Lecture 22
Lecturer: Ronitt Rubinfeld
Scribe: Alan Guo

Today we will briefly talk about non-uniform complexity classes and Yao's XOR lemma.

1 Non-uniform complexity classes

Definition 1 Let \mathbf{C} be a class of languages (e.g. $\mathbf{P}, \mathbf{N P}$) and let $a(n)$ be a length function (e.g. $\log n$). Define $\mathbf{C} /$ a to be the class
$\mathbf{C} / a=\left\{L \mid \exists L^{\prime} \in \mathbf{C}\right.$ and "advice" $\alpha_{1}, \alpha_{2}, \ldots \in\{0,1\}^{*},\left|\alpha_{n}\right| \leq a(n) \forall n$ s.t. $\left.x \in L \Longleftrightarrow\left(x, \alpha_{|x|}\right) \in L^{\prime}\right\}$.
Note that the advice string is the same for all inputs of a given length.
For example, $\mathbf{P} /$ poly $=\bigcup_{c} \mathbf{P} / n^{c}$ is the set of languages computable via Boolean circuits of polynomial size (the polynomial advice corresponds to the polynomial description of the circuit).

Uniform vs. non-uniform computational model. We use non-uniform complexity classes when talking about non-uniform models of computation. In the uniform model, we have a uniform Turing Machine which does the same algorithm regardless of the size of the input, whereas in the non-uniform model we have a different algorithm for each input size.

We also showed in homework that randomness does not help in the non-uniform model, since we can hardcode random strings as advice. In fact, we showed that $\mathbf{P} /$ poly $=\mathbf{R P} /$ poly.

Can we hope to make statements like $\mathbf{P} / 1=\mathbf{P}$? Not really, since even $\mathbf{P} / 1$ contains undecidable languages. For example, consider the language $L=\left\{x \mid M_{|x|}\right.$ halts on the empty string $\left.\epsilon\right\}$. Then $L \in \mathbf{P} / 1$ trivially since the advice bit α_{n} could tell you the answer. (Never mind that we don't know how to find α_{n}, the fact that it exists is enough.) Nevertheless, these complexity classes are still interesting.

2 Yao's XOR Lemma

Throughout this section, we consider functions $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and when we say \oplus (the XOR operation), we really mean multiplication in $\{ \pm 1\}$.

Recall the following definitions of hard and hardcore from last time.
Definition $2 f$ is δ-hard on a distribution D for size g if for any Boolean circuit C with at most g gates,

$$
\operatorname{Pr}_{x \leftarrow D\{ \pm 1\}^{n}}[C(x)=f(x)] \leq 1-\delta
$$

Definition 3 Let $S \subseteq\{ \pm 1\}^{n}$. Then f is ϵ-hardcore on S for size g if for every Boolean circuit C with size at most g,

$$
\operatorname{Pr}_{x \leftarrow U S}[C(x)=f(x)] \leq \frac{1}{2}+\frac{\epsilon}{2}
$$

Recall the following theorem (actually combination of two theorems from last time).
Theorem 4 If f is δ-hard for size g on the uniform distribution and $0<\epsilon<1$, then there exists a 2ϵ-hardcore set S for f for size $g^{\prime}=\frac{1}{4} \epsilon^{2} \delta^{2} g$ with $|S| \geq \delta 2^{n}$.

So, if we start with a function f which is a little hard to predict, we can obtain a small set S on which f is very hard to predict. From this, we can get a function f^{\prime} which is hard to predict on the whole domain (actually, the Cartesian product of k copies of the domain). In summary,
δ-hard $\rightarrow \delta^{\prime}(\epsilon, \delta)$-hardcore measure $\rightarrow 2 \delta^{\prime}$-hardcore set $\rightarrow 2 \delta^{\prime}+2(1-\delta)^{k}$-hard on domain to the k
The function f^{\prime} will simply be the XOR of k copies of f. We will obtain this result immediately with Yao's XOR lemma, whose precise statement is as follows. For notational convenience, define $f^{\oplus k}\left(x_{1}, \ldots, x_{k}\right) \equiv f\left(x_{1}\right) \oplus \cdots \oplus f\left(x_{k}\right)$.
Theorem 5 If f is ϵ-hardcore for a set H of size at least $\delta 2^{n}$ for size g, then $f^{\oplus k}$ is $\epsilon+2(1-\delta)^{k}$-hardcore on $\{ \pm 1\}^{n k}$ for size $g-1$.

Proof Assume not. Then there exists a circuit C of size at most $g-1$ such that

$$
\operatorname{Pr}_{x_{1}, \ldots, x_{n}}\left[C\left(x_{1}, \ldots, x_{n}\right)=f^{\oplus k}\left(x_{1}, \ldots, x_{n}\right)\right] \geq \frac{1}{2}+\frac{\epsilon}{2}+(1-\delta)^{k} .
$$

Our plan will be to show that for any H such that $|H| \geq \delta 2^{n}$, we will get a circuit C^{\prime} with at most g gates which guesses f with probability greater than $\frac{1}{2}+\frac{\epsilon}{2}$.

Constructing C^{\prime} : Let A_{m} denote the event that exactly m of x_{1}, \ldots, x_{k} are in H. Then $\operatorname{Pr}_{x_{1}, \ldots, x_{k}}\left[A_{0}\right] \leq$ $(1-\delta)^{k}$, so $\operatorname{Pr}_{x_{1}, \ldots, x_{k}}\left[\overline{A_{0}}\right] \geq 1-(1-\delta)^{k}$. Therefore,

$$
\operatorname{Pr}_{x_{1}, \ldots, x_{k}}\left[C\left(x_{1}, \ldots, x_{k}\right)=f^{\oplus k}\left(x_{1}, \ldots, x_{k}\right) \mid \overline{A_{0}}\right] \geq \frac{1}{2}+\frac{\epsilon}{2} .
$$

By averaging, there exists $m \in\{1, \ldots, k\}$ such that

$$
\operatorname{Pr}_{x_{1}, \ldots, x_{k}}\left[C\left(x_{1}, \ldots, x_{k}\right)=f^{\oplus k}\left(x_{1}, \ldots, x_{k}\right) \mid A_{m}\right] \geq \frac{1}{2}+\frac{\epsilon}{2}
$$

Now we give the circuit for f on input $x \in H$. To randomly generate a random element of A_{m}, one can do the following:

1. Pick $x_{1}, \ldots, x_{m-1} \in_{R} H$
2. Pick $y_{m+1}, \ldots, y_{k} \in_{R} \bar{H}$
3. Permute $x_{1}, \ldots, x_{m-1}, x, y_{m+1}, \ldots, y_{k}$ via random permutation π.

Denoting $\mathbf{x}=\left(x_{1}, \ldots, x_{m-1}\right)$ and $\mathbf{y}=\left(y_{m+1}, \ldots, y_{k}\right)$, we have

$$
\underset{\mathbf{x}, \mathbf{y}, \pi}{\operatorname{Pr}}\left[C(\pi(\mathbf{x}, x, \mathbf{y}))=f^{\oplus k}(\pi(\mathbf{x}, x, \mathbf{y}))\right] \geq \frac{1}{2}+\frac{\epsilon}{2}
$$

By averaging again, there exists $\mathbf{x}, \mathbf{y}, \pi$ such that

$$
\underset{x}{\operatorname{Pr}}\left[C(\pi(\mathbf{x}, x, \mathbf{y}))=f^{\oplus k}(\pi(\mathbf{x}, x, \mathbf{y}))\right] \geq \frac{1}{2}+\frac{\epsilon}{2}
$$

Now, let $b=C(\pi(\mathbf{x}, x, \mathbf{y})) \oplus f\left(x_{1}\right) \oplus \cdots \oplus f\left(x_{m-1}\right) \oplus f\left(y_{m+1}\right) \oplus \cdots \oplus f\left(y_{k}\right)$. Define the circuit C^{\prime} which computes $C(\pi(\mathbf{x}, x, \mathbf{y})) \oplus b$. Then

$$
\operatorname{Pr}_{x}\left[C^{\prime}(x)=f(x)\right] \geq \frac{1}{2}+\frac{\epsilon}{2}
$$

and moreover C^{\prime} has size at most g, since $C(\pi(\mathbf{x}, x, \mathbf{y}))$ can be computed without adding any more gates to C and XORing with b takes at most one more gate.

