Lecture 17

Lecturer: Ronitt Rubinfeld

Today we will discuss the following:

- Learning parity functions with "noise" (continued)

1 Review

Given a black-box function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, we want to find the heavy coefficients. More specifically, we want to output all $S \subseteq[n]$ such that $\hat{f}(S)>\theta$ and no S such that $\hat{f}(S)<\frac{\theta}{2}$.

Last time, we looked at these cases:

- Warmup 2: $f=\chi_{\mathrm{S}}$ for some S

The algorithm works as follows:

- For each i, put i in S if $f(1, \ldots, 1) \neq f(1, \ldots, 1,-1,1, \ldots, 1)$, where the -1 is in the i th position.
- Warmup 3: $\operatorname{Pr}\left[f(x)=\chi_{\mathrm{S}}(x)\right] \geq \frac{3}{4}+\frac{\theta}{2}$

The algorithm works as follows:

- Choose $r_{1}, \ldots, r_{t} \in\{ \pm 1\}^{n}$, with $t=\Theta\left(\frac{\log n}{\theta^{2}}\right)$.
- For all $i \in[n]$, put i in S if the majority of $f\left(r_{j}\right) \neq f\left(r_{j} \oplus e_{i}\right)$.

For any $r \in\{ \pm 1\}^{n}$, we get a wrong answer if either $f(r) \neq \chi_{\mathrm{S}}(r)$ or $f\left(r \oplus e_{i}\right) \neq \chi_{\mathrm{S}}\left(r \oplus e_{i}\right)$. Using a union bound, $\operatorname{Pr}[$ test does not work $] \leq \frac{1}{2}-\theta$. In particular, $\operatorname{Pr}[$ test works $]>\frac{1}{2}$. So by repeating this for r_{1}, \ldots, r_{t}, we can put i in S correctly with high probability.

2 Warmup 4

We want to output all S such that f agrees with χ_{S} on $\geq \frac{1}{2}+\frac{\theta}{2}$ fraction of inputs. We consider θ as a constant for now.

First note that the algorithm for Warmup 3 cannot be extended in a straightforward way to Warmup 4 , since now we have $\operatorname{Pr}\left[f(x)=\chi_{\mathrm{S}}\right] \geq \frac{1}{2}+\frac{\theta}{2}$. So on each r, the test $f(r) \neq f\left(r \oplus e_{i}\right)$ could fail with high probability, by union bound.

The algorithm works as follows:

- Choose $r_{1}, \ldots, r_{t} \in\{ \pm 1\}^{n}$, with $t=\Theta(\log n)$.
- For all possible settings of $\sigma_{1}, \ldots, \sigma_{t} \in\{ \pm 1\}$,
- For all $i \in[n]$, put i in $S_{\sigma_{1} \ldots \sigma_{t}}$ if the majority of $\sigma_{j} \neq f\left(r_{j} \oplus e_{i}\right)$
- Sample to see if $S_{\sigma_{1} \ldots \sigma_{t}}$ agrees with f on $\geq \frac{1}{2}+\frac{3}{8} \theta$ of the inputs. If yes, output $\chi_{\mathrm{S}_{\sigma_{1} \ldots \sigma_{t}}}$.

Intuitively, the algorithm uses $\sigma_{1}, \ldots, \sigma_{t}$ as guesses for $\chi_{\mathrm{S}}\left(r_{1}\right), \ldots, \chi_{\mathrm{S}}\left(r_{t}\right)$. And for these guesses, it generates a candidate set $S_{\sigma_{1} \ldots \sigma_{t}}$, which we then sample and test the candidate set to eliminate cases where $\hat{f}\left(S_{\sigma_{1} \ldots \sigma_{t}}\right)<\frac{\theta}{2}$ (since the guesses may be totally wrong).

Behavior:

- Since we picked $t=\Theta(\log n)$, enumerating all the possible settings of $\sigma_{1}, \ldots, \sigma_{t}$ will take $2^{t}=$ poly (n) trials.
- We already have an algorithm to estimate any Fourier coefficient, and the last step of the algorithm for each setting $\sigma_{1}, \ldots, \sigma_{t}$ uses this algorithm to estimate $\hat{f}\left(S_{\sigma_{1}, \ldots, \sigma_{t}}\right)$. Using Chernoff bounds, we can determine whether $S_{\sigma_{1}, \ldots, \sigma_{t}}$ satisfies the condition $\hat{f}\left(S_{\sigma_{1}, \ldots, \sigma_{t}}\right)>\frac{\theta}{2}$ with high probability.
- For each S that should be output, some setting of $\sigma_{1}, \ldots, \sigma_{t}$ agrees with χ_{S} for all j. In other words, for this setting, $\chi_{\mathrm{S}}\left(r_{j}\right)=\sigma_{j}$ for all j.
For this setting,

$$
\begin{aligned}
\operatorname{Pr}\left[\text { wrong answer on } r_{j} \text { for } i\right] & =\operatorname{Pr}\left[\sigma_{j} f\left(r_{j} \oplus e_{i}\right)(-1)^{1_{i \in S}}=-1\right] \\
& \leq \operatorname{Pr}\left[f\left(r_{j} \oplus e_{i}\right) \neq \chi_{\mathrm{S}}\left(r_{j} \oplus e_{i}\right)\right] \\
& \leq \frac{1}{2}-\frac{\theta}{2}
\end{aligned}
$$

The wrong answer is according to whether $i \in S$. The second line follows from the fact that $\sigma_{j}=\chi_{\mathrm{S}}\left(r_{j}\right)$ and $f\left(r_{j} \oplus e_{i}\right)$ is uniformly distributed.
Using Chernoff bounds and the fact that $t=\Theta(\log n)$, we can show that $\operatorname{Pr}[$ wrong answer on $i] \leq \frac{1}{c n}$ for some constant c. Finally, by the union bound, $\operatorname{Pr}[$ wrong answer on any $i] \leq \frac{1}{c}$. Therefore, S is output with probability at least $1-\frac{1}{c}$.

3 Algorithm for the General Case

We want to output all S such that f and χ_{S} agree on $\geq \frac{1}{2}+\frac{\theta}{2}$ fraction of inputs, where θ can be $1 / \operatorname{poly}(n)$.

Note that now θ is not necessarily constant. In Warmup $4, t$ actually has order $\Theta\left(\frac{\log n}{\theta^{2}}\right)$, so to enumerate over all possible settings $\sigma_{1}, \ldots, \sigma_{t}$, the running time of the could be exponential. To solve this problem, we use pairwise independence.

The algorithm works as follows:

- Choose $s_{1}, \ldots, s_{k} \in\{ \pm 1\}^{n}$, where the number of guesses is $k=\log (t+1)$, and the number of r_{i} 's generated is $t \geq \frac{c n}{\theta^{2}}$.
- For all possible settings $\sigma_{1}, \ldots, \sigma_{k} \in\{ \pm 1\}^{n}$ (guesses of $\chi_{\mathrm{S}}\left(s_{i}\right)$):
- For every $W \subseteq\{1, \ldots, k\}, W \neq \emptyset$,
$r_{\mathrm{W}} \leftarrow \bigoplus_{j \in W} s_{j}$
$p_{\mathrm{W}} \leftarrow \prod_{j \in W} \sigma_{j}$
- For all $i \in[n]$, put i in $S_{\sigma_{1} \ldots \sigma_{k}}$ if the majority of $p_{\mathrm{W}} \neq f\left(r_{\mathrm{W}} \oplus e_{i}\right)$.
- Test $S_{\sigma_{1} \ldots \sigma_{k}}$ to see if it agrees with f on at least $\frac{1}{2}+\frac{3}{8} \theta$ of the inputs. If yes, output $\chi_{\mathrm{S}_{\sigma_{1} \ldots \sigma_{k}}}$.

Behavior:

- For S such that f agrees with χ_{S} on at least $\frac{1}{2}+\frac{\theta}{2}$ fraction of the inputs, if for all $j, \sigma_{j}=\chi_{\mathrm{S}}\left(s_{j}\right)$, the setting $\sigma_{1}, \ldots, \sigma_{k}$ is correct. Then,

$$
\begin{aligned}
p_{\mathrm{W}} & =\prod_{j \in W} \chi_{\mathrm{S}}\left(s_{j}\right) \\
& =\chi_{\mathrm{S}}\left(\bigoplus_{j \in W} s_{j}\right) \\
& =\chi_{\mathrm{S}}\left(r_{\mathrm{W}}\right)
\end{aligned}
$$

- By construction, the r_{W} 's are pairwise independent.
- Let $X_{W}=1$ if $p_{\mathrm{W}} f\left(r_{\mathrm{W}} \oplus e_{i}\right)(-1)^{1_{i \in S}}$ and $X_{W}=0$ otherwise. Thus, $X_{W}=1$ iff W gives the right answer for χ_{S}. Note that the X_{W} 's are pairwise independent.
We use Chebyshev's inequality to show the probability S is not chosen is low.
Theorem 1 (Chebyshev's inequality) Let X_{1}, \ldots, X_{n} be pairwise independent random variables, each with mean $\mu=E\left[X_{i}\right]$ and variance $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$, then for any $\epsilon>0, \operatorname{Pr}\left[\left|\frac{\sum_{i=1}^{n} X_{i}}{n}-\mu\right|>\right.$ $\epsilon] \leq \frac{\sigma^{2}}{\epsilon^{2} n}$

Here, $E\left[X_{W}\right] \geq \frac{1}{2}+\frac{\theta}{2}$ and $\operatorname{Var}\left(X_{W}\right) \geq \frac{1}{4}-\frac{\theta^{2}}{4}$.
Let $X=\sum_{W \subseteq[k]} X_{W}$. Then $E\left[\frac{X}{t}\right] \geq \frac{1}{2}+\frac{\theta}{2}$. Using Chebyshev's inequality and the fact that $t \geq \frac{c n}{\theta^{2}}$,
$\operatorname{Pr}[i$ is not placed correctly in $S]=\operatorname{Pr}\left[\frac{X}{t}<\frac{1}{2}\right]$

$$
\leq \frac{1}{c n}
$$

Using union bound, $\operatorname{Pr}[S$ is not chosen $] \leq \frac{1}{c}$.

