May 2, 2012

Lecture 22

Today we will briefly talk about non-uniform complexity classes and Yao's XOR lemma.

1 Non-uniform complexity classes

Definition 1 Let **C** be a class of languages (e.g. **P**, **NP**) and let a(n) be a length function (e.g. $\log n$). Define **C**/a to be the class

 $\mathbf{C}/a = \{L \mid \exists L' \in \mathbf{C} \text{ and "advice" } \alpha_1, \alpha_2, \ldots \in \{0, 1\}^*, |\alpha_n| \le a(n) \forall n \text{ s.t. } x \in L \iff (x, \alpha_{|x|}) \in L'\}.$

Note that the advice string is the same for all inputs of a given length.

For example, $\mathbf{P}/\text{poly} = \bigcup_c \mathbf{P}/n^c$ is the set of languages computable via Boolean circuits of polynomial size (the polynomial advice corresponds to the polynomial description of the circuit).

Uniform vs. non-uniform computational model. We use non-uniform complexity classes when talking about non-uniform models of computation. In the uniform model, we have a uniform Turing Machine which does the same algorithm regardless of the size of the input, whereas in the non-uniform model we have a different algorithm for each input size.

We also showed in homework that randomness does not help in the non-uniform model, since we can hardcode random strings as advice. In fact, we showed that $\mathbf{P}/\text{poly} = \mathbf{RP}/\text{poly}$.

Can we hope to make statements like $\mathbf{P}/1 = \mathbf{P}$? Not really, since even $\mathbf{P}/1$ contains undecidable languages. For example, consider the language $L = \{x \mid M_{|x|} \text{ halts on the empty string } \epsilon\}$. Then $L \in \mathbf{P}/1$ trivially since the advice bit α_n could tell you the answer. (Never mind that we don't know how to find α_n , the fact that it exists is enough.) Nevertheless, these complexity classes are still interesting.

2 Yao's XOR Lemma

Throughout this section, we consider functions $f : \{\pm 1\}^n \to \{\pm 1\}$ and when we say \oplus (the XOR operation), we really mean multiplication in $\{\pm 1\}$.

Recall the following definitions of hard and hardcore from last time.

Definition 2 f is δ -hard on a distribution D for size g if for any Boolean circuit C with at most g gates,

$$\Pr_{x \leftarrow_D \{\pm 1\}^n} [C(x) = f(x)] \le 1 - \delta.$$

Definition 3 Let $S \subseteq \{\pm 1\}^n$. Then f is ϵ -hardcore on S for size g if for every Boolean circuit C with size at most g,

$$\Pr_{x \leftarrow US}[C(x) = f(x)] \le \frac{1}{2} + \frac{\epsilon}{2}.$$

Recall the following theorem (actually combination of two theorems from last time).

Theorem 4 If f is δ -hard for size g on the uniform distribution and $0 < \epsilon < 1$, then there exists a 2ϵ -hardcore set S for f for size $g' = \frac{1}{4}\epsilon^2\delta^2 g$ with $|S| \ge \delta 2^n$.

Scribe: Alan Guo

So, if we start with a function f which is a little hard to predict, we can obtain a small set S on which f is very hard to predict. From this, we can get a function f' which is hard to predict on the whole domain (actually, the Cartesian product of k copies of the domain). In summary,

 δ -hard $\rightarrow \delta'(\epsilon, \delta)$ -hardcore measure $\rightarrow 2\delta'$ -hardcore set $\rightarrow 2\delta' + 2(1-\delta)^k$ -hard on domain to the k

The function f' will simply be the XOR of k copies of f. We will obtain this result immediately with Yao's XOR lemma, whose precise statement is as follows. For notational convenience, define $f^{\oplus k}(x_1, \ldots, x_k) \equiv f(x_1) \oplus \cdots \oplus f(x_k)$.

Theorem 5 If f is ϵ -hardcore for a set H of size at least $\delta 2^n$ for size g, then $f^{\oplus k}$ is $\epsilon + 2(1-\delta)^k$ -hardcore on $\{\pm 1\}^{nk}$ for size g - 1.

Proof Assume not. Then there exists a circuit C of size at most g - 1 such that

$$\Pr_{x_1,\dots,x_n}[C(x_1,\dots,x_n) = f^{\oplus k}(x_1,\dots,x_n)] \ge \frac{1}{2} + \frac{\epsilon}{2} + (1-\delta)^k.$$

Our plan will be to show that for any H such that $|H| \ge \delta 2^n$, we will get a circuit C' with at most g gates which guesses f with probability greater than $\frac{1}{2} + \frac{\epsilon}{2}$.

Constructing C': Let A_m denote the event that exactly m of x_1, \ldots, x_k are in H. Then $\Pr_{x_1,\ldots,x_k}[A_0] \le (1-\delta)^k$, so $\Pr_{x_1,\ldots,x_k}[\overline{A_0}] \ge 1-(1-\delta)^k$. Therefore,

$$\Pr_{x_1,\dots,x_k}[C(x_1,\dots,x_k) = f^{\oplus k}(x_1,\dots,x_k) \mid \overline{A_0}] \ge \frac{1}{2} + \frac{\epsilon}{2}$$

By averaging, there exists $m \in \{1, \ldots, k\}$ such that

x

$$\Pr_{x_1,\dots,x_k} [C(x_1,\dots,x_k) = f^{\oplus k}(x_1,\dots,x_k) \mid A_m] \ge \frac{1}{2} + \frac{\epsilon}{2}.$$

Now we give the circuit for f on input $x \in H$. To randomly generate a random element of A_m , one can do the following:

- 1. Pick $x_1, \ldots, x_{m-1} \in_R H$
- 2. Pick $y_{m+1}, \ldots, y_k \in_R \overline{H}$
- 3. Permute $x_1, \ldots, x_{m-1}, x, y_{m+1}, \ldots, y_k$ via random permutation π .

Denoting $\mathbf{x} = (x_1, ..., x_{m-1})$ and $\mathbf{y} = (y_{m+1}, ..., y_k)$, we have

$$\Pr_{\mathbf{x},\mathbf{y},\pi}[C(\pi(\mathbf{x},x,\mathbf{y})) = f^{\oplus k}(\pi(\mathbf{x},x,\mathbf{y}))] \ge \frac{1}{2} + \frac{\epsilon}{2}$$

By averaging again, there exists $\mathbf{x}, \mathbf{y}, \pi$ such that

$$\Pr_{x}[C(\pi(\mathbf{x}, x, \mathbf{y})) = f^{\oplus k}(\pi(\mathbf{x}, x, \mathbf{y}))] \ge \frac{1}{2} + \frac{\epsilon}{2}.$$

Now, let $b = C(\pi(\mathbf{x}, x, \mathbf{y})) \oplus f(x_1) \oplus \cdots \oplus f(x_{m-1}) \oplus f(y_{m+1}) \oplus \cdots \oplus f(y_k)$. Define the circuit C' which computes $C(\pi(\mathbf{x}, x, \mathbf{y})) \oplus b$. Then

$$\Pr_{x}[C'(x) = f(x)] \ge \frac{1}{2} + \frac{\epsilon}{2}$$

and moreover C' has size at most g, since $C(\pi(\mathbf{x}, x, \mathbf{y}))$ can be computed without adding any more gates to C and XORing with b takes at most one more gate.