$$
\operatorname{Pr}_{X}[T(X)=1]-\operatorname{Pr}_{U}[T(U)=1] \geq \frac{1}{n^{k}}
$$

. In the following we will use a very useful trick know as the hybrid argument. We define the following hybrid sequences where the u_{i} 's are taken from the uniform random distribution and the x_{i} 's from the generator X.

$$
\begin{align*}
D_{0} & =u_{1} u_{2} \ldots u_{n} \tag{1}\\
D_{1} & =x_{1} u_{2} \ldots u_{n} \tag{2}\\
D_{2} & =x_{1} x_{2} \ldots u_{n} \tag{3}\\
& =U \tag{4}\\
& \tag{5}\\
D_{n} & =x_{1} x_{2} \ldots x_{n}
\end{align*}
$$

Now we consider the probabilities of any of the sequences of passing the test T. We use a telescoping sum to get the inequality.

$$
\begin{align*}
\frac{1}{n^{k}} & <\operatorname{Pr}_{X \in D_{n}}[T(X)]-\operatorname{Pr}_{X \in D_{0}}[T(X)] \tag{6}\\
& <\sum_{i=1}^{n}\left(\operatorname{Pr}_{X \in D_{i}}[T(X)]-\operatorname{Pr}_{X \in D_{i-1}}[T(X)]\right) \tag{7}
\end{align*}
$$

Then one of the differences in the sum, has to be larger than the average. That is, there is an i such that

$$
\frac{1}{n^{k+1}}<\left(\operatorname{Pr}_{X \in D_{i}}[T(X)]-\operatorname{Pr}_{X \in D_{i-1}}[T(X)]\right)
$$

With this inequality in mind we define a predictor algorithm P :

- Chose $u_{i}, u_{i+1} \ldots u_{n} \in\{0,1\}^{n-1}$
- $b \leftarrow T\left(x_{1}, x_{2}, \ldots x_{i-1}, u_{i} \ldots u_{n}\right)$
- If $b=1$ output u_{i}. Otherwise output \bar{u}_{i}.

Note that $P\left(x_{1}, x_{2} \ldots x_{i-1}\right)=x_{i}$ exactly in the two cases

- $b=1$ and $u_{i}=x_{i}$
- $b=0$ and $u_{i} \neq x_{i}$

Lets reconsider the inequalities. Let Q be the random variable that determines if $P\left(x_{1} \ldots x_{i-1}\right)=x_{i}$ then

$$
\begin{align*}
\operatorname{Pr}[Q] & =\operatorname{Pr}\left[Q \mid u_{i}=x_{i}\right] \operatorname{Pr}\left[u_{i}=x_{i}\right]+\operatorname{Pr}\left[Q \mid u_{i} \neq x_{i}\right] \operatorname{Pr}\left[u_{i} \neq x_{i}\right] \tag{9}\\
& =\frac{1}{2} \operatorname{Pr}\left[Q \mid u_{i}=x_{i}\right]+\frac{1}{2} \operatorname{Pr}\left[Q \mid u_{i} \neq x_{i}\right] \tag{10}\\
& =\frac{1}{2}\left(\operatorname{Pr}\left[b=1 \mid u_{i}=x_{i}\right]+\operatorname{Pr}\left[b=0 \mid u_{i} \neq x_{i}\right]\right) \tag{11}\\
& =\frac{1}{2}\left(\operatorname{Pr}\left[b=1 \mid u_{i}=x_{i}\right]+1-\operatorname{Pr}\left[b=1 \mid u_{i} \neq x_{i}\right]\right) \tag{12}\\
& =\frac{1}{2}+\frac{1}{2}\left(\operatorname{Pr}\left[b=1 \mid u_{i}=x_{i}\right]-\operatorname{Pr}\left[b=1 \mid u_{i} \neq x_{i}\right]\right) \tag{13}\\
& =\frac{1}{2}\left(\operatorname{Pr}\left[T\left(x_{1} x_{2} \ldots x_{i} u_{i+1} \ldots u_{n}\right)\right]-\operatorname{Pr}\left[T\left(x_{1} x_{2} \ldots \bar{x}_{i} u_{i+1} \ldots u_{n}\right)\right]\right) \tag{14}
\end{align*}
$$

Now notice that we have the following relation:

$$
\operatorname{Pr}\left[T\left(x_{1} \ldots x_{i-1} u_{i} \ldots u_{n}\right)\right]=\frac{1}{2} \operatorname{Pr}\left[T\left(x_{1} \ldots x_{i} u_{i+1} \ldots u_{n}\right)\right]+\frac{1}{2} \operatorname{Pr}\left[T\left(x_{1} \ldots \bar{x}_{i} u_{i+1} \ldots u_{n}\right)\right]
$$

Which is equivalent to

$$
\operatorname{Pr}\left[T\left(x_{1} \ldots \bar{x}_{i} u_{i+1} \ldots u_{n}\right)\right]=2 \operatorname{Pr}\left[T\left(x_{1} \ldots x_{i-1} u_{i} \ldots u_{n}\right)\right]-\operatorname{Pr}\left[T\left(x_{1} \ldots x_{i} u_{i+1} \ldots u_{n}\right)\right]+\frac{1}{2}
$$

Replacing this in equation (??) we get

$$
\begin{align*}
\operatorname{Pr}[Q] & =\frac{1}{2}\left(\operatorname{Pr}\left[T\left(x_{1} x_{2} \ldots x_{i} u_{i+1} \ldots u_{n}\right)\right]-\operatorname{Pr}\left[T\left(x_{1} x_{2} \ldots \bar{x}_{i} u_{i+1} \ldots u_{n}\right)\right]\right) \tag{15}\\
& =\frac{1}{2}\left(2 \operatorname{Pr}\left[T\left(x_{1} x_{2} \ldots x_{i} u_{i+1} \ldots u_{n}\right)\right]-2 \operatorname{Pr}\left[T\left(x_{1} \ldots x_{i-1} u_{i} \ldots u_{n}\right)\right]\right. \tag{16}\\
& =\left(\operatorname{Pr}_{X \in D_{i}}[T(X)]-\operatorname{Pr}_{X \in D_{i-1}}[T(X)]\right) \tag{17}\\
& >\frac{1}{n^{k+1}} \tag{18}
\end{align*}
$$

That is, our predictor succeeds with non-negligible probability. Thus X is not next bit unpredictable.

2 Introduction to One Way functions

Definition 4 A function f is one way if

- f is computable in deterministic polynomial time.
- For every probabilistic polynomial time algorithm A, there is a negligible function $\epsilon(n)$ such that for large enough n

$$
\operatorname{Pr}_{X}\left[A(f(x)) \in f^{-1}(f(x))\right] \leq \epsilon(n)
$$

2.1 One way function cadidates

- Multiplication: $f(x, y)=x y$. For x, y large prime numbers.
- RSA: $f_{m, e}(x)=x^{e} \bmod p$ for a prime p.
- Rabin's function: $f_{m}(x)=x^{2} \bmod p$ for a prime p.
- Discrete log: $f_{p, g}=g^{x} \bmod p$.

Theorem 5 (Hill) Pseudorandom generators exist if and only if one way functions exist.
We will not prove this theorem. But in next class we will show a weaker version.
Theorem 6 If a permutation one way function exists, then there are efficient pseudorandom generators.

